中国农业科技导报 ›› 2022, Vol. 24 ›› Issue (12): 39-47.DOI: 10.13304/j.nykjdb.2022.0979
王文月1(), 米晓钰2, 孙康泰1, 戴翊超1, 姚志鹏3, 高元鹏2, 刘军2, 葛毅强1, 张松梅1, 邓小明1(
), 张涌2(
)
收稿日期:
2022-11-11
接受日期:
2022-11-24
出版日期:
2022-12-15
发布日期:
2023-02-06
通讯作者:
邓小明,张涌
作者简介:
王文月 E-mail: sweety8815@163.com
基金资助:
Wenyue WANG1(), Xiaoyu MI2, Kangtai SUN1, Yichao DAI1, Zhipeng YAO3, Yuanpeng GAO2, Jun LIU2, Yiqiang GE1, Songmei ZHANG1, Xiaoming DENG1(
), Yong ZHANG2(
)
Received:
2022-11-11
Accepted:
2022-11-24
Online:
2022-12-15
Published:
2023-02-06
Contact:
Xiaoming DENG,Yong ZHANG
摘要:
畜禽重要经济性状的遗传基础研究是新一代分子设计育种的重要前提,是国际畜禽种业科技创新的研究前沿。我国畜禽品种资源丰富、生产类型多样、生态适应幅度广、优异性状突出,但存在种质资源保护和收集不充分、性状特征和遗传机制解析不清等问题,造成我国丰富的畜禽遗传资源开发利用不足,难以支撑分子设计育种技术的研发和应用。针对我国畜牧业现代化和种业振兴行动的发展需求,总结了国内外畜禽重要性状遗传调控机制、分子设计育种的研究进展以及我国畜禽分子设计育种面临的瓶颈,探讨了未来畜禽分子设计育种的发展趋势,旨在为我国未来畜禽种业科技创新发展提供借鉴与参考。
中图分类号:
王文月, 米晓钰, 孙康泰, 戴翊超, 姚志鹏, 高元鹏, 刘军, 葛毅强, 张松梅, 邓小明, 张涌. 畜禽重要性状遗传调控机制与分子设计育种[J]. 中国农业科技导报, 2022, 24(12): 39-47.
Wenyue WANG, Xiaoyu MI, Kangtai SUN, Yichao DAI, Zhipeng YAO, Yuanpeng GAO, Jun LIU, Yiqiang GE, Songmei ZHANG, Xiaoming DENG, Yong ZHANG. Genetic Regulation Mechanisms of Important Traits and Molecular Design Breeding in Livestock and Poultry[J]. Journal of Agricultural Science and Technology, 2022, 24(12): 39-47.
1 | ZhOU R, LI S T, YAO W Y, et al.. The Meishan pig genome reveals structural variation-mediated gene expression and phenotypic divergence underlying Asian pig domestication [J]. Mol. Ecol. Resour., 2021,21: 2077-2092. |
2 | TIAN X M, LI R, FU WW, et al.. Building a sequence map of the pig pan-genome from multiple de novo assemblies and Hi-C data [J]. Sci. China Life Sci., 2019, 63(5): 750-763. |
3 | FU Y, XU J, TANG Z, et al.. A gene prioritization method based on a swine multi-omics knowledgebase and a deep learning model [J/OL]. Commun. Biol., 2020, 3(1): 502 [2022-11-22]. . |
4 | YU J, ZHAO P, ZHENG X, et al.. Genome-wide detection of selection signatures in duroc revealed candidate genes relating to growth and meat quality [J]. G3 (Bethesda), 2020, 10(10): 3765-3773. |
5 | WANG X, RAN X, NIU X, et al.. Whole-genome sequence analysis reveals selection signatures for important economic traits in Xiang pigs [J/OL]. Sci. Rep., 2022, 12: 11823 [2022-11-22]. . |
6 | XU J, FU Y, HU Y, et al.. Whole genome variants across 57 pig breeds enable comprehensive identification of genetic signatures that underlie breed features [J/OL]. J. Anim. Sci. Biotechnol., 2020, 11(1): 115 [2022-11-22]. . |
7 | GUO X, SU G, CHRISTENSEN O F, et al.. Genome-wide association analyses using a Bayesian approach for litter size and piglet mortality in Danish Landrace and Yorkshire pigs [J/OL]. BMC Genomics, 2016, 17(1): 468 [2022-11-23]. . |
