Journal of Agricultural Science and Technology ›› 2022, Vol. 24 ›› Issue (4): 93-106.DOI: 10.13304/j.nykjdb.2021.0723
• INTELLIGENT AGRICULTURE & AGRICULTURAL MACHINERY • Previous Articles Next Articles
Huang HUANG1(), Yanyan CHEN1, Pengyu CHEN2, Rui LUO3, Yadong LIU1, Wei HU2
Received:
2021-08-20
Accepted:
2022-01-18
Online:
2022-04-15
Published:
2022-04-19
黄凰1(), 陈燕燕1, 陈鹏宇2, 罗锐3, 刘亚东1, 胡炜2
作者简介:
黄凰 E-mail:wmyhuang@qq.com
基金资助:
CLC Number:
Huang HUANG, Yanyan CHEN, Pengyu CHEN, Rui LUO, Yadong LIU, Wei HU. Research Progress of Agricultural Machinery Scheduling Technology Based on Time Window[J]. Journal of Agricultural Science and Technology, 2022, 24(4): 93-106.
黄凰, 陈燕燕, 陈鹏宇, 罗锐, 刘亚东, 胡炜. 基于时间窗的农机调度技术研究进展[J]. 中国农业科技导报, 2022, 24(4): 93-106.
农机调度系统类型 Agricultural machinery dispatching type | 系统功能 System function | 文献来源 Literature source |
---|---|---|
农机作业监控管理平台 Agricultural machinery operation monitoring and management platform | 实现农机智能分配和作业监控管理的全流程服务 Realizing the whole process service of agricultural machinery intelligent distribution and operation monitoring management | [ |
农机调度管理平台 Agricultural machinery scheduling management platform | 拓宽农场主和机手之间的信息共享渠道,实现了农机信息采集与智能调度 Broadening the information sharing channels between farmers and machine operators, and realizing agricultural machinery information collection and intelligent scheduling | [ |
农机作业管理平台 Agricultural machinery operation management platform | 实现机手、农机信息在线远程管,为农机作业和农户提供管理服务 Realizing the online remote management of machine operators and agricultural machinery information, and providing management services for agricultural machinery operations and farmers | [ |
农机信息化综合服务平台 Comprehensive service platform for agricultural machinery informatization | 实现农机作业数据的采集、农田地块规划、农机导航定位及信息反馈等综合智能化服务 Realizing comprehensive intelligent services such as the collection of agricultural machinery operation data, farmland plot planning, agricultural machinery navigation and positioning and information feedback | [ |
Table 1 Research and design situation of agricultural machinery scheduling system
农机调度系统类型 Agricultural machinery dispatching type | 系统功能 System function | 文献来源 Literature source |
---|---|---|
农机作业监控管理平台 Agricultural machinery operation monitoring and management platform | 实现农机智能分配和作业监控管理的全流程服务 Realizing the whole process service of agricultural machinery intelligent distribution and operation monitoring management | [ |
农机调度管理平台 Agricultural machinery scheduling management platform | 拓宽农场主和机手之间的信息共享渠道,实现了农机信息采集与智能调度 Broadening the information sharing channels between farmers and machine operators, and realizing agricultural machinery information collection and intelligent scheduling | [ |
农机作业管理平台 Agricultural machinery operation management platform | 实现机手、农机信息在线远程管,为农机作业和农户提供管理服务 Realizing the online remote management of machine operators and agricultural machinery information, and providing management services for agricultural machinery operations and farmers | [ |
农机信息化综合服务平台 Comprehensive service platform for agricultural machinery informatization | 实现农机作业数据的采集、农田地块规划、农机导航定位及信息反馈等综合智能化服务 Realizing comprehensive intelligent services such as the collection of agricultural machinery operation data, farmland plot planning, agricultural machinery navigation and positioning and information feedback | [ |
