Journal of Agricultural Science and Technology ›› 2023, Vol. 25 ›› Issue (2): 199-210.DOI: 10.13304/j.nykjdb.2021.0675
• BIO-MANUFACTURING & RESOURCE AND ECOLOGY • Previous Articles
Xin LUO(), Yuekai WU, Niannian ZHANG, Jie XU, Zaihua YANG(
)
Received:
2021-08-09
Accepted:
2021-09-23
Online:
2023-02-15
Published:
2023-05-17
Contact:
Zaihua YANG
通讯作者:
杨再华
作者简介:
罗鑫 E-mail: 1273760130@qq.com;
基金资助:
CLC Number:
Xin LUO, Yuekai WU, Niannian ZHANG, Jie XU, Zaihua YANG. Composition and Diversity of Fungal Community in Rhizosphere Soil of Camellia Oleifera[J]. Journal of Agricultural Science and Technology, 2023, 25(2): 199-210.
罗鑫, 吴跃开, 张念念, 许杰, 杨再华. 油茶根际土壤真菌群落组成及多样性分析[J]. 中国农业科技导报, 2023, 25(2): 199-210.
采样地点 Sampling sites | 经度 Longitude | 纬度 Latitude | 海拔 Altitude/m |
---|---|---|---|
贵阳GY | 106°44′37″ E | 26°33′19″ N | 1 245 |
天柱TZ | 109°11′15″ E | 26°54′35″ N | 472 |
玉屏YP | 108°54′47″ E | 27°18′17″ N | 511 |
望谟WM | 106°6′22″ E | 25°12′21″ N | 769 |
威宁WN | 104°41′5″ E | 26°44′55″ N | 1 982 |
黎平LP | 109°11′15″ E | 26°20′21″ N | 474 |
册亨CH | 105°48′54″ E | 24°53′47″ N | 948 |
Table 1 Sampling sites and information of C. oleifera rhizosphere soil
采样地点 Sampling sites | 经度 Longitude | 纬度 Latitude | 海拔 Altitude/m |
---|---|---|---|
贵阳GY | 106°44′37″ E | 26°33′19″ N | 1 245 |
天柱TZ | 109°11′15″ E | 26°54′35″ N | 472 |
玉屏YP | 108°54′47″ E | 27°18′17″ N | 511 |
望谟WM | 106°6′22″ E | 25°12′21″ N | 769 |
威宁WN | 104°41′5″ E | 26°44′55″ N | 1 982 |
黎平LP | 109°11′15″ E | 26°20′21″ N | 474 |
册亨CH | 105°48′54″ E | 24°53′47″ N | 948 |
样本 Sample | pH | 有机质 OM/(g·kg-1) | 全氮 TN/(g·kg-1) | 全磷 TP/(g·kg-1) | 全钾 TK/(g·kg-1) | 碱解氮 AN/(mg·kg-1) | 有效磷 AP/(mg·kg-1) | 速效钾 AK/(mg·kg-1) |
---|---|---|---|---|---|---|---|---|
GY | 4.45±0.02 e | 48.66±1.37 c | 1.66±0.04 b | 0.47±0.02 cd | 5.19±0.14 f | 65.33±1.42 c | 9.34±0.29 a | 90.75±1.71 d |
TZ | 4.52±0.02 d | 66.50±1.04 b | 1.09±0.05 f | 0.49±0.02 c | 8.84±0.28 d | 72.85±1.72 b | 4.36±0.09 b | 185.00±4.55 a |
YP | 4.35±0.03 f | 28.57±0.84 e | 1.33±0.06 d | 0.62±0.03 b | 15.06±0.25 a | 48.18±1.31 e | 4.56±0.10 b | 65.50±1.73 f |
WM | 4.73±0.02 b | 25.60±0.61 f | 1.21±0.06 e | 0.39±0.01 e | 14.27±0.26 b | 42.29±1.16 f | 3.44±0.20 c | 66.5±2.38 f |
WN | 4.57±0.03 c | 74.26±1.00 a | 2.20±0.04 a | 1.25±0.04 a | 9.30±0.19 c | 75.54±2.35 a | 1.01±0.03 e | 160.75±5.31 b |
LP | 4.76±0.03 ab | 12.94±0.68 g | 0.61±0.02 g | 0.22±0.01 f | 6.99±0.28 e | 30.70±0.86 g | 1.27±0.07 d | 74.50±2.38 e |
CH | 4.79±0.02 a | 45.41±0.80 d | 1.46±0.07 c | 0.44±0.02 d | 14.44±0.09 b | 56.29±1.12 d | 0.98±0.05 e | 105.00±2.71 c |