8 | YANG H, WU J, HUANG X, et al.. ABO genotype alters the gut microbiota by regulating GalNAc levels in pigs [J]. Nature., 2022, 606(4):358-367. |
9 | ZHAO Y, HOU Y, XU Y, et al.. A compendium and comparative epigenomics analysis of cis-regulatory elements in the pig genome [J/OL]. Nat. Commun., 2021,12:2217 [2022-11-22]. . |
10 | YANG Y L, FAN X H, YAN J Y, et al.. A comprehensive epigenome atlas reveals DNA methylation regulating skeletal muscle development [J]. Nucleic Acids Res., 2021, 49(3): 1313-1329. |
11 | PEDROSA V B, SCHENKEL F S, CHEN S, et al.. Genomewide association analyses of lactation persistency and milk production traits in Holstein cattle based on imputed whole-genome sequence data [J/OL]. Genes, 2021, 12(11): 1830 [2022-11-23]. . |
12 | LU X, ABDALLA I M, NAZAR M, et al.. Genome-wide association study on reproduction-related body-shape traits of Chinese Holstein cows [J/OL]. Animals, 2021, 11(7):1927 [2022-11-23]. . |
13 | MEIER S, ARENDS D, KORKUC P, et al.. A genome-wide association study for clinical mastitis in the dual-purpose German Black Pied cattle breed [J]. J. Dairy Sci., 2020,103(11): 10289-10298. |
14 | ZHENG L, XU J, LIU X, et al.. The copy number variation of DMBT1 gene effects body traits in two Chinese cattle breeds [J]. 3 Biotech., 2022, 12:93 [2022-11-23]. . |
15 | LIANG J, LIU X, YANG P, et al.. Copy number variation of GAL3ST1 gene is associated with growth traits of Chinese cattle [J/OL]. Anim. Biotechnol., 2022 [2022-11-23]. . |
16 | YAO Z, LI J, ZHANG Z, et al.. The relationship between MFN1 copy number variation and growth traits of beef cattle [J/OL]. Genes, 2022, 2: 811 [2022-11-23]. . |
17 | BEDHANE M, VAN DER WERF J, GONDRO C, et al.. Genome-wide association study of meat quality traits in Hanwoo Beef cattle using imputed whole-genome sequence data [J/OL]. Front. Genet., 2019, 11: 1235 [2022-11-23]. . |
18 | LIU D, CHEN Z, ZHAO W, et al.. Genome-wide selection signatures detection in Shanghai Holstein cattle population identified genes related to adaption, health and reproduction traits [J/OL]. BMC Genomics, 2021, 22(1): 747 [2022-11-22]. . |
19 | 吕小青, 杨宇泽, 赵凤, 等. 中国荷斯坦奶牛RPL23A、ACACB 基因3个SNPs检测及其与产奶性状的关联分析[J]. 畜牧兽医学报, 2022,53(10): 3712-3720. |
LYU X Q, YANG Y Z, ZHAO F, et al.. Detection of three SNPs in the RPL23A and ACACB genes in chinese holstein cows and their association with milk production traits [J]. J. Anim. Husbandry Veter. Med., 2022,53(10): 3712-3720. | |
20 | JOHNSTON D, MUKIIBI R, WATERS S M, et al.. Genome wide association study of passive immunity and disease traits in beef-suckler and dairy calves on Irish farms [J/OL]. Sci. Rep., 2020, 10(1): 18998 [2022-11-23]. . |