时间窗类型 Time window type | 国外研究情况 Foreign research situation | 文献来源 Literature source |
---|---|---|
硬时间窗 Hard time window | 带硬时间窗车辆路径问题为NP难题 Vehicle routing problem with hard time windows was an NP problem | [ |
结合引导式局部搜索算法和进化策略以及客户点集群建设,设计启发式算法 Combining guided local search algorithms and evolution strategies as well as customer point cluster construction to design heuristic algorithms | [ | |
通过计算开始时间和车辆到达客户点时间的分布,验证该分布可以应用于多种算法进行求解 By calculating the distribution of the start time and the time when the vehicle arrives at the customer point, it was verified that the distribution can be applied to a variety of algorithms to solve the problem | [ | |
以车辆路径数最少为目标,研究带硬时间窗的车辆调度问题 Aiming at minimizing the number of vehicle paths, the vehicle scheduling problem with hard time window was studied | [ | |
将顺序插入的启发式算法与蚁群算法结合,解决硬时间窗问题 Sequential insertion heuristic algorithm was combined with ant colony algorithm to solve the hard time window problem | [ | |
软时间窗 Soft time window | 明确了软时间窗和软旅行时间约束,并成功实现了向成本函数的转变 Soft time window and soft travel time constraints were defined, and the transformation to cost function was successfully realized | [ |
利用两阶段方法对中等规模的带软时间窗的车辆调度问题进行求解 Two-stage method was used to solve the medium-sized vehicle scheduling problem with soft time window | [ | |
提出列生成处理方法和分枝定价算法,解决带软时间窗和随机旅行时间的车辆路径问题 A column generation processing method and a branch pricing algorithm were proposed to solve the vehicle routing problem with soft time window and random travel time | [ | |
研究运用空中机器人执行配送任务,无人操作的带软时间窗车辆路径问题 Research on the use of aerial robots to perform delivery tasks and unmanned vehicle routing problems with soft time windows | [ | |
利用启发式算法来解决带软时间窗的多目标车辆路径问题 Heuristic algorithm was used to solve the multi-objective vehicle routing problem with soft time window | [ | |
模糊时间窗 Fuzzy time window | 服务时间与客户时间窗口的偏差是反映客户满意度水平的参数,用模糊函数来确定与时间窗相关的服务水平 Deviation of the service time from the customer time window was a parameter that reflected the level of customer satisfaction, the fuzzy function was used to determine the service level related to the time window | [ |
用模糊隶属函数来确定与时间窗相关的服务水平, 客户将在给定的服务时间窗口内得到服务 Fuzzy function was used to determine the service level related to the time window, and the customer would be served within the given service time window | [ | |
引入模糊线性规划,求解有模糊时间窗约束的车辆路径问题 Fuzzy linear programming was introduced to solve the vehicle routing problem with fuzzy time window constraints | [ | |
研究带模糊时间窗的多目标动态车辆路径问题,以行驶路径最短和客户满意度最大为目标 Multi-objective dynamic vehicle routing problem with fuzzy time windows was researched, aiming at the shortest driving path and maximum customer satisfaction | [ |
Table 2 Foreign research situation of scheduling time window
时间窗类型 Time window type | 国外研究情况 Foreign research situation | 文献来源 Literature source |
---|---|---|
硬时间窗 Hard time window | 带硬时间窗车辆路径问题为NP难题 Vehicle routing problem with hard time windows was an NP problem | [ |
结合引导式局部搜索算法和进化策略以及客户点集群建设,设计启发式算法 Combining guided local search algorithms and evolution strategies as well as customer point cluster construction to design heuristic algorithms | [ | |
通过计算开始时间和车辆到达客户点时间的分布,验证该分布可以应用于多种算法进行求解 By calculating the distribution of the start time and the time when the vehicle arrives at the customer point, it was verified that the distribution can be applied to a variety of algorithms to solve the problem | [ | |