Table 2 Physicochemical properties of C. oleifera rhizosphere soil from different regions
样本 Sample | pH | 有机质 OM/(g·kg-1) | 全氮 TN/(g·kg-1) | 全磷 TP/(g·kg-1) | 全钾 TK/(g·kg-1) | 碱解氮 AN/(mg·kg-1) | 有效磷 AP/(mg·kg-1) | 速效钾 AK/(mg·kg-1) |
---|---|---|---|---|---|---|---|---|
GY | 4.45±0.02 e | 48.66±1.37 c | 1.66±0.04 b | 0.47±0.02 cd | 5.19±0.14 f | 65.33±1.42 c | 9.34±0.29 a | 90.75±1.71 d |
TZ | 4.52±0.02 d | 66.50±1.04 b | 1.09±0.05 f | 0.49±0.02 c | 8.84±0.28 d | 72.85±1.72 b | 4.36±0.09 b | 185.00±4.55 a |
YP | 4.35±0.03 f | 28.57±0.84 e | 1.33±0.06 d | 0.62±0.03 b | 15.06±0.25 a | 48.18±1.31 e | 4.56±0.10 b | 65.50±1.73 f |
WM | 4.73±0.02 b | 25.60±0.61 f | 1.21±0.06 e | 0.39±0.01 e | 14.27±0.26 b | 42.29±1.16 f | 3.44±0.20 c | 66.5±2.38 f |
WN | 4.57±0.03 c | 74.26±1.00 a | 2.20±0.04 a | 1.25±0.04 a | 9.30±0.19 c | 75.54±2.35 a | 1.01±0.03 e | 160.75±5.31 b |
LP | 4.76±0.03 ab | 12.94±0.68 g | 0.61±0.02 g | 0.22±0.01 f | 6.99±0.28 e | 30.70±0.86 g | 1.27±0.07 d | 74.50±2.38 e |
CH | 4.79±0.02 a | 45.41±0.80 d | 1.46±0.07 c | 0.44±0.02 d | 14.44±0.09 b | 56.29±1.12 d | 0.98±0.05 e | 105.00±2.71 c |
样本 Sample | 序列数 Number of sequences | OTUs数量 OTUs amount | 覆盖度 Converage/% | Shannon指数 Shannon index | Simpson指数 Simpson index | ACE指数 ACE index | Chao 1指数 Chao 1 index |
---|---|---|---|---|---|---|---|
GY | 72 617±2 244 a | 198±20 cd | 99.90±0.01 a | 1.82±0.26 b | 0.41±0.06 a | 231.86±17.16 bc | 233.33±18.85 b |
TZ | 65 123±4 335 c | 239±19 b | 99.95±0.02 a | 3.05±0.73 a | 0.18±0.12 bc | 250.27±15.60 b | 250.28±13.80 b |
YP | 68 462±5 735 b | 154±6 e | 99.97±0.01 a | 2.10±0.60 b | 0.38±0.17 a | 161.28±12.80 e | 162.78±12.88 d |
WM | 67 440±6 651 b | 236±16 b | 99.97±0.01 a | 3.62±0.16 a | 0.07±0.02 c | 242.58±19.67 bc | 241.89±19.94 b |
WN | 70 937±2 249 b | 203±11 c | 99.94±0.02 a | 3.07±0.43 a | 0.16±0.08 c | 225.61±19.19 c | 227.68±21.51 b |
LP | 72 957±2 030 a | 181±6 d | 99.94±0.02 a | 2.11±0.49 b | 0.31±0.13 ab | 194.95±6.45 d | 195.43±8.78 c |
CH | 72 453±1 933 a | 285±12 a | 99.93±0.01 a | 3.45±0.07 a | 0.08±0.00 c | 302.55±15.26 a | 307.79±18.55 a |
Table 3 ITS sequencing results and alpha diversity of rhizosphere soil fungi of C. oleifera
样本 Sample | 序列数 Number of sequences | OTUs数量 OTUs amount | 覆盖度 Converage/% | Shannon指数 Shannon index | Simpson指数 Simpson index | ACE指数 ACE index | Chao 1指数 Chao 1 index |
---|---|---|---|---|---|---|---|
GY | 72 617±2 244 a | 198±20 cd | 99.90±0.01 a | 1.82±0.26 b | 0.41±0.06 a | 231.86±17.16 bc | 233.33±18.85 b |