21 | 马丽娜,刘永进,王锦,等.芯片技术在畜禽育种中的应用研究进展[J].中国畜牧兽医, 2020,47(1): 98-106. |
MA L N, LIU Y J, WANG J, et al.. Research progress on the application of microarray technology in livestock breeding [J]. China Veter. Anim. Husbandry, 2020, 47(1): 98-106. | |
22 | TATIANA E D, SERGEY N P, ALEXANDER A S, et al.. Genome-wide association studies for growth and carcass traits in Russian sheep [J]. J. Anim. Sci.e, 2020,98(4): 449-449. |
23 | ESMAEILIFARD S M, GHOLIZADEH M, HAFEZIAN S H, et al.. Genome-wide association study and pathway analysis identify NTRK2 as a novel candidate gene for litter size in sheep [J/OL]. PloS One, 2021, 16(1): 0244408 [2022-11-23]. . |
24 | ZHAO H, GUO T, LU Z, et al.. Genome-wide association studies detects candidate genes for wool traits by resequencing in Chinese fine-wool sheep [J/OL]. BMC Genomics, 2021, 22(1):127. [2022-11-23]. . |
25 | PICKERING N K, AUVRAY B, DODDS K G, et al.. Genomic prediction and genome-wide association study for dagginess and host internal parasite resistance in New Zealand sheep [J/OL]. BMC Genomics, 2015, 16(1):958 [2022-11-23]. . |
26 | LADEIRA G C, PILONETTO F, FERNANDES A C, et al.. CNV detection and their association with growth, efficiency and carcass traits in Santa Inês sheep [J]. J. Anim. Breeding Genetics, 2022, 139(4): 476-487. |
27 | ROVADOSCKI G A, PERTILE S, ALVARENGA A B, et al.. Estimates of genomic heritability and genome-wide association study for fatty acids profile in Santa Inês sheep [J/OL]. BMC Genomics, 2018, 19(1): 375 [2022-11-23]. . |
28 | BAI Y, LI J, ZHU H, et al.. Deletion mutation within the goat PPP3CA gene identified by GWAS significantly affects litter size [J]. Reprod. Fertil. Dev., 2021, 33(7):476-483. |
29 | GRZEGORZ S, ARTUR G, IGOR J, et al.. A genome-wide association study for prolificacy in three Polish sheep breeds [J]. J. Appl. Genet., 2021, 62(2): 323-326. |
30 | LIU M, CHENG J, CHEN Y, et al.. Distribution of DGAT1 copy number variation in Chinese goats and its associations with milk production traits [J/OL]. Anim. Biotechnol., 2021 [2022-11-23]. . |
31 | BECKER G M, DAVENPORT K M, BURKE J M, et al.. Genome-wide association study to identify genetic loci associated with gastrointestinal nematode resistance in Katahdin sheep [J]. Anim. Genet., 2020, 51(2): 330-335. |
32 | 张海亮,常瑶,娄文琦,等.奶牛育种中关注的新性状[J].畜牧兽医学报,2021,52(10): 2687-2697. |
ZHANG H L, CHANG Y, LOU W Q, et al.. New traits of interest in dairy cattle breeding[J]. J. Anim. Husbandry Veter. Med., 2021,52(10): 2687-2697. | |
33 | 姜宏正,荀文娟,侯冠彧,等.家禽重要性状全基因组关联分析研究进展[J].黑龙江畜牧兽医, 2022(6): 32-38. |
