中国农业科技导报 ›› 2024, Vol. 26 ›› Issue (1): 18-27.DOI: 10.13304/j.nykjdb.2023.0160
路泽群1,2(), 刘宁1(
), 张红莲2, 王苑2, 黄火清2(
)
收稿日期:
2023-03-07
接受日期:
2023-04-06
出版日期:
2024-01-15
发布日期:
2024-01-08
通讯作者:
刘宁,黄火清
作者简介:
路泽群 E-mail: 18437958768@163.com
基金资助:
Zequn LU1,2(), Ning LIU1(
), Honglian ZHANG2, Yuan WANG2, Huoqing HUANG2(
)
Received:
2023-03-07
Accepted:
2023-04-06
Online:
2024-01-15
Published:
2024-01-08
Contact:
Ning LIU,Huoqing HUANG
摘要:
工业、农业和医药等领域常用的活性蛋白和工业酶大多数通过异源表达系统获得。毕赤酵母(Pichia pastoris)是优秀的外源蛋白表达宿主之一,以毕赤酵母为宿主的表达系统具有遗传稳定性好、翻译后修饰、蛋白表达和分泌水平高及生产成本低等优点,但在高效表达过程中外源蛋白过量聚集会导致目标蛋白不能正确折叠和有效分泌,从而影响蛋白表达水平。概述了通过信号肽优化、分子伴侣优化以及融合蛋白表达等分泌及折叠途径的改良,从而促进外源蛋白高效表达的研究进展。
中图分类号:
路泽群, 刘宁, 张红莲, 王苑, 黄火清. 毕赤酵母外源蛋白分泌及折叠途径的改良进展[J]. 中国农业科技导报, 2024, 26(1): 18-27.
Zequn LU, Ning LIU, Honglian ZHANG, Yuan WANG, Huoqing HUANG. Improvement of Heterologous Protein Secretion and Folding Pathways of Pichia pastoris[J]. Journal of Agricultural Science and Technology, 2024, 26(1): 18-27.
外源蛋白 Heterologous protein | 信号肽的选择和优化 Selection and optimization of signal peptide | 结果 Result | 参考文献 Reference |
---|---|---|---|
E2蛋白 E2 protein | 鸡溶菌酶信号肽cSIG Chicken lysozyme signal peptide cSIG | 产量增加17.87倍 Yield increase 17.87 folds | [ |
木聚糖酶 Xylanase | 天然木聚糖酶信号肽 Natural xylanase signal peptide | 酶活性达到2 503 U·mL-1 Enzyme activity up to 2 503 U·mL-1 | [ |
水解多糖单加氧酶 Lytic polysaccharide monooxygenases(LPMO) | 酿酒酵母Ost1信号肽 Saccharomyces cerevisiae Ost1 signal peptide | 产量达到42 mg·L-1 Yield up to 42 mg·L-1 | [ |
脂肪酶 Lipase | 酿酒酵母Ost1信号肽C端插入42位氨基酸突变为Ser的α-MF pro区域 C-terminal of Saccharomyces cerevisiae Ost1 signal peptide is inserted into pro region of α-MF Ser42 variant | 酶活性增强了10倍 Enzyme activity increase 10 folds | [ |
粒细胞集落刺激因子Granulocyte colony stimulating factor(G-CSF) | 删除α-MF信号肽第57~70个氨基酸残基 57~70 amino acid residues of α-MF signal peptide were knocked out | 产量达到39.4 mg·L-1 Yield up to 39.4 mg·L-1 | [ |
粒细胞集落刺激因子Granulocyte colony stimulating factor(G-CSF) | 将α-MF信号肽C端Kex2酶切位点中Glu用Val 或Ala取代 Glu was replaced by Val or Ala in the C-terminal Kex2 cleavage site of α-MF signal peptide | 产量达到100 mg·L-1 Yield up to 100 mg·L-1 | [ |
表1 信号肽对外源蛋白在毕赤酵母中表达的影响
Table 1 Effect of signal peptide on expression of f heterologous proteins in Pichia pastoris
外源蛋白 Heterologous protein | 信号肽的选择和优化 Selection and optimization of signal peptide | 结果 Result | 参考文献 Reference |
---|---|---|---|
E2蛋白 E2 protein | 鸡溶菌酶信号肽cSIG Chicken lysozyme signal peptide cSIG | 产量增加17.87倍 Yield increase 17.87 folds | [ |
木聚糖酶 Xylanase | 天然木聚糖酶信号肽 Natural xylanase signal peptide | 酶活性达到2 503 U·mL-1 Enzyme activity up to 2 503 U·mL-1 | [ |
水解多糖单加氧酶 Lytic polysaccharide monooxygenases(LPMO) | 酿酒酵母Ost1信号肽 Saccharomyces cerevisiae Ost1 signal peptide | 产量达到42 mg·L-1 Yield up to 42 mg·L-1 | [ |
脂肪酶 Lipase | 酿酒酵母Ost1信号肽C端插入42位氨基酸突变为Ser的α-MF pro区域 C-terminal of Saccharomyces cerevisiae Ost1 signal peptide is inserted into pro region of α-MF Ser42 variant | 酶活性增强了10倍 Enzyme activity increase 10 folds | [ |
粒细胞集落刺激因子Granulocyte colony stimulating factor(G-CSF) | 删除α-MF信号肽第57~70个氨基酸残基 57~70 amino acid residues of α-MF signal peptide were knocked out | 产量达到39.4 mg·L-1 Yield up to 39.4 mg·L-1 | [ |
