1 |
FITZGERALD J R. Livestock-associated Staphylococcus aureus:origin,evolution and public health threat [J]. Trends Microbiol., 2012,20(4):192-198.
|
2 |
PARK S, RONHOLM J. Staphylococcus aureus in agriculture:lessons in evolution from a multispecies pathogen [J/OL]. Clin.Microbiol. Rev., 2021,34(2):e00182-20 [2024-01-26]..
|
3 |
BEYER P, PAULIN S. Priority pathogens and the antibiotic pipeline:an update [J/OL]. Bull.World Health Rrgan., 2020,98(3):151 [2024-01-26]. .
|
4 |
WU J, LUO Y, DENG D, et al.. Coptisine from Coptis chinensis exerts diverse beneficial properties:a concise review [J]. J. Cell Mol. Med., 2019,23(12):7946-7960.
|
5 |
LI C, SRIDHARA M B, RAKESH K P, et al.. Multi-targeted dihydrazones as potent biotherapeutics [J]. Bioorg. Chem., 2018,81:389-395.
|
6 |
XU Z, FENG W, SHEN Q, et al.. Rhizoma coptidis and berberine as a natural drug to combat aging and aging-related diseases via anti-oxidation and AMPK activation [J]. Aging Dis., 2017,8(6):760-777.
|
7 |
WANG Y, DU P, JIANG D. Berberine functions as a negative regulator in lipopolysaccharide-induced sepsis by suppressing NF-κB and IL-6 mediated STAT3 activation [J/OL]. Pathog. Dis., 2020,78(7):ftaa047 [2024-01-26]..
|
8 |
王茹,关亮俊,陈两绵, 等. 黄连等6味中药中生物碱苷类成分的发现、分离和结构鉴定[J]. 中国中药杂志, 2023, 48 (17): 4598-4609.
|
|
WANG R, GUAN L J, CHEN L M, et al.. Discovery, isolation and structural identification of alkaloid glycosides in six traditional Chinese medicine such as Coptis chinensis [J]. China J. Chin. Mater. Med., 2023,48(17):4598-4609.
|
9 |
周瑞,项昌培,张晶晶,等.黄连化学成分及小檗碱药理作用研究进展[J].中国中药杂志,2020,45(19):4561-4573.
|
|
ZHOU R, XIANG C P, ZHANG J J, et al.. Research progress on chemical compositions of Coptidis Rhizomaand pharmacological effects of berberine [J]. China J.Chin.Mater. Med., 2020,45(19):4561-4573.
|
10 |
LIN S J, CHEN C S, LIN S S, et al.. In vitro anti-microbial and in vivo cytokine modulating effects of different prepared Chinese herbal medicines [J]. Food Chem. Toxicol., 2006,44(12):2078-2085.
|
11 |
周芳芳,杨温仪,王蕾.黄连解毒汤对100株临床多重耐药菌的体外抑菌效果研究[J].国际检验医学杂志,2018,39(24):3061-3065.
|
|
ZHOU F F, YANG W Y, WANG L. In vitro antibacterial effect of coptidis decoction on 100 isolates of multi-drug resistant bacteria [J]. Int. J. Lab. Med., 2018,39(24):3061-3065.
|
12 |
XUE D F, ZOU Z Y, CHEN B, et al.. Study on membrane injury mechanism of total alkaloids and berberine from Coptidis Rhizoma on Aeromonas hydrophila [J]. China J. Chin. Mater. Med., 2015,40(9):1787-1792.
|
13 |
ARAYA-CONTRERAS T, VEAS R, ESCOBAR C A, et al..Antibacterial effect of Luma apiculata (DC.) burret extracts in clinically important bacteria [J/OL]. Int. J. Microbiol., 2019,2019:7803726 [2024-01-26]. .
|
14 |
GOEL S, MISHRA P. Thymoquinone inhibits biofilm formation and has selective antibacterial activity due to ROS generation [J].Appl. Microbiol. Biotechnol., 2018,102(4):1955-1967.
|
15 |
XIANG Q S, KANG C D, NIU L Y, et al.. Antibacterial activity and a membrane damage mechanism of plasma-activated water against Pseudomonas deceptionensis CM2 [J]. LWT Food Sci. Technol., 2018, 96: 395-401.
|
16 |
LIU G R, SONG Z Q, YANG X L, et al.. Antibacterial mechanism of bifidocin A,a novel broad-spectrum bacteriocin produced by Bifidobacterium animalis BB04 [J]. Food Contr., 2016,62:309-316.
|
17 |
KIELKOPF C L, BAUER W, URBATSCH I L. Bradford assay for determining protein concentration [J/OL]. Cold Spring Har. Protoc., 2020(4):102269 [2024-01-26]. .
|
18 |
WU Y P, BAI J R, ZHONG K, et al.. A dual antibacterial mechanism involved in membrane disruption and DNA binding of 2R,3R-dihydromyricetin from pine needles of Cedrus deodara against Staphylococcus aureus [J]. Food Chem., 2017,218:463-470.
|
19 |
HEGDE A H, PRASHANTH S N, SEETHARAMAPPA J.Interaction of antioxidant flavonoids with calf Thymus DNA analyzed by spectroscopic and electrochemical methods [J]. J.Pharm. Biomed. Anal., 2012,63:40-46.
|
20 |
LYU M X, WANG M W, LU K, et al.. DNA/Lysozyme-binding affinity study of novel peptides from TAT (47-57) and BRCA1 (782-786) in vitro by spectroscopic analysis [J]. Spectrochim.Acta Part A Mol. Biomol. Spectrosc., 2019,209:109-117.