TZ | 65 123±4 335 c | 239±19 b | 99.95±0.02 a | 3.05±0.73 a | 0.18±0.12 bc | 250.27±15.60 b | 250.28±13.80 b |
YP | 68 462±5 735 b | 154±6 e | 99.97±0.01 a | 2.10±0.60 b | 0.38±0.17 a | 161.28±12.80 e | 162.78±12.88 d |
WM | 67 440±6 651 b | 236±16 b | 99.97±0.01 a | 3.62±0.16 a | 0.07±0.02 c | 242.58±19.67 bc | 241.89±19.94 b |
WN | 70 937±2 249 b | 203±11 c | 99.94±0.02 a | 3.07±0.43 a | 0.16±0.08 c | 225.61±19.19 c | 227.68±21.51 b |
LP | 72 957±2 030 a | 181±6 d | 99.94±0.02 a | 2.11±0.49 b | 0.31±0.13 ab | 194.95±6.45 d | 195.43±8.78 c |
CH | 72 453±1 933 a | 285±12 a | 99.93±0.01 a | 3.45±0.07 a | 0.08±0.00 c | 302.55±15.26 a | 307.79±18.55 a |
Fig. 7 Differential species analysis of fungi in the rhizosphere soil of C. oleiferaNote:*, ** and *** mean significant differences at P<0.05, P<0.01 and P<0.001 levels, respectively.
Fig. 8 RDA analysis of top ten dominant fungal groupsand soil environmental factors in C. oleifera rhizosphere soil at genus levelNote:OM—Organic matter; TN—Total nitrogen; TP—Total phosphorus; TK—Total potassium; AN—Alkali hydrolyzed nitrogen; AP—Available phosphorus; AK—Available potassium; the length of the arrow represents the degree of association with fungi; the acute angle, obtuse angle and right angle between the arrows represent the positive correlation, negative correlation and no correlation, respectively.
参数Parameter | RDA1 | RDA2 | 决定系数r2 | P值P value |
---|---|---|---|---|
pH | -0.866 | -0.498 | 0.060 | 0.511 |
有机质OM | -0.590 | -0.807 | 0.232 | 0.048 |
全氮TN | -0.709 | -0.704 | 0.100 | 0.305 |
全磷TP | -0.943 | -0.331 | 0.149 | 0.136 |
全钾TK | -0.983 | 0.182 | 0.657 | 0.001 |
碱解氮AN | -0.596 | -0.802 | 0.137 | 0.184 |
有效磷AP | 0.744 | 0.667 | 0.366 | 0.005 |
速效钾AK | -0.554 | -0.832 | 0.266 | 0.020 |
Table 4 Envfit permutation function test of top ten dominant fungal groups and soil environmental factors
参数Parameter | RDA1 | RDA2 | 决定系数r2 | P值P value |
---|---|---|---|---|
pH | -0.866 | -0.498 | 0.060 | 0.511 |
有机质OM | -0.590 | -0.807 | 0.232 | 0.048 |
全氮TN | -0.709 | -0.704 | 0.100 | 0.305 |
全磷TP | -0.943 | -0.331 | 0.149 | 0.136 |
全钾TK | -0.983 | 0.182 | 0.657 | 0.001 |
碱解氮AN | -0.596 | -0.802 | 0.137 | 0.184 |
有效磷AP | 0.744 | 0.667 | 0.366 | 0.005 |
速效钾AK | -0.554 | -0.832 | 0.266 | 0.020 |
Fig. 9 Spearman correlation analysis of species abundance and soil environmental factors at genus levelNote:*, ** and *** mean significant correlation at P<0.05, P<0.01 and P<0.001 levels, respectively.