粒细胞集落刺激因子Granulocyte colony stimulating factor(G-CSF) | 将α-MF信号肽C端Kex2酶切位点中Glu用Val 或Ala取代 Glu was replaced by Val or Ala in the C-terminal Kex2 cleavage site of α-MF signal peptide | 产量达到100 mg·L-1 Yield up to 100 mg·L-1 | [ |
外源蛋白 Heterologous protein | 分子伴侣 Chaperone | 结果 Result | 参考文献 Reference |
---|---|---|---|
头孢菌素C酰化酶 Cephalosporin C acylase | Sil1p | 产量增加3.3倍 Yield increase 3.3 folds | [ |
壳聚糖酶 Chitosanase | Hac1p | 产量增加40%左右 Yield increase about 40% | [ |
人溶菌酶 Human lysozyme | Pdi-Ero1 | 产量增加约1倍 Yield increase 1 fold | [ |
腈化酶 Nitrilase | Ero1 | 产量增加50%左右 Yield increase about 50% | [ |
脂肪酶 Lipase | Pdi | 活性增加1倍 Enzyme activity increase 1 fold | [ |
乙酰胆碱酯酶 Acetylcholinesterase | Pdi | 产量增加约5倍 Yield increase 5 folds | [ |
植酸酶 Phytase | Pdi | 产量增加约12倍 Yield increase 12 folds | [ |
磷脂酶C Phospholipase C | Pdi | 活性增加约9倍 Enzyme activity increase 9 folds | [ |
表2 共表达分子伴侣对外源蛋白在毕赤酵母中表达的影响
Table 2 Effect of co-expressed chaperone on expression of heterologous proteins in Pichia pastoris
外源蛋白 Heterologous protein | 分子伴侣 Chaperone | 结果 Result | 参考文献 Reference |
---|---|---|---|
头孢菌素C酰化酶 Cephalosporin C acylase | Sil1p | 产量增加3.3倍 Yield increase 3.3 folds | [ |
壳聚糖酶 Chitosanase | Hac1p | 产量增加40%左右 Yield increase about 40% | [ |
人溶菌酶 Human lysozyme | Pdi-Ero1 | 产量增加约1倍 Yield increase 1 fold | [ |
腈化酶 Nitrilase | Ero1 | 产量增加50%左右 Yield increase about 50% | [ |
脂肪酶 Lipase | Pdi | 活性增加1倍 Enzyme activity increase 1 fold | [ |
乙酰胆碱酯酶 Acetylcholinesterase | Pdi | 产量增加约5倍 Yield increase 5 folds | [ |
植酸酶 Phytase | Pdi | 产量增加约12倍 Yield increase 12 folds | [ |
磷脂酶C Phospholipase C | Pdi | 活性增加约9倍 Enzyme activity increase 9 folds | [ |
基因 Gene | 融合标签 Fusion tag | 连接肽 Linker | 融合蛋白产量 Fusion protein production | 参考文献 Reference |
---|---|---|---|---|
hFGF21 | HSA | 柔性 Flexibility | 0.94 mg·mL-1 | [ |
rhIL-2 | HSA | 刚性 Rigidity | 32 mg·L-1 | [ |
cIFN | HSA | 柔性 Flexibility | 86 mg·L-1 | [ |
AMP | HSA | His-TEV | 700 mg·L-1 | [ |
SpG | 辣根过氧化物酶 Horseradish peroxidase(HRP) | 柔性 Flexibility | 113 mg·L-1 | [ |
hBMP2 | 人样胶原蛋白 Human-like collagen(HLC) | 柔性 Flexibility | 1 g·L-1 | [ |
LfcinB–hLY | 抗氧化肽 Antioxidant peptide | 柔性 Flexibility | 3.6 mg·L-1 | [ |
rLG | SUMO | 柔性 Flexibility | 4.32 mg·L-1 | [ |
NZ17074 | SUMO3 | 甲酸切割位点 Formic acid cleavage site | 4.1 mg·L-1 | [ |
ANL | SUMO | 刚性 Rigidity | 1.82 mg·L-1 | [ |
GrB | MBP | 弗林蛋白酶Furin | ND | [ |
SS | 木聚糖酶 Xylanase | 柔性 Flexibility | 3.640 g·L-1 | [ |
HEWL | 木聚糖酶 Xylanase | Kex2、Ste13 | HEWL产量3.5 g·L-1 HEWL yield 3.5 g·L-1 | [ |
表3 融合表达技术在毕赤酵母中的应用
Table 3 Application of fusion expression technique in Pichia pastoris
基因 Gene | 融合标签 Fusion tag | 连接肽 Linker | 融合蛋白产量 Fusion protein production | 参考文献 Reference |
---|---|---|---|---|
hFGF21 | HSA | 柔性 Flexibility | 0.94 mg·mL-1 | [ |
rhIL-2 | HSA | 刚性 Rigidity | 32 mg·L-1 | [ |
cIFN | HSA | 柔性 Flexibility | 86 mg·L-1 | [ |
AMP | HSA | His-TEV | 700 mg·L-1 | [ |
SpG | 辣根过氧化物酶 Horseradish peroxidase(HRP) | 柔性 Flexibility | 113 mg·L-1 | [ |
hBMP2 | 人样胶原蛋白 Human-like collagen(HLC) | 柔性 Flexibility | 1 g·L-1 | [ |
