1 |
SUN S L, ZHOU Y S, CHEN J, et al.. Extensive intraspecific gene order and gene structural variations between Mo17 and other maize genomes [J]. Nat. Genet., 2018, 50(9):1289-1295.
|
2 |
LI C H, SONG W, LUO Y F, et al.. The HuangZaoSi maize genome provides insights into genomic variation and improvement history of maize [J]. Mol. Plant, 2019, 12(3):402-409.
|
3 |
YANG N, LIU J, GAO Q, et al.. Genome assembly of a tropical maize inbred line provides insights into structural variation and crop improvement [J]. Nat. Genet., 2019, 51(6):1052-1059.
|
4 |
LI C S, XIANG X L, HUANG Y C, et al.. Long-read sequencing reveals genomic structural variations that underlie creation of quality protein maize [J/OL]. Nat. Commun., 2020, 11:17 [2022-05-26]. .
|
5 |
CHEN Q Y, HAN Y J, LIU H J, et al.. Genome-wide association analyses reveal the importance of alternative splicing in diversifying gene function and regulating phenotypic variation in maize [J]. Plant Cell, 2018, 30(7):1404-1423.
|
6 |
TU X, MEJÍA-GUERRA M K, FRANCO J A V, et al.. Reconstructing the maize leaf regulatory network using ChIP-seq data of 104 transcription factors [J/OL]. Nat. Commun., 2020, 11:5089 [2022-05-26]. .
|
7 |
AN X L, DONG Z Y, TIAN Y H, et al.. ZmMs30 encoding a novel GDSL lipase is essential for male fertility and valuable for hybrid breeding in maize [J]. Mol. Plant, 2019, 12(3):343-359.
|
8 |
ZHANG Z G, ZHANG B C, CHEN Z B, et al.. A PECTIN METHYLESTERASE gene at the maize Ga1 locus confers male function in unilateral cross-incompatibility [J/OL]. Nat. Commun., 2018, 9(1):3678 [2022-05-26]. .
|
9 |
XIAO S L, ZANG J, PEI Y R, et al.. Activation of mitochondrial orf355 gene expression by a nuclear-encoded DREB transcription factor causes cytoplasmic male sterility in maize [J]. Mol. Plant, 2020, 13(9):1270-1283.
|
10 |
HUO Y Q, PEI Y R, TIAN Y H, et al.. IRREGULAR POLLEN EXINE2 (IPE2) encodes a GDSL lipase essential for male fertility in maize [J]. Plant Physiol., 2020, 184(3): 1438-1454.
|
11 |
TIAN J G, WANG C L, XIA J L, et al.. Teosinte ligule allele narrows plant architecture and enhances high-density maize yields [J]. Science, 2019, 365(6454):658-664.
|
12 |
ZHANG X, LIN Z L, WANG J, et al.. The tin1 gene retains the function of promoting tillering in maize [J/OL]. Nat. Commun., 2019, 10:5608 [2022-05-26]. .
|
13 |
WANG B B, LIN Z C, LI X, et al.. Genome-wide selection and genetic improvement during modern maize breeding [J]. Nat. Genet., 2020, 52:565-571.
|
14 |
WANG H Q, WANG K, DU Q G, et al.. Maize Urb2 protein is required for kernel development and vegetative growth by affecting pre-ribosomal RNA processing [J]. New Phytol., 2018, 218(3):1233-1246.
|
15 |
FENG F, QI W W, LYU Y D, et al.. Opaque11 is a central hub of the regulatory network for maize endosperm development and nutrient metabolism [J]. Plant Cell, 2018, 30(2):375-396.
|
16 |
HUANG Y C, WANG H H, HUANG X, et al.. Maize VKS1 regulates mitosis and cytokinesis during early endosperm development [J]. Plant Cell, 2019, 31(6):1238-1256. 31(6):1238-1256.
|
17 |
YI F, GU W, LI J F, et al.. Miniature Seed6, encoding an endoplasmic reticulum signal peptidase, is critical in seed development [J]. Plant Physiol., 2020, 183(3):985-1001.