1 | MA J Q, MA Y, WEI Z L, et al.. Effects of arbuscular mycorrhizal fungi symbiosis on microbial diversity and enzyme activities in the rhizosphere soil of Artemisia annua [J]. Soil Sci. Soc. Am. J., 2021, 85(3):703-716. |
2 | POWELL J R, RILLIG M C. Biodiversity of arbuscular mycorrhizal fungi and ecosystem function [J]. New Phytol., 2018, 220(4):1059-1075. |
3 | HANNULA S E, MORRIËN E, PUTTEN W H V D, et al.. Rhizosphere fungi actively assimilating plant-derived carbon in a grassland soil [J/OL]. Fungal Ecol., 2020, 48:100988 [2021-07-05]. . |
4 | 吴佳伟,杨瑞,王勇,等.贵州草海流域三种不同植被类型根际土壤真菌结构组成和多样性[J].菌物学报,2020,39(7):1250-1262. |
WU J W, YANG R, WANG Y, et al.. Community and diversity of rhizosphere soil fungi in three different vegetation types in Caohai basin, Guizhou province [J]. Mycosystema, 2020, 39(7):1250-1262. | |
5 | 魏世清,李金怀,蒲小东,等.施用沼肥对油茶林根际土壤微生物数量和酶活性影响[J].中国沼气,2018,36(6):55-60. |
WEI S Q, LI J H, PU X D, et al.. Effects of biogas fertilizer on soil microbial population and enzyme activities in rhizosphere soil of Camellia oleifera [J]. China Biogas, 2018, 36(6):55-60. | |
6 | 庄瑞林.中国油茶[M].北京:中国林业出版社,2008:1-366. |
ZHUANG R L. Chinese Camellia oleifera [M]. Beijing:China Forestry Press, 2008:1-366. | |
7 | 王进.贵州油茶特色资源[J].大众科学,2020(12):20-21. |
8 | WANG Y X, CHEN J Y, XU X W, et al.. Identification and characterization of Colletotrichum species associated with anthracnose disease of Camellia oleifera in China [J]. Plant Dis., 2020, 104(2):474-482. |
9 | TANG Y Y, HE X M, SUN J, et al.. Comprehensive evaluation on tailor-made Deep Eutectic Solvents (DESs) in extracting tea saponins from seed pomace of Camellia oleifera Abel [J/OL]. Food Chem., 2021, 342:128243 [2021-07-05]. . |
10 | ZHANG J P, ZHANG T T, YING Y, et al.. Effects of different additives on the chemical composition and microbial diversity during composting of Camellia oleifera shell [J/OL]. Bioresource Technol., 2021, 330:124990 [2021-07-05]. . |
11 | 鲍士旦.土壤农化分析[M].北京:中国农业出版社,2000:1-495. |
12 | CHANG S, PURYEAR J, CAIRNEY J. A simple and efficient method for isolating RNA from pine trees [J]. Plant Mol. Biol. Rep., 1993, 11(2):113-116. |
13 | CAPORASO J G, KUCZYNSKI J, STOMBAUGH J, et al.. QIIME allows analysis of high-throughput community sequencing data [J]. Nat. Methods, 2010, 7(5):335-336. |
14 | TEDERSOO L, SÁNCHEZ-RAMÍREZ S, KÕLJALG U, et al.. High-level classification of the fungi and a tool for evolutionary ecological analyses [J]. Fungal Divers., 2018, 90(1):135-159. |
15 | SCHLOSS P D, WESTCOTT S L, RYABIN T, et al.. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities [J]. Appl. Environ. Microb., 2009, 75(23):7537-7541. |
16 | VEACH A M, MORRIS R E E S E, YIP D Z, et al.. Correction to:Rhizosphere microbiomes diverge among Populus trichocarpa plant-host genotypes and chemotypes, but it depends on soil origin [J]. Microbiome, 2021, 9(1):21-21. |