LfcinB–hLY | 抗氧化肽 Antioxidant peptide | 柔性 Flexibility | 3.6 mg·L-1 | [ |
rLG | SUMO | 柔性 Flexibility | 4.32 mg·L-1 | [ |
NZ17074 | SUMO3 | 甲酸切割位点 Formic acid cleavage site | 4.1 mg·L-1 | [ |
ANL | SUMO | 刚性 Rigidity | 1.82 mg·L-1 | [ |
GrB | MBP | 弗林蛋白酶Furin | ND | [ |
SS | 木聚糖酶 Xylanase | 柔性 Flexibility | 3.640 g·L-1 | [ |
HEWL | 木聚糖酶 Xylanase | Kex2、Ste13 | HEWL产量3.5 g·L-1 HEWL yield 3.5 g·L-1 | [ |
1 | KARBALAEI M, REZAEE S A, FARSIANI H. Pichia pastoris: a highly successful expression system for optimal synthesis of heterologous proteins [J]. J. Cell. Physiol., 2020, 235(9): 5867-5881. |
2 | AHMAD M, HIRZ M, PICHLER H, et al.. Protein expression in Pichia pastoris: recent achievements and perspectives for heterologous protein production [J]. Appl. Microbiol. Biotechnol., 2014, 98(12): 5301-5317. |
3 | WANG Y, JIANG S, JIANG X, et al.. Cloning and codon optimization of a novel feline interferon omega gene for production by Pichia pastoris and its antiviral efficacy in polyethylene glycol-modified form [J]. Virulence, 2022, 13(1): 297-309. |
4 | CHE Z, CAO X, CHEN G, et al.. An effective combination of codon optimization, gene dosage, and process optimization for high-level production of fibrinolytic enzyme in Komagataella phaffii (Pichia pastoris) [J/OL]. BMC Biotechnol., 2020, 20(1): 63 [2023-02-06]. . |
5 | LEE M C, MILLER E A, GOLDBERG J, et al.. Bi-directional protein transport between the ER and Golgi [J]. Annu. Rev. Cell Dev. Biol., 2004, 20: 87-123. |
6 | 张伟,刘志敏,陈惠鹏.酵母蛋白分泌途径的研究进展[J].生物技术通讯, 2006,17(1): 81-83. |
ZHANG W, LIU Z M, CHEN H P. Advance in secretory pathway of yeast [J]. Lett. Biotechnol., 2006,17(1): 81-83. | |
7 | ALMAGRO ARMENTEROS J J, TSIRIGOS K D, SØNDERBY C K, et al.. SignalP 5.0 improves signal peptide predictions using deep neural networks [J]. Nat. Biotechnol., 2019, 37(4): 420-423. |
8 | BAGOS P G, NIKOLAOU E P, LIAKOPOULOS T D, et al.. Combined prediction of Tat and Sec signal peptides with hidden Markov models [J]. Bioinformatics, 2010, 26(22): 2811-2817. |
9 | KATO T, SHIONO Y, KOSEKI T. Identification and characterization of an acetyl xylan esterase from Aspergillus oryzae [J]. J. Biosci. Bioeng., 2021, 132(4): 337-342. |
10 | OWJI H, NEZAFAT N, NEGAHDARIPOUR M, et al.. A comprehensive review of signal peptides: structure, roles, and applications [J]. Eur. J. Cell Biol., 2018, 97(6): 422-441. |
11 | FREUDL R. Signal peptides for recombinant protein secretion in bacterial expression systems [J/OL]. Microb. Cell Fact., 2018, 17(1): 52 [2023-02-06]. . |
12 | KANG Z, HUANG H, ZHANG Y, et al.. Recent advances of molecular toolbox construction expand Pichia pastoris in synthetic biology applications [J/OL]. World J. Microbiol. Biotechnol., 2016, 33(1): 19 [2023-02-06]. . |
13 | 梁启星,石竟成,金学荣,等.肠激酶在毕赤酵母中的分泌表达优化[J].生物工程学报, 2020, 36(8): 1689-1698. |
LIANG Q X, SHI J C, JIN X R, et al.. Optimization of enterokinase secretion in Pichia pastoris [J]. Chin. J. Biotech., 2020, 36(8):1689-1698. | |
14 | SHEN Q, ZHOU X T, GUO Q, et al.. Potential of the signal peptide derived from the PAS_chr 3_0030 gene product for secretory expression of valuable enzymes in Pichia pastoris [J/OL]. Appl. Environ. Microbiol., 2022, 88(9): e0029622 [2023-02-06]. . |