|
21 |
王欢, 王敏, 刘竹青, 等. 蓝莓黑醋栗枸杞决明子复合物对眼部细胞氧化应激损伤的保护作用[J]. 现代食品科技,2024,40(1):47-53.
|
|
WANG H, WANG M, LIU Z Q, et al.. Protective effect of a complex of blueberry, blackcurrant, medlar and Cassia obtusifolia against oxidative stress injury in retinal epithelial cells [J]. Mod. Food Sci. Technol., 2024, 40(1): 47-53.
|
22 |
LEE B, LEE D G. Depletion of reactive oxygen species induced by chlorogenic acid triggers apoptosis-like death in Escherichia coli [J]. Free. Radic. Res., 2018,52(5):605-615.
|
23 |
LIU F, LIU Y, SUN Z, et al.. Preparation and antibacterial properties of epsilon-polylysine-containing gelatin/chitosan nanofiber films [J]. Int. J. Biol. Macromol., 2020, 164: 3376-3387.
|
24 |
陈梦玲,蓝蔚青,李函笑,等.牛至精油对腐生葡萄球菌抑制作用机制[J].食品科学,2020,41(7):46-51.
|
|
CHEN M L, LAN W Q, LI H X, et al.. Action mechanism of oregano essential oil against Staphylococcus saprophyticus [J]. Food Sci., 2020,41(7):46-51.
|
25 |
ZHU Y, ZHANG S.Antibacterial activity and mechanism of lacidophilin from Lactobacillus pentosus against Staphylococcus aureus and Escherichia coli [J/OL]. Front. Microbiol., 2020,11:582349 [2024-01-26]. .
|
26 |
SHU H, CHEN H, WANG X, et al.. Antimicrobial activity and proposed action mechanism of 3-Carene against Brochothrix thermosphacta and Pseudomonas fluorescens [J/OL]. Molecules, 2019,24(18):3246 [2024-01-26]. .
|
27 |
WU Y P, BAI J R, ZHONG K, et al.. Antibacterial effect of 2R,3R-dihydromyricetin on the cellular functions of Staphylococcus aureus [J]. Biosci. Biotechnol. Biochem., 2018,82(1):135-138.
|
28 |
张舒涵,梁海运,孙佳慧,等. 甘草提取物对Staphylococcus aureus的抑菌活性及作用机理[J]. 食品与发酵工业, 2024,50(10):259-265.
|
|
ZHANG S H, LIANG H Y, SUN J H, et al.. Antimicrobial activity of licorice extract against Staphylococcus aureus and its underlying mechanism of action [J]. Food Ferment. Ind., 2024, 50(10): 259-265.
|
29 |
ZHOU C Q, LI C Z, SIVA S,et al..Chemical composition,antibacterial activity and study of the interaction mechanisms of the main compounds present in the Alpinia galanga rhizomes essential oil [J/OL]. Ind.Crops Prod., 2021,165:113441 [2024-01-26]. .
|
30 |
JIN Y S, LIN J X, SHI H Q, et al.. The active ingredients in Chinese peony pods synergize with antibiotics to inhibit MRSA growth and biofilm formation [J/OL]. Microbiol. Res., 2024,281:127625 [2024-01-26]. .
|
31 |
黄梅,谭余庆,罗俊,等.植物类中药抗细菌耐药性的研究进展[J].中国实验方剂学杂志,2018,24(23):218-224.
|
|
HUANG M, TAN Y Q, LUO J, et al.. Antimicrobial resistance of Chinese herbal medicine [J].Chin. J. Exp. Tradit. Med. Formulae, 2018,24(23):218-224.
|
32 |
WANG J, WANG L, LOU G H, et al.. Coptidis rhizoma:a comprehensive review of its traditional uses,botany,phytochemistry,pharmacology and toxicology [J]. Pharm. Biol., 2019,57(1):193-225.
|
33 |
RUBFIARO A S, TSEGAY P S, LAI Y, et al.. Scanning ion conductance microscopy study reveals the disruption of the integrity of the human cell membrane structure by oxidative DNA damage [J]. ACS Appl. Bio. Mater., 2021,4(2):1632-1639.
|
34 |
WANG L H, WANG M S, ZENG X N, et al..An in vitro investigation of the inhibitory mechanism of β-galactosidase by cinnamaldehyde alone and in combination with carvacrol and thymol [J]. Biochim. Biophys. Acta (BBA) Gen. Subj., 2017,1861(1):3189-3198.
|
35 |
WANG J, RAN Q, ZENG H R, et al.. Cellular stress response mechanisms of rhizoma coptidis:a systematic review [J/OL].Chin. Med., 2018,13(1):27 [2024-01-26]. .
|
36 |
DHAMGAYE S, DEVAUX F, VANDEPUTTE P, et al.. Molecular mechanisms of action of herbal antifungal alkaloid berberine,in Candida albicans [J/OL].PLoS One,2014,9(8):e104554 [2024-01-26]. .
|
37 |
杨维琴,钱亮亮,张宗艺,等.黄连提取物抗副溶血弧菌活性成分的鉴定及其作用机理[J].中国食品添加剂,2022,33(4):181-187.
|
|
YANG W Q, QIAN L L, ZHANG Z Y, et al.. Identification of the active components of Coptis chinensis extracts and its antibacterial mechanism on Vibrio parahaemolyticus [J]. China Food Addit., 2022,33(4):181-187.
|
38 |
ZHANG R, TIAN S, ZHANG T, et al.. Antibacterial activity mechanism of coptisine against Pasteurella multocida [J/OL]. Front. Cell. Infect. Microbiol., 2023,13:1207855 [2024-01-26]..
|