17 | 尹杰, 牛素贞, 刘进平, 等. 贵州有机茶园土壤肥力的调查[J]. 西南农业学报, 2013, 26(1):226-229. |
YIN J, NIU S Z, LIU J P, et al.. Investigation on soil fertility of organic tea garden in Guizhou [J]. Southwest China J. Agric. Sci., 2013, 26(1):226-229. | |
18 | 冯金玲, 郑新娟, 杨志坚, 等. 套种模式对油茶生长及根际土壤理化性质的影响[J]. 森林与环境学报, 2015, 35(4):324-330. |
FENG J L, ZHENG X J, YANG Z J, et al.. Effects of interplanting pattern on the forest and rhizosphere soil physical and chemical properties of Camellia oleifera [J]. J. For. Environ., 2015, 35(4):324-330. | |
19 | 马帅兵, 李昌来, 周忠发. 贵州省油茶的生态适宜性评价及种植区划研究[J]. 安徽农业科学, 2011, 39(23):14094-14097. |
MA S B, LI C L, ZHOU Z F. Ecological suitability and planting regionalization of Camellia oleifera in Guizhou province [J]. J. Anhui Agric. Sci., 2011, 39(23):14094-14097. | |
20 | DING Y Q, JIN Y L, HE K Z, et al.. Low nitrogen fertilization alter rhizosphere microorganism community and improve sweetpotato yield in a nitrogen-deficient rocky soil [J/OL]. Front. Microbiol., 2020, 11:678 [2021-07-05]. . |
21 | 刘松涛,田春丽,曹雯梅,等.基于不同土壤质地棉花根际微生物和酶活性特征分析[J].中国农业科技导报,2020,22(2):73-79. |
LIU S T, TIAN C L, CAO W M, et al.. Characteristics of rhizosphere microorganisms and enzyme activities of cotton based on different soil textures [J]. J. Agric. Sci. Technol., 2020:22(2):73-79. | |
22 | JIMU L K, NYAKUDYA I W, MAGOGO C, et al.. Impact of pine plantation establishment on soil properties and fungal communities of natural forests in Zimbabwe [J]. Southern For: J. For. Sci., 2020, 82(3):263-270. |
23 | CHEN Y L, XU T L, HU H W, et al.. Plant diversity represents the prevalent determinant of soil fungal community structure across temperate grasslands in northern China [J]. Soil Biol. Biochem., 2017, 110(2):12-23. |
24 | MIGUEL R M, JOSE G M V, MEIKE P. Diversity of fungi in soils with different degrees of degradation in Germany and Panama [J]. Mycobiology, 2020, 48(1):20-28. |
25 | 傅海平,周品谦,王沅江,等.绿肥间作对茶树根际土壤真菌群落的影响[J].茶叶通讯,2020,47(3):406-415. |
FU H P, ZHOU P Q, WANG Y J, et al.. Effects of intercropping different green manures on fungal community characteristics in rhizosphere soil of tea plant [J]. J. Tea Comm., 2020:47(3):406-415. | |
26 | 史芳芳,李向泉.葡萄根际土壤真菌群落多样性分析[J].中国农业科技导报,2019,21(7):47-58. |
SHI F F, LI X Q. Diversity analysis of fungus community in rhizosphere soil of grape [J]. Rev. China Agric. Sci. Technol., 2019, 21(7):47-58. | |
27 | 景晓雅,孙柳清,李尚彧,等.太行菊属植物根际土壤微生物多样性初步研究[J].中国农业科技导报,2021,23(3):193-200. |
JING X Y, SUN L Q, LI S Y, et al.. Rhizospheric microorganisms diversity analysis of Opisthopappus sp. [J]. J. Agric. Sci. Technol., 2021, 23(3):193-200. | |
28 | LIU H J, DUAN W D, LIU C, et al.. Spore production in the solid-state fermentation of stevia residue by Trichoderma guizhouense and its effects on corn growth [J]. J. Integr. Agric., 2021, 20(5):1147-1156. |
29 | HAN S W, YANG X, LI L Q, et al.. Limiting factors of saffron corm production from the perspective of microorganisms [J]. Sci. Hortic., 2019, 247:165-174. |