15 | ITO Y, ISHIGAMI M, HASHIBA N, et al.. Avoiding entry into intracellular protein degradation pathways by signal mutations increases protein secretion in Pichia pastoris [J]. Microb. Biotechnol., 2022, 15(9): 2364-2378. |
16 | DUAN G, DING L, WEI D, et al.. Screening endogenous signal peptides and protein folding factors to promote the secretory expression of heterologous proteins in Pichia pastoris [J]. J. Biotechnol., 2019, 306: 193-202. |
17 | LI D, WU J, CHEN J, et al.. Optimized expression of classical swine fever virus E2 protein via combined strategy in Pichia pastoris [J/OL]. Protein Expr. Purif., 2020, 167: 105527 [2023-02-06]. . |
18 | MIAO T, BASIT A, LIU J, et al.. Improved production of xylanase in Pichia pastoris and its application in xylose production from xylan [J/OL]. Front. Bioeng. Biotechnol., 2021, 9: 690702 [2023-02-06]. . |
19 | RIEDER L, EBNER K, GLIEDER A, et al.. Novel molecular biological tools for the efficient expression of fungal lytic polysaccharide monooxygenases in Pichia pastoris [J/OL]. Biotechnol. Biofuels, 2021, 14(1): 122 [2023-02-06]. . |
20 | BARRERO J J, CASLER J C, VALERO F, et al.. An improved secretion signal enhances the secretion of model proteins from Pichia pastoris [J/OL]. Microb. Cell Fact., 2018, 17(1): 161 [2023-02-06]. . |
21 | AGGARWAL S, MISHRA S. Differential role of segments of α-mating factor secretion signal in Pichia pastoris towards granulocyte colony-stimulating factor emerging from a wild type or codon optimized copy of the gene [J/OL]. Microb. Cell Fact., 2020, 19(1): 199 [2023-02-06]. . |
22 | AGGARWAL S, MISHRA S. Modifications in the Kex2 P1' cleavage site in the α-MAT secretion signal lead to higher production of human granulocyte colony-stimulating factor in Pichia pastoris [J/OL]. World J. Microbiol. Biotechnol., 2021, 37(11): 197[2023-02-06]. . |
23 | GRAF A, GASSER B, DRAGOSITS M, et al.. Novel insights into the unfolded protein response using Pichia pastoris specific DNA microarrays [J/OL]. BMC Genomics, 2008, 9: 390 [2023-02-06]. . |
24 | VOGL T, THALLINGER G G, ZELLNIG G, et al.. Towards improved membrane protein production in Pichia pastoris: general and specific transcriptional response to membrane protein overexpression [J]. New Biotechnol., 2014, 31(6): 538-552. |
25 | RASCHMANOVÁ H, WENINGER A, KNEJZLĺK Z, et al.. Engineering of the unfolded protein response pathway in Pichia pastoris: enhancing production of secreted recombinant proteins [J]. Appl. Microbiol. Biotechnol., 2021, 105(11): 4397-4414. |
26 | MOILANEN A, RUDDOCK L W. Non-native proteins inhibit the ER oxidoreductin 1 (Ero1)-protein disulfide-isomerase relay when protein folding capacity is exceeded [J]. J. Biol. Chem., 2020, 295(26): 8647-8655. |
27 | WANG Y, LUO X, ZHAO Y, et al.. Integrated strategies for enhancing the expression of the AqCoA chitosanase in Pichia pastoris by combined optimization of molecular chaperones combinations and copy numbers via a novel plasmid pMC-GAP [J]. Appl. Biochem. Biotechnol., 2021, 193(12): 4035-4051. |