以车辆路径数最少为目标,研究带硬时间窗的车辆调度问题 Aiming at minimizing the number of vehicle paths, the vehicle scheduling problem with hard time window was studied | [ | |
将顺序插入的启发式算法与蚁群算法结合,解决硬时间窗问题 Sequential insertion heuristic algorithm was combined with ant colony algorithm to solve the hard time window problem | [ | |
软时间窗 Soft time window | 明确了软时间窗和软旅行时间约束,并成功实现了向成本函数的转变 Soft time window and soft travel time constraints were defined, and the transformation to cost function was successfully realized | [ |
利用两阶段方法对中等规模的带软时间窗的车辆调度问题进行求解 Two-stage method was used to solve the medium-sized vehicle scheduling problem with soft time window | [ | |
提出列生成处理方法和分枝定价算法,解决带软时间窗和随机旅行时间的车辆路径问题 A column generation processing method and a branch pricing algorithm were proposed to solve the vehicle routing problem with soft time window and random travel time | [ | |
研究运用空中机器人执行配送任务,无人操作的带软时间窗车辆路径问题 Research on the use of aerial robots to perform delivery tasks and unmanned vehicle routing problems with soft time windows | [ | |
利用启发式算法来解决带软时间窗的多目标车辆路径问题 Heuristic algorithm was used to solve the multi-objective vehicle routing problem with soft time window | [ | |
模糊时间窗 Fuzzy time window | 服务时间与客户时间窗口的偏差是反映客户满意度水平的参数,用模糊函数来确定与时间窗相关的服务水平 Deviation of the service time from the customer time window was a parameter that reflected the level of customer satisfaction, the fuzzy function was used to determine the service level related to the time window | [ |
用模糊隶属函数来确定与时间窗相关的服务水平, 客户将在给定的服务时间窗口内得到服务 Fuzzy function was used to determine the service level related to the time window, and the customer would be served within the given service time window | [ | |
引入模糊线性规划,求解有模糊时间窗约束的车辆路径问题 Fuzzy linear programming was introduced to solve the vehicle routing problem with fuzzy time window constraints | [ | |
研究带模糊时间窗的多目标动态车辆路径问题,以行驶路径最短和客户满意度最大为目标 Multi-objective dynamic vehicle routing problem with fuzzy time windows was researched, aiming at the shortest driving path and maximum customer satisfaction | [ |
时间窗类型 Time window type | 国内研究情况 Domestic research | 文献来源 Literature source |
---|---|---|
硬时间窗 Hard time window | 在邮政车辆路径模型上加入硬时间窗约束,设计了多目标的遗传算法求解 A hard time window constraint was added to the mail vehicle routing model, and a multi-objective genetic algorithm was designed to solve it | [ |
针对车辆配送和集货一体化问题,构建带硬时间窗约束的优化模型 Aiming at the integration of vehicle distribution and goods collection, an optimization model with hard time window constraints was constructed | [ | |
建立了以配送总路程为目标函数的硬时间窗车辆路径模型,对搜索方式和信息素更新方式进行优化处理 A hard time window vehicle routing model with the total distribution distance as the objective function was established to optimize the search mode and pheromone update mode | [ | |
软时间窗 Soft time window | 建立带软时间窗的多式联运路径优化模型 A multimodal transport route optimization model with soft time window was established | [ |
引入车辆共享机制,保证货物准时送达客户点和服务质量 Vehicle sharing mechanism was introduced to ensure that goods arrive at customer points on time and service quality | [ | |
基于改进的旁域更新算法设计带软时间窗车辆路径优化算法 Design of vehicle routing optimization algorithm with soft time window based on improved side domain update algorithm | [ | |
研究智能水滴算法对软时间窗车辆路径问题的求解 Intelligent water drop algorithm was studied to solve the vehicle routing problem with soft time window | [ | |
设计混合粒子群算法研究带软时间窗的配货车辆路径问题 A hybrid particle swarm optimization algorithm was designed to study the vehicle routing problem with soft time window | [ | |