30 | BARBARA P, DAVID B, HUGUES B, et al.. Positive effects of plant association on rhizosphere microbial communities depend on plant species involved and soil nitrogen level [J]. Soil Biol. Biochem., 2017, 114:1-4. |
31 | 杨娟,董醇波,张芝元,等.不同产地杜仲根际土真菌群落结构的差异性分析[J].菌物学报,2019,38(3):327-340. |
YANG J, DONG C B, ZHANG Z Y, et al.. Analyses on fungal community composition of Eucommia ulmoides rhizosphere soil in different areas [J]. Mycosystema, 2019, 38(3):327-340. | |
32 | 张淼,陈裕凤,陈龙,等.不同地区药用植物两面针根际土壤真菌种群多样性差异分析[J].生物技术通报,2020,36(9):167-179. |
ZHANG M, CHEN Y F, CHEN L, et al.. Difference analysis of the community diversity of fungi in the rhizosphere soil of Zanthoxylum nitidum (Roxb.) DC in different regions [J]. Biotech. Bulletin, 2020, 36(9):167-179. | |
33 | 童炳丽,刘济明,陈敬忠,等.米槁根际土壤真菌多样性及其与果实药用活性成分含量的相关性分析[J].菌物学报,2019,38(7):1058-1070. |
TONG B L, LIU J M, CHEN J Z, et al.. Correlation between fungal diversity in rhizosphere soil and medicinal active components in fruits of Cinnamomum migao [J]. Mycosystema, 2019, 38(7):1058-1070. | |
34 | ALAN E R, JOSÉ-MIGUEL B, ANN M M, et al.. Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms [J]. Plant Soil, 2009, 321(1-2):305-339. |
35 | MOHAMED E F, YEON-JU K, YU-JIN K, et al.. Cylindrocarpon destructans/Ilyonectria radicicola -species complex: causative agent of ginseng root-rot disease and rusty symptoms [J]. J. Gins. Res., 2018, 42(1):9-15. |
36 | XIN L, CUN Y. First report of damping-off disease caused by Fusarium oxysporum in Pinus massoniana in China [J]. J. Plant Dis. Protect., 2020, 127:401-409. |
37 | MILLIDEE M M, W. M J, M. W J. Effect of soil fertility and intercropping on the incidence and severity of root rot diseases of common bean (Phaseolus vulgaris L.) [J]. World J. Agric. Res., 2017, 5(4):189-199. |
[1] | Zhixiong HOU, Changqing JING, Gongxin WANG, Wenzhang GUO, Weikang ZHAO. Temporal and Spatial Variation of Natural Grassland Vegetation Coverage and Its Relationship with Meteorological Factors in Northern Xinjiang from 1998 to 2018 [J]. Journal of Agricultural Science and Technology, 2023, 25(2): 140-151. |
[2] | ZHENG Jinjin1,2, LIU Shuai1, CHEN Yan1*, ZHANG Xin1,2, YANG Hui1, LIU Xiangxiang1, WANG Fuhua1,2*. Quality Evaluation and Analysis of Main Cultivated Litchi in Lingnan Region [J]. Journal of Agricultural Science and Technology, 2021, 23(4): 128-136. |
[3] | WANG Jiayuan1, QIN Fucang1*, YANG Zhenqi2, REN Xiaotong1, FANG Fei3, ZHANG Ying4. Characteristics of Soil Animal Communities Under Different Land Use in Gully Area of Loess Plateau [J]. Journal of Agricultural Science and Technology, 2021, 23(3): 156-165. |
[4] | GUO Jiahui, BAI Xionghui, WANG Aidong, LI Ruijie, SHI Xiaoxin, SHI Yongfeng, LI Ailian, WANG Xicheng, WANG Hongfu, GUO Jie. Identification and Evaluation Cold Resistance of the National Regional Test Winter Wheat Varieties in the Northern Part of Huang-Huai Winter Wheat Region [J]. Journal of Agricultural Science and Technology, 2021, 23(10): 25-34. |