|
18 |
JIA H T, LI M F, LI W Y, et al.. A serine/threonine protein kinase encoding gene KERNEL NUMBER PER ROW6 regulates maize grain yield [J/OL]. Nat. Commun., 2020, 11:988 [2022-05-26]. .
|
19 |
YANG J, FU M M, JI C, et al.. Maize oxalyl-CoA decarboxylase1 degrades oxalate and affects the seed metabolome and nutritional quality [J]. Plant Cell, 2018, 30(10):2447-2462.
|
20 |
DENG Y T, WANG J C, ZHANG Z Y, et al.. Transactivation of Sus1 and Sus2 by Opaque2 is an essential supplement to sucrose synthase-mediated endosperm filling in maize [J]. Plant Biotechnol. J., 2020, 18(9): 1897-1907.
|
21 |
YANG T, GUO L X, JI C, et al.. The B3 domain-containing transcription factor ZmABI19 coordinates expression of key factors required for maize seed development and grain filling [J]. Plant Cell, 2020, 33(1):104-128.
|
22 |
WANG H H, HUANG Y C, XIAO Q, et al.. Carotenoids modulate kernel texture in maize by influencing amyloplast envelope integrity [J/OL]. Nat. Commun., 2020, 11: 5346 [2022-05-26]. .
|
23 |
LI C B, YUE Y H, CHEN H J, et al.. ZmbZIP22 is a transcription factor that regulates 27-kD γ-Zein gene transcription during maize endosperm development [J]. Plant Cell, 2018, 30(10): 2402-2424.
|
24 |
HU Y F, LI Y P, WENG J F, et al.. Coordinated regulation of starch synthesis in maize endosperm by microRNAs and DNA methylation [J]. Plant J., 105(1):108-123.
|
25 |
DONG L, LI L N, LIU C L, et al. Genome editing and double fluorescence proteins enable robust maternal haploid induction and identification in maize [J]. Mol. Plant, 2018,11(9):1214-1217.
|
26 |
LIU C X, LI X, MENG D X, et al.. A 4-bp insertion at zmpla1 encoding a putative phospholipase a generates haploid induction in maize [J]. Mol. Plant, 2017(3):520-522.
|
27 |
ZHONG Y, LIU C X, QI X L, et al.. Mutation of ZmDMP enhances haploid induction in maize [J]. Nat. Plants, 2019, 5(6):575-580.
|
28 |
WANG B B, ZHU L, ZHAO B B, et al.. Development of a haploid-inducer mediated genome editing system for accelerating maize breeding [J]. Mol. Plant, 2019, 12(4):597-602.
|
29 |
GUO J F, QI J F, HE K, et al.. The Asian corn borer Ostrinia furnacalis feeding increases the direct and indirect defence of mid-whorl stage commercial maize in the field [J]. Plant Biotechnol. J., 17(1):88-102.
|
30 |
LI N, LIN B, WANG H, et al.. Natural variation in ZmFBL41 confers banded leaf and sheath blight resistance in maize [J]. Nat. Genet., 2019, 51(10):1-9.
|
31 |
YE J R, ZHONG T, ZHANG D F, et al.. The auxin-regulated protein zmauxrp1 coordinates the balance between root growth and stalk rot disease resistance in maize [J]. Mol. Plant, 2019, 12(3):360-373.
|
32 |
LIU Q C, DENG S N, LIU B S, et al.. A helitron-induced RabGDIα variant causes quantitative recessive resistance to maize rough dwarf disease [J/OL]. Nat. Commun., 2020, 11:495 [2022-05-26]. .
|
33 |
YANG P, SCHEUERMANN D, KESSEL B, et al.. Alleles of a wall-associated kinase gene account for three of the major northern corn leaf blight resistance loci in maize [J]. Plant J., 2021, 106(2):526-535.