模糊时间窗 Fuzzy time window | 研究有新客户到达的动态车辆路径问题,得到能使客户整体满意度达到最大的服务时间调整方案 Dynamic vehicle routing problem with new customers was studied, and the service time adjustment scheme which can maximize the overall customer satisfaction was obtained | [ |
通过时间窗模糊化处理将顾客服务的满意度量化为配送服务开始时间的模糊隶属度函数 Through time window fuzzification, customer service satisfaction was quantified as a fuzzy membership function of distribution service start time | [ | |
考虑客户有多个服务时间窗可选择的情形,并将时间窗进行模糊处理 Consider the situation where the customer has multiple service time windows to choose from and obfuscated the time windows | [ | |
构建带模糊时间窗的转运联盟和物料配送问题模型 Model of transshipment alliance and material distribution with fuzzy time window was constructed | [ | |
建立基于时变交通流的多模糊时间差路径优化模型 A multi fuzzy time difference path optimization model based on time-varying traffic flow was established | [ | |
解决基于时间窗和食物新鲜度形成的综合客户满意度 Comprehensive customer satisfaction based on time window and food freshness was solved | [ |
Table 3 Domestic research status of dispatch time window
时间窗类型 Time window type | 国内研究情况 Domestic research | 文献来源 Literature source |
---|---|---|
硬时间窗 Hard time window | 在邮政车辆路径模型上加入硬时间窗约束,设计了多目标的遗传算法求解 A hard time window constraint was added to the mail vehicle routing model, and a multi-objective genetic algorithm was designed to solve it | [ |
针对车辆配送和集货一体化问题,构建带硬时间窗约束的优化模型 Aiming at the integration of vehicle distribution and goods collection, an optimization model with hard time window constraints was constructed | [ | |
建立了以配送总路程为目标函数的硬时间窗车辆路径模型,对搜索方式和信息素更新方式进行优化处理 A hard time window vehicle routing model with the total distribution distance as the objective function was established to optimize the search mode and pheromone update mode | [ | |
软时间窗 Soft time window | 建立带软时间窗的多式联运路径优化模型 A multimodal transport route optimization model with soft time window was established | [ |
引入车辆共享机制,保证货物准时送达客户点和服务质量 Vehicle sharing mechanism was introduced to ensure that goods arrive at customer points on time and service quality | [ | |
基于改进的旁域更新算法设计带软时间窗车辆路径优化算法 Design of vehicle routing optimization algorithm with soft time window based on improved side domain update algorithm | [ | |
研究智能水滴算法对软时间窗车辆路径问题的求解 Intelligent water drop algorithm was studied to solve the vehicle routing problem with soft time window | [ | |
设计混合粒子群算法研究带软时间窗的配货车辆路径问题 A hybrid particle swarm optimization algorithm was designed to study the vehicle routing problem with soft time window | [ | |
模糊时间窗 Fuzzy time window | 研究有新客户到达的动态车辆路径问题,得到能使客户整体满意度达到最大的服务时间调整方案 Dynamic vehicle routing problem with new customers was studied, and the service time adjustment scheme which can maximize the overall customer satisfaction was obtained | [ |
通过时间窗模糊化处理将顾客服务的满意度量化为配送服务开始时间的模糊隶属度函数 Through time window fuzzification, customer service satisfaction was quantified as a fuzzy membership function of distribution service start time | [ | |
考虑客户有多个服务时间窗可选择的情形,并将时间窗进行模糊处理 Consider the situation where the customer has multiple service time windows to choose from and obfuscated the time windows | [ | |
构建带模糊时间窗的转运联盟和物料配送问题模型 Model of transshipment alliance and material distribution with fuzzy time window was constructed | [ | |
建立基于时变交通流的多模糊时间差路径优化模型 A multi fuzzy time difference path optimization model based on time-varying traffic flow was established | [ | |