JIANG H Z, XUN W J, HOU G Y, et al.. Progress in genome-wide association analysis of important traits in poultry [J]. Heilongjiang Anim. Husbandry Veter. Med., 2022(6): 32-38. | |
34 | ALEXANDRE R, ANNE-LYSE D. Genetics of colouration in birds [J]. Semin. Cell Dev. Biol., 2013, 24(6-7): 594-608. |
35 | TSANG T F, CHAN B, TAI W. C T, et al.. Gynostemma pentaphyllum saponins induce melanogenesis and activate cAMP/PKA and Wnt/β-catenin signaling pathways [J/OL]. Phytomedicine, 2019, 60(9): 153008 [2022-11-23]. . |
36 | 吴日富, 瞿浩, 严霞, 等. 家鸡羽色性状遗传调控机制研究进展[J].中国畜牧兽医, 2022,49(5): 1806-1816. |
WU R F, QU H, YAN X, et al.. Progress in the genetic regulation of plumage colour traits in domestic chickens [J]. Chin. Veter. Anim. Husbandry, 2022, 49(5): 1806-1816. | |
37 | ZHANG D, RAN J, LI J, et al.. miR-21-5p regulates the proliferation and differentiation of skeletal muscle satellite cells by targeting KLF3 in chicken [J/OL]. Genes, 2021, 12(6):814 [2022-11-23]. . |
38 | LIU L, CUI H X, XIANG S Y, et al.. Effect of divergent selection for intramuscular fat content on muscle lipid metabolism in chickens [J/OL]. Animals, 2019,10(1):4 [2022-11-23]. . |
39 | LIAO R, ZHANG X, CHEN Q, et al.. Genome-wide association study reveals novel variants for growth and egg traits in Dongxiang blue-shelled and white Leghorn chickens [J]. Anim. Genetics, 2016, 47(5): 588-596. |
40 | ZHOU Z, LI M, CHENG H, et al.. An intercross population study reveals genes associated with body size and plumage color in ducks [J/OL]. Nat. Commun., 2018, 9(1):2648 [2022-11-23]. . |
41 | YAN Y, YANG N, CHENG H H, et al.. Genome-wide identification of copy number variations between two chicken lines that differ in genetic resistance to Marek’s disease [J/OL]. BMC Genomics, 2015, 16(1):843 [2022-11-23]. . |
42 | BAI H, HE Y, DING Y, et al.. Genome-wide characterization of copy number variations in the host genome in genetic resistance to Marek’s disease using next generation sequencing [J/OL]. BMC Genetics, 2020, 21(1):77 [2022-11-23]. . |
43 | 欧阳清渊,胡深强,王继文.家禽重要性状的基因组学研究与应用现状[J].畜牧兽医学报, 2022, 53(3): 663-679. |
OUYANG Q Y, HU S Q, WANG J W. Current status of genomics research and application of important traits in poultry [J]. J. Anim. Husbandry Veter. Med., 2022, 53(3): 663-679. | |
44 | PANCOTTI C, BIROLO G, ROLLO C, et al.. Deep learning methods to predict amyotrophic lateral sclerosis disease progression [J/OL]. Sci. Rep., 2022, 12: 13738 [2022-11-23]. . |
45 | FUENTES S, GONZALEZ V C, NGSON ETO, et al.. The livestock farming digital transformation: implementation of new and emerging technologies using artificial intelligence [J]. Anim. Health Res. Rev., 2022, 23(1):59-71. |