28 | BACK S H, SCHRÖDER M, LEE K, et al.. ER stress signaling by regulated splicing: IRE1/HAC1/XBP1 [J]. Methods, 2005, 35(4): 395-416. |
29 | LIU J, HAN Q, CHENG Q, et al.. Efficient expression of human lysozyme through the increased gene dosage and co-expression of transcription factor Hac1p in Pichia pastoris [J]. Curr. Microbiol., 2020, 77(5): 846-854. |
30 | HUANG B, SUN M, HOXIE R, et al.. The endoplasmic reticulum chaperone BiP is a closure-accelerating cochaperone of Grp94 [J/OL]. Proc. Natl. Acad. Sci. USA, 2022, 119(5): e2118793119 [2023-02-06]. . |
31 | POBRE K F R, POET G J, HENDERSHOT L M. The endoplasmic reticulum (ER) chaperone BiP is a master regulator of ER functions: getting by with a little help from ERdj friends [J]. J. Biol. Chem., 2019, 294(6): 2098-2108. |
32 | SALLADA N D, HARKINS L E, BERGER B W. Effect of gene copy number and chaperone coexpression on recombinant hydrophobin HFBI biosurfactant production in Pichia pastoris [J]. Biotechnol. Bioeng., 2019, 116(8): 2029-2040. |
33 | ZITO E. ERO1: a protein disulfide oxidase and H2O2 producer [J]. Free Radic Biol. Med., 2015, 83: 299-304. |
34 | WANG J, WU Z, ZHANG T, et al.. High-level expression of Thermomyces dupontii thermophilic lipase in Pichia pastoris via combined strategies [J/OL]. 3 Biotech., 2019, 9(2): 62 [2023-02-06]. . |
35 | HUANG J, ZHAO Q, CHEN L, et al.. Improved production of recombinant Rhizomucor miehei lipase by coexpressing protein folding chaperones in Pichia pastoris, which triggered ER stress [J]. Bioengineered, 2020, 11(1): 375-385. |
36 | SHEN Q, YU Z, LYU P J, et al.. Engineering a Pichia pastoris nitrilase whole cell catalyst through the increased nitrilase gene copy number and co-expressing of ER oxidoreductin 1 [J]. Appl. Microbiol. Biotechnol., 2020, 104(6): 2489-2500. |
37 | HAN M, WANG W, GONG X, et al.. Increased expression of recombinant chitosanase by co-expression of Hac1p in the yeast Pichia pastoris [J]. Protein Pept. Lett., 2021, 28(12): 1434-1441. |
38 | HE H, WU S, MEI M, et al.. A combinational strategy for effective heterologous production of functional human lysozyme in Pichia pastoris [J/OL]. Front. Bioeng. Biotechnol., 2020, 8: 118 [2023-02-06]. . |
39 | LI J, CAI J, MA M, et al.. Preparation of a Bombyx mori acetylcholinesterase enzyme reagent through chaperone protein disulfide isomerase co-expression strategy in Pichia pastoris for detection of pesticides [J/OL]. Enzyme Microb. Technol., 2021, 144: 109741 [2023-02-06]. . |
40 | NAVONE L, VOGL T, LUANGTHONGKAM P, et al.. Disulfide bond engineering of AppA phytase for increased thermostability requires co-expression of protein disulfide isomerase in Pichia pastoris [J/OL]. Biotechnol. Biofuels, 2021, 14(1): 80 [2023-02-06]. . |
41 | WANG L, HU T, JIANG Z, et al.. Efficient production of a novel alkaline cold-active phospholipase C from Aspergillus oryzae by molecular chaperon co-expression for crude oil degumming [J/OL]. Food Chem., 2021, 350: 129212 [2023-02-06]. . |
42 | FREILICH R, ARHAR T, ABRAMS J L, et al.. Protein-protein interactions in the molecular chaperone network [J]. Acc. Chem. Res., 2018, 51(4): 940-949. |