|
34 |
SUN Q, LIU X G, YANG J, et al.. microRNA528 affects lodging resistance of Maize by regulating lignin biosynthesis under Nitrogen-Luxury conditions [J]. Mol. Plant, 2018, 11(6):806-814.
|
35 |
YU F, LIANG K, FANG T, et al.. A group VII ethylene response factor gene, ZmEREB180, coordinates waterlogging tolerance in maize seedlings [J]. Plant Biotechnol. J., 2019, 17(12):2286-2298.
|
36 |
PAN Z Y, LIU M, ZHAO H L, et al.. ZmSRL5 is involved in drought tolerance by maintaining cuticular wax structure in maize [J]. J. Integr. Plant Biol., 2020, 62(12): 1895-1909.
|
37 |
ZHANG Z, ZHANG X, LIN Z, et al.. A Large Transposon insertion in the stiff1 promoter increases stalk strength in maize [J]. Plant Cell, 2020, 32(1):152-165.
|
38 |
ZHANG H, XIANG Y L, HE N, et al.. Enhanced vitamin C production mediated by an ABA-induced PTP-Like nucleotidase improves drought tolerance of Arabidopsis and maize [J]. Mol. Plant, 2020, 13(5): 760-776.
|
39 |
ROESSLER K, MUYLE A, DIEZ C M, et al.. The genome-wide dynamics of purging during selfing in maize [J]. Nat. Plants, 2019, 5(9):980-990.
|
40 |
XU J, CHEN G, HERMANSON P J, et al.. Population-level analysis reveals the widespread occurrence and phenotypic consequence of DNA methylation variation not tagged by genetic variation in maize [J/OL]. Genome Biol., 2019, 20(1): 243 [2022-05-26]. .
|
41 |
LIU H J, WANG X Q, XIAO Y J, et al.. CUBIC: an atlas of genetic architecture promises directed maize improvement [J/OL]. Genome Biol., 2020, 21(1): 20 [2022-05-26]. .
|
42 |
LU X D, LIU J S, REN W, et al.. Gene-indexed mutations in maize [J]. Mol. Plant, 2018, 11(3): 496-504.
|
43 |
LIANG L, ZHOU L, TANG Y P, et al.. A sequence-indexed mutator insertional library for maize functional genomics study1 [J]. Plant Physiol., 2019, 181(4):1404-1414.
|
44 |
TIAN H L, YANG Y, YI H M, et al.. New resources for genetic studies in maize (Zea mays L.): a genome‐wide Maize6H‐60K SNP array and its application [J]. Plant J., 2020, 105(4): 1113-1122.
|
45 |
QI X T, ZHANG C S, ZHU J J, et al.. Genome editing enables next-generation hybrid seed production technology [J]. Mol. Plant, 2020, 13(9):1262-1269.
|
46 |
ZHANG H W, WANG X, PAN Q C, et al.. QTG-seq accelerates QTL fine mapping through qtl partitioning and whole-genome sequencing of bulked segregant samples [J]. Mol. Plant, 2018, 12(3):426-437.
|
47 |
LI X, CHEN L, ZHANG Q H, et al.. BRIF-Seq: bisulfite-converted randomly integrated fragments sequencing at the single-cell level [J]. Mol. Plant, 2019, 12(3):438-446.
|
48 |
LUO C, LI X, ZHANG Q L, et al.. Single gametophyte sequencing reveals that crossover events differ between sexes in maize [J/OL]. Nat. Commun., 2019, 10(1): 785 [2022-05-26]. .
|
49 |
JIANG Y Y, CHAI Y P, LU M H, et al.. Prime editing efficiently generates W542L and S621I double mutations in two ALS genes in maize [J/OL]. Genome Biol., 2020, 21(1): 257 [2022-05-26]. .
|
50 |
LIU H J, JIAN L M, XU J T, et al.. High-throughput CRISPR/Cas9 mutagenesis streamlines trait gene identification in maize [J]. Plant Cell, 2020, 32(5): 1397-1413.
|