46 | ZHANG H, YIN L, WANG M, et al.. Factors affecting the accuracy of genomic selection for agricultural economic traits in maize, cattle, and pig populations [J/OL]. Frontiers in Genetics, 2019, 10:189 [2022-11-23]. . |
47 | 马宇浩,高爽,董向会,等.基因编辑在农业动物中的应用进展[J].农业生物技术学报, 2020,28(12):2230-2239. |
MA Y H, GAO S, DONG X H, et al.. Advances in the application of gene editing in agricultural animals [J]. J. Agric. Biotechnol., 2020, 28(12): 2230-2239. | |
48 | PASCHON D E, LUSSIER S, WANGZOR T, et al.. Diversifying the structure of zinc finger nucleases for high-precision genome editing [J/OL]. Nat. Commun., 2019, 10:1133 [2022-11-23]. . |
49 | AMANDA N M, PHILIP B, RAUL A C, et al.. The crystal structure of TAL effector PthXo1 bound to its DNA target [J]. Science, 2012, 335(6069):716-719. |
50 | 王彤,高元鹏,韩静,等. CRISPR/Cas9基因编辑技术在家畜中的应用研究进展[J].动物医学进展, 2021, 42(11): 78-84. |
WANG T, GAO Y P, HAN J, et al.. Advances in the application of CRISPR/Cas9 gene editing technology in domestic animals[J]. Adv. Anim. Med., 2021, 42(11): 78-84. | |
51 | WANG S, QU Z, HUANG Q, et al.. Application of gene editing technology in resistance breeding of livestock [J/OL]. Life, 2022, 12(7) 10:1133 [2022-11-23]. . |
52 | 夏训明.美国FDA批准首种转基因家猪或可用于人类治疗疾病[J].广东药科大学学报, 2020, 36(6): 869. |
XIA X M. First genetically modified domestic pig approved by US FDA may be used to treat diseases in humans [J]. J. Guangdong Univ. Pharm. Sci., 2020, 36(6): 869. | |
53 | YULIA Y S, MARINA V K, ALEXANDRA V B, et al.. Gene editing CRISPR/Cas9 system for producing cows with hypoallergenic milk on the background of a beta-lactoglobulin gene knockout [C]//RASHED G I, KHESHTI M. Proceedings of E3S Web of Conferences. China: Wuhan, 2021: 176. |
54 | LI X C, HAO F, HU X, et al.. Generation of Tbeta4 knock-in Cashmere goat using CRISPR/Cas9 [J]. Int. J. Biol. Sci., 2019, 15(8): 1743-1754. |
55 | DING Y, ZHOU S, DING Q, et al.. The CRISPR/Cas9 induces large genomic fragment deletions of MSTN and phenotypic changes in sheep [J]. J. Int. Agric., 2020, 19(4): 1065-1073. |
56 | SERVIN B, MARTIN O C, MEZARD M, et al.. Toward a theory of marker-assisted gene pyramiding [J]. Genetics, 2004, 168(1):513-523. |
57 | 杨新月.山羊繁殖性状的多基因聚合效应分析[D]. 广州:华南农业大学, 2018. |
YANG X Y. Analysis of multi-gene aggregation effects on reproductive traits in goats [D]. Guangzhou: South China Agricultural University, 2018. | |
58 | PATEL R A, MUSHAROFF S A, SPENCE J P, et al.. Genetic interactions drive heterogeneity in causal variant effect sizes for gene expression and complex traits [J]. Am. J. Hum. Genet., 2022, 109(7) :1286-1297. |
59 | FU Y, LIU H, DOU J, et al.. IAnimal: a cross-species omics knowledgebase for animals [J/OL]. Nucleic Acids Res., 2022: gkac936 [2022-11-23]. . |