43 | ZININGA T, RAMATSUI L, SHONHAI A. Heat shock proteins as immunomodulants [J/OL]. Molecules, 2018, 23(11): 2846[2023-02-06]. . |
44 | DENG J, LI J, MA M, et al.. Co-expressing GroEL-GroES, Ssa1-Sis1 and Bip-PDI chaperones for enhanced intracellular production and partial-wall breaking improved stability of porcine growth hormone [J/OL]. Microb. Cell Fact., 2020, 19(1): 35 [2023-02-06]. . |
45 | JUNG S J, KIM H. Emerging view on the molecular functions of Sec62 and Sec63 in protein translocation [J/OL]. Int. J. Mol. Sci., 2021, 22(23): 12757 [2023-02-06]. . |
46 | CAPLAN A J, CYR D M, DOUGLAS M G. Ydj1p facilitates polypeptide translocation across different intracellular membranes by a conserved mechanism [J]. Cell, 1992, 71(7): 1143-1155. |
47 | ZHANG W, ZHAO H L, XUE C, et al.. Enhanced secretion of heterologous proteins in Pichia pastoris following overexpression of Saccharomyces cerevisiae chaperone proteins [J]. Biotechnol. Prog., 2006, 22(4): 1090-1095. |
48 | KESIK-BRODACKA M. Progress in biopharmaceutical development [J]. Biotechnol. Appl. Biochem., 2018, 65(3): 306-322. |
49 | SKOWRONEK M H, ROTTER M, HAAS I G. Molecular characterization of a novel mammalian DnaJ-like Sec63p homolog [J]. Biol. Chem., 1999, 380(9): 1133-1138. |
50 | BHADRA A K, RAU M J, DAW J A, et al.. Disease-associated mutations within the yeast DNAJB6 homolog Sis1 slow conformer-specific substrate processing and can be corrected by the modulation of nucleotide exchange factors [J/OL]. Nat. Commun., 2022, 13(1): 4570 [2023-02-06]. . |
51 | BANKEFA O E, WANG M, ZHU T, et al.. Hac1p homologues from higher eukaryotes can improve the secretion of heterologous proteins in the yeast Pichia pastoris [J]. Biotechnol. Lett., 2018, 40(7): 1149-1156. |
52 | KI M R, PACK S P. Fusion tags to enhance heterologous protein expression [J]. Appl. Microbiol. Biotechnol., 2020, 104(6): 2411-2425. |
53 | PANAVAS T, SANDERS C, BUTT T R. SUMO fusion technology for enhanced protein production in prokaryotic and eukaryotic expression systems [J]. Methods Mol. Biol., 2009, 497: 303-317. |
54 | YAU T Y, SANDER W, EIDSON C, et al.. SUMO Interacting motifs: structure and function [J/OL]. Cells, 2021, 10(11): 2825 [2023-02-06]. . |
55 | ZHAN N, ZHANG L, YANG H, et al.. Design and heterologous expression of a novel dimeric LL37 variant in Pichia pastoris [J/OL]. Microb. Cell Fact., 2021, 20(1): 143 [2023-02-06]. . |
56 | WANG X J, WANG X M, TENG D, et al.. Recombinant production of the antimicrobial peptide NZ17074 in Pichia pastoris using SUMO3 as a fusion partner [J]. Lett. Appl. Microbiol., 2014, 59(1): 71-78. |
57 | ZHANG X F, AI Y H, XU Y, et al.. High-level expression of Aspergillus niger lipase in Pichia pastoris: characterization and gastric digestion in vitro [J]. Food Chem., 2019, 274: 305-313. |
58 | LI Z, LEUNG W, YON A, et al.. Secretion and proteolysis of heterologous proteins fused to the Escherichia coli maltose binding protein in Pichia pastoris [J]. Protein Expr. Purif., 2010, 72(1): 113-124. |