[5] | ZHANG Yongfang, GAO Zhihui, SHI Pengqing, HAN Zhiping*. Adaptability Analysis of Different Soybean Varieties Based on Agronomic and Quality Traits [J]. Journal of Agricultural Science and Technology, 2020, 22(8): 25-32. |
[6] | ZHANG Xingwei, CHEN Chao*, TIAN Shan, FU Lin. Prediction of Apple Initial Flowering Period Based on Machine Learning [J]. Journal of Agricultural Science and Technology, 2020, 22(10): 93-100. |
[7] | DING Suqin, YAN Zi, LI Xi, TANG Dongqin*. Study on the Change of Endogenous Hormones During Bulb Development in Freesia hybrida [J]. Journal of Agricultural Science and Technology, 2019, 21(9): 51-57. |
[8] | ZHU Xi1, LIN Jie2*, ZHANG Yang1. Research on Soil Erosion Characteristics Based on 137Cs Tracer Method After Economic Forest Construction [J]. Journal of Agricultural Science and Technology, 2019, 21(6): 135-142. |
[9] | XU Feng1, SUO Liangxi1, MENG Hailong2, LI Guihong1, CHENG Kai2, ZHANG Jiale2, . Yield Comparisons and Phenotypic Evaluations of Varieties for Foxtail Millet [Setaria italica (L.) P. Beauv.] with Different Sources [J]. Journal of Agricultural Science and Technology, 2018, 20(5): 100-110. |
[10] | WANG Shufen1, WANG Wei2*. Multidimentional Soil Data Analysis Based on Self-organizing Map Artificial Neural Network [J]. Journal of Agricultural Science and Technology, 2018, 20(4): 61-71. |
[11] | SUN Ling, SHAN Jie, QIU Lin, WANG Zhiming, MAO Liangjun, HUANG Xiaojun. Monitoring of Wheat Spatial Distribution Dynamic Change in Jiangsu Province [J]. Journal of Agricultural Science and Technology, 2018, 20(10): 55-65. |
[12] | CUI Yanchao1, HU Wenran2*, ZHU Gaizhi3, QU Xijun4. Correlation Analysis of Yield and Agronomic Traits of Maize under Drip Irrigation with Plastic-film Mulching [J]. Journal of Agricultural Science and Technology, 2017, 19(9): 103-108. |
[13] | CHANG Anran1, LI Jia1, ZHANG Song1, ZHAN Junwen2, WEI Denghui1, WANG Peiwen1, YU Jianjun1*. Analysis of Bacterial Community Structure in Rhizosphere Soil of Tobacco based on the Metagenomics 16S rDNA Sequencing Technology [J]. Journal of Agricultural Science and Technology, 2017, 19(2): 43-50. |
[14] | LI Yan1, CHU Zhiguo2, TIAN Haiying3, HAO Hui3, SONG Jinyong3, ZHOU Hao3, LI Huaiqi3, LIU Pengfei1, ZHAO Mingqin1*. Influences of Organic Acids on Deliveries of Harmful Components in Mainstream Smoke from Flue-curd Tobacco Leaf [J]. Journal of Agricultural Science and Technology, 2017, 19(1): 125-130. |
[15] | WANG Peng-ze1, LAI Miao1, Tao Tao1, FU Pei-pei1, REN Wei2, DU Yue-guang3, WEI Hu. Relationships Between Main Aroma Constituents and Aroma Notes Index of Flue-cured Tobacco Leaves of Different Flavor Styles [J]. , 2015, 17(3): 126-135. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||