60 | ZHOU X X, WEI Y Y, ZHAN Q M, et al.. CRISPR/Cas9-mediated biallelic knockout of IRX3 reduces the production and survival of somatic Cell-Cloned bama minipigs [J/OL]. Animals, 2020, 10(3): 501 [2022-11-23]. . |
61 | HARDIE L C, HAAGEN I W, HEINS B J, et al.. Genetic parameters and association of national evaluations with breeding values for health traits in US organic Holstein cows [J]. J. Dairy Sci., 2021, 105(1): 495-508. |
62 | OLIVIER D, MERYEM E, SAID M, et al.. Farm animals’ behaviors and welfare analysis with IA Algorithms: a review [J]. Revue D Intell. Artificielle, 2021, 35(3): 243-253. |
63 | EVAN A B, YANG I L, JONATHAN K P. An expanded view of complex traits: from polygenic to Omnigenic [J]. Cell, 2017, 169(7): 1177-1186. |
64 | GUY S, NICHOLAS H B. Thinking about the evolution of complex traits in the era of genome-wide association studies [J]. Annu. Rev. Genomics Hum. Genet., 2019, 20(1): 461-493. |
65 | MATHIESON I. The omnigenic model and polygenic prediction of complex traits [J]. Am. J. Hum. Genet., 2021, 108(9): 1558-1563. |
66 | XIANG R, BREEN E J, BOLORMAA S, et al.. Mutant alleles differentially shape fitness and other complex traits in cattle [J/OL]. Commun. Biol., 2021, 4:1353 [2022-11-23]. . |
[1] | 王帅, 宋伟, 王荣焕, 赵久然. 我国玉米生物学研究进展[J]. 中国农业科技导报, 2022, 24(7): 23-31. |
[2] | 孙正文, 谷淇深, 张艳, 王省芬, 马峙英. 棉花基因发掘与分子育种研究进展[J]. 中国农业科技导报, 2022, 24(7): 32-38. |
[3] | 许辉, 赵阳阳, 孙东岳, 柯媛媛, 张乐乐, 陈翔, 魏凤珍, 李金才. 稻虾共作模式研究进展[J]. 中国农业科技导报, 2022, 24(2): 160-168. |
[4] | 张守攻. 林木重要性状形成的分子基础研究进展[J]. 中国农业科技导报, 2022, 24(12): 48-58. |
[5] | 马小倩, 杨涛, 张全, 张洪亮. 水稻新型育种技术研究现状与展望[J]. 中国农业科技导报, 2022, 24(1): 24-30. |
[6] | 尚斌, 陶秀萍, 董红敏, 陈永杏, 张万钦, 尹福斌. 死畜禽碱解处理技术研究现状及展望[J]. 中国农业科技导报, 2021, 23(8): 136-141. |
[7] | 胡婷婷, 王健康, 丁成伟, 郭荣良, 吴玉玲, 徐家安, 王友霜, 赵轶鹏, 何弯弯. 植物种子的发育调控研究进展[J]. 中国农业科技导报, 2021, 23(5): 27-34. |
[8] | 黄家章1,卢士军1,姚远2,吴鸣3,孙君茂1*. 基于文献计量的国际营养导向型农业研究进展可视化分析[J]. 中国农业科技导报, 2020, 22(9): 11-21. |
[9] | 杨菲菲,李世娟*,刘升平,吕纯阳,刘大众,肖顺夫,刘航. 作物环境胁迫高光谱遥感监测研究进展[J]. 中国农业科技导报, 2020, 22(4): 85-93. |
[10] | 周秒依,任雯,赵冰兵,李韩帅,刘亚*. 植物MAPK级联途径应答的非生物胁迫研究进展[J]. 中国农业科技导报, 2020, 22(2): 22-29. |
[11] | 白皓1,杨宝龙2,董钊绮2,李潇凡2,江勇2,常国斌1,2,陈国宏1,2*. miRNA调控畜禽剩余采食量的研究进展[J]. 中国农业科技导报, 2020, 22(11): 63-68. |
[12] | 乔岩1,2,孙佳庆1,2,魏如倩2,刘越1,2,3*. GBS技术在植物中的研究进展[J]. 中国农业科技导报, 2019, 21(8): 47-55. |
[13] | 黄胜海1,陆俊贤1,张小燕1,陈大伟1,唐修君1,唐梦君1,贾晓旭1,周倩1,高玉时1*,李宝东2. 我国畜禽产品追溯体系研究进展[J]. 中国农业科技导报, 2018, 20(9): 23-31. |
[14] | 马晓寒1,龚治翔1,王林1,杨立均2,黄海棠2,许自成1*. β-氨基丁酸诱导烟草抵御胁迫的研究进展[J]. 中国农业科技导报, 2018, 20(5): 47-53. |
[15] | 张立兰,陈亮,张宏福*. 转基因作物对畜禽肠道非预期效应的研究进展[J]. 中国农业科技导报, 2018, 20(11): 1-13. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||