59 | MOUA P S, GONZALEZ A, OSHIRO K T, et al.. Differential secretion pathways of proteins fused to the Escherichia coli maltose binding protein (MBP) in Pichia pastoris [J/OL]. Protein Expr. Purif., 2016, 124: 005 [2023-02-06]. . |
60 | DÄLKEN B, JABULOWSKY R A, OBEROI P, et al.. Maltose-binding protein enhances secretion of recombinant human granzyme B accompanied by in vivo processing of a precursor MBP fusion protein [J/OL]. PLoS One, 2010, 5(12): e14404 [2023-02-06]. . |
61 | SOHAIL M, BARZKAR N, MICHAUD P, et al.. Cellulolytic and xylanolytic enzymes from yeasts: properties and industrial applications [J/OL]. Molecules, 2022, 27(12): 3783 [2023-02-06]. . |
62 | LI Y, ZHANG X, LU C, et al.. Identification and characterization of a novel endo-β-1,4-xylanase from Streptomyces sp. T7 and its application in xylo-oligosaccharide production [J/OL]. Molecules, 2022, 27(8): 2516 [2023-02-06]. . |
63 | TALENS-PERALES D, NICOLAU-SANUS M, POLAINA J, et al.. Expression of an extremophilic xylanase in Nicotiana benthamiana and its use for the production of prebiotic xylooligosaccharides [J/OL]. Sci. Rep., 2022, 12(1): 15743 [2023-02-06]. . |
64 | HUANG K, CHU Y, QIN X, et al.. Recombinant production of two xylanase-somatostatin fusion proteins retaining somatostatin immunogenicity and xylanase activity in Pichia pastoris [J]. Appl. Microbiol. Biotechnol., 2021, 105(10): 4167-4175. |
65 | CUI L, HUANG H, ZHANG H, et al.. Recombinant expression of hen egg white lysozyme with the assistance of xylanase fusion partner in Pichia pastoris [J]. Bioengineered, 2022, 13(5): 13860-13871. |
66 | KRATZ F. Albumin as a drug carrier: design of prodrugs, drug conjugates and nanoparticles [J]. J. Control. Release, 2008, 132(3): 171-183. |
67 | NASEEM M U, AHMED N, KHAN M A, et al.. Production of potent long-lasting consensus interferon using albumin fusion technology in Pichia pastoris expression system [J/OL]. Protein Expr. Purif., 2020, 166: 105509 [2023-02-06]. . |
68 | 黄甜甜,齐剑英,杨刚刚,等.重组rHSA-hFGF21融合蛋白在毕赤酵母中的表达纯化及活性分析[J].生物工程学报, 2022, 38(9): 3419-3432. |
HUANG T T, QI J Y, YANG G G, et al.. Expression, purification and bioactivity analysis of a recombinant fusion protein rHSA-hFGF21 in Pichia pastoris [J]. Chin. J. Biotech., 2022, 38(9): 3419-3432. | |
69 | PATEL D K, MENON D V, PATEL D H, et al.. Linkers: a synergistic way for the synthesis of chimeric proteins [J/OL]. Protein Expr. Purif., 2022, 191: 106012 [2023-02-06]. . |
70 | JONES E W. The synthesis and function of proteases in Saccharomyces: genetic approaches [J]. Annu. Rev. Genet., 1984, 18: 233-270. |
71 | KIM M J, SUNG B H, KIM H J, et al.. Production of autolysis-proof Kex2 protease from Candida albicans in Saccharomyces cerevisiae for in vitro processing of fusion proteins [J]. Appl. Microbiol. Biotechnol., 2022, 106(21): 7063-7072. |
72 | LI X, FAN Y, LIN Q, et al.. Expression of chromogranin A-derived antifungal peptide CGA-N12 in Pichia pastoris [J]. Bioengineered, 2020, 11(1): 318-327. |
73 | KUBITZKI T, NOLL T, LÜTZ S. Immobilisation of bovine enterokinase and application of the immobilised enzyme in fusion protein cleavage [J]. Bioprocess Biosyst. Eng., 2008, 31(3): 173-182. |
74 | RARAN-KURUSSI S, CHERRY S, ZHANG D, et al.. Removal of affinity tags with TEV protease [J]. Methods Mol. Biol., 2017, 1586: 221-230. |
75 | GUAN B, CHEN F, LEI J, et al.. Constitutive expression of a rhIL-2-HSA fusion protein in Pichia pastoris using glucose as carbon source [J]. Appl. Biochem. Biotechnol., 2013, 171(7): 1792-1804. |
76 | CAO J, DE LA FUENTE-NUNEZ C, OU R W, et al.. Yeast-based synthetic biology platform for antimicrobial peptide production [J]. ACS Synth. Biol., 2018, 7(3): 896-902. |
77 | KRAINER F W, DARNHOFER B, BIRNER-GRUENBERGER R, et al.. Recombinant production of a peroxidase-protein G fusion protein in Pichia pastoris [J]. J. Biotechnol., 2016, 219: 24-27. |
78 | CHEN Z, ZHANG Z, WANG Z, et al.. Fabricating a novel HLC-hBMP2 fusion protein for the treatment of bone defects [J]. J. Control. Release, 2021, 329: 270-285. |
79 | SUN J, JIANG J, LIU L, et al.. Expression of the hybrid antimicrobial peptide lactoferrin-lysozyme in Pichia pastoris [J]. Biotechnol. Appl. Biochem., 2019, 66(2): 202-208. |
80 | INGRAM Z, PATKAR A, OH D, et al.. Overcoming obstacles in protein expression in the yeast Pichia pastoris: interviews of leaders in the Pichia field [J/OL]. Pac. J. (StocktonHealth, Calif.), 2021, 4(1): 2[2023-02-06]. . |
81 | GARVEY M. Non-mammalian eukaryotic expression systems yeast and fungi in the production of biologics [J/OL]. J. Fungi, 2022, 8(11):1179 [2023-02-06]. . |
[1] | 张娜, 闫亚茹, 武运, 张宇宏, 张伟. 信号肽优化提高葡萄糖氧化酶在毕赤酵母中的表达量[J]. 中国农业科技导报, 2023, 25(2): 211-219. |
[2] | 王楠, 杨彩峰, 彭华康, 郭文芳, 王梦琪, 李刚强, 刘德虎. 前导肽区域N-糖基化影响骆驼凝乳酶原在毕赤酵母中的分泌表达和热稳定性研究[J]. 中国农业科技导报, 2022, 24(10): 71-78. |
[3] | 张艳丽1,2,任柳3,张宇宏1*,张伟1. 棉铃虫葡萄糖氧化酶HaGOX在毕赤酵母中的重组表达和性质研究[J]. 中国农业科技导报, 2020, 22(8): 56-63. |
[4] | 任雅馨1,2,罗会颖1,姚斌 1,王国增2*,涂涛1*. Cordyceps fumosorosea和Beauveria bassiana来源的碱性蛋白酶在毕赤酵母中的异源表达与性质测定[J]. 中国农业科技导报, 2020, 22(11): 69-78. |
[5] | 张丽洁1,2,徐欣欣2,田健2,初晓宇2*,朱宝成1*,伍宁丰2. 特异腐质霉来源漆酶基因的克隆及其在毕赤酵母中的表达[J]. 中国农业科技导报, 2019, 21(2): 46-53. |
[6] | 罗艳1,涂涛2,姚斌2,罗会颖2*,徐波1*. 嗜热子囊菌JCM12803来源的阿魏酸酯酶FAE-2515酶学性质研究[J]. 中国农业科技导报, 2018, 20(9): 57-64. |
[7] | 张祺珮1,李雅楠2,孟昆1,柏映国1,黄火清1*,罗会颖1. 新型高产β-胡萝卜素巴斯德毕赤酵母表达宿主菌的构建[J]. 中国农业科技导报, 2018, 20(2): 48-55. |
[8] | 李烨青1,涂涛2,王苑 2,马锐2,姚斌2,罗会颖2,徐波1*. Bispora sp. MEY-1来源的新型嗜热多聚半乳糖醛酸酶的酶学性质研究及其应用评估[J]. 中国农业科技导报, 2017, 19(10): 36-44. |
[9] | 郭超1,2,赵军旗2,齐西珍2,孙文良2,刘浩1,田朝光2*. 粗糙脉孢菌GH45家族内切纤维素酶基因ncGH45在毕赤酵母中表达及重组酶的性质表征[J]. 中国农业科技导报, 2016, 18(4): 64-72. |
[10] | 杨文霞,李可,潘霞,苏小运,杨培龙*. Neosartorya fischeri P1来源的外切聚半乳糖醛酸酶异源表达及性质研究[J]. 中国农业科技导报, 2016, 18(1): 73-80. |
[11] | 龚攀1,2,范家佑1,田健2,伍宁丰2,初晓宇2*. 热稳定性对甲基对硫磷水解酶在毕赤酵母中分泌的影响[J]. , 2015, 17(3): 42-48. |
[12] | 孙乔乔1,谭笑2,吕依2,黄火清2,张会图1*,路福平1. 嗜热真菌Neosartorya fischeri P1脂肪酶基因的克隆、表达及酶学性质分析[J]. , 2014, 16(5): 53-59. |
[13] | 杨雯涵,郭晓晶,陈轶群,吕俊楠,谢飞,曹云鹤*. 一种酸性木聚糖酶在毕赤酵母中的分泌表达及体外活性评价研究[J]. , 2013, 15(5): 59-66. |
[14] | 聂春明1,2§,宁晓彦2§,张宇宏2*,樊晓虎1,2,赵国芬1,张伟2*. 应用融合标签技术提高乳糖酶在毕赤酵母中的分泌表达[J]. , 2012, 14(5): 71-77. |
[15] | 程菲菲1,2,赵军旗2,石鹏君2,李江1,姚斌2. 瓶霉Phialophora sp. P13木聚糖酶基因的克隆及酶学性质分析[J]. , 2012, 14(1): 85-90. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||