解决基于时间窗和食物新鲜度形成的综合客户满意度 Comprehensive customer satisfaction based on time window and food freshness was solved | [ |
优化目标 Optimization objective | 农机调度模型 Agricultural machinery scheduling model | 文献来源 Literature source |
---|---|---|
局部优化 Local optimization | 2阶段的农机调度模型 Two stage agricultural machinery scheduling model | [ |
以容量限制、最短距离和最小作业时间为调度规则的路径规划模型 A path planning model with capacity constraints, shortest distance and minimum job time as scheduling rules | [ | |
基于时间窗的农机资源时空调度数学模型 Mathematical model of agricultural machinery resources spatiotemporal scheduling based on time window | [ | |
全局优化 Global optimization | 基于GIS、GPRS及GPS等技术的农机监控调度管理系统设计与开发 Design and development of agricultural machinery monitoring and dispatching management system based on GIS, GPRS and GPS technology | [ |
多区互联 Multi-zone interconnection | 适用于智慧农业发展的多区域协调调度,多区互联的农机调度模型 Multi-region coordinated dispatching and multi-region interconnected agricultural machinery dispatching model suitable for the development of smart agriculture | [ |
Table 4 Research status of agricultural machinery scheduling models
优化目标 Optimization objective | 农机调度模型 Agricultural machinery scheduling model | 文献来源 Literature source |
---|---|---|
局部优化 Local optimization | 2阶段的农机调度模型 Two stage agricultural machinery scheduling model | [ |
以容量限制、最短距离和最小作业时间为调度规则的路径规划模型 A path planning model with capacity constraints, shortest distance and minimum job time as scheduling rules | [ | |
基于时间窗的农机资源时空调度数学模型 Mathematical model of agricultural machinery resources spatiotemporal scheduling based on time window | [ | |
全局优化 Global optimization | 基于GIS、GPRS及GPS等技术的农机监控调度管理系统设计与开发 Design and development of agricultural machinery monitoring and dispatching management system based on GIS, GPRS and GPS technology | [ |
多区互联 Multi-zone interconnection | 适用于智慧农业发展的多区域协调调度,多区互联的农机调度模型 Multi-region coordinated dispatching and multi-region interconnected agricultural machinery dispatching model suitable for the development of smart agriculture | [ |
1 | 吴明凤,李容,杨宇.土地细碎化背景下地块生产趋同对农户购置农机的影响[J].西北农林科技大学学报(社会科学版),2017,17(2):113-122. |
WU M F, LI R, YANG Y. The impact of land production convergence on farmers’ purchase of agricultural machinery under the background of land fragmentation [J]. J. Northwest A & F Univ. (Soc. Sci.), 2017, 17(2):113-122. | |
2 | 纪月清,王许沁,陆五一,等.农业劳动力特征、土地细碎化与农机社会化服务[J].农业现代化研究,2016,37(5):910-916. |
JI Y Q, WANG X Q, LU W Y, et al.. Agricultural labor characteristics, land fragmentation and agricultural machinery socialization services [J]. Agric. Modernization Res., 2016, 37(5):910-916. | |
3 | 陆静.信息平台下农机调度问题研究[J].农业开发与装备,2013(11):49-49. |
LU J. Research on agricultural machinery scheduling under information platform [J]. Agric. Dev. Equip., 2013(11):49-49. | |
4 | 陈骐,王小朋,郑彬.发展农机社会化服务促进家庭农场发展[J].农业经济,2015(11):22-24. |
CHEN Q, WANG X P, ZHENG B. Developing agricultural machinery social services to promote the development of family farms [J]. Agric. Econ., 2015 (11):22-24. | |
5 | 金攀.农业机械调度管理系统研究[D].北京:中国农业科学院,2012. |
JIN P. Agricultural machinery scheduling management system research [D]. Beijing: Chinese Academy of Agricultural Sciences, 2012. | |
6 | 高威.农机紧急调配技术研究[D].河北保定:河北农业大学,2014. |
GAO W. Agricultural machinery emergency allocation technology research [D]. Hebei Baoding: Hebei Agricultural University, 2014. | |
7 | 李洪,姚光强,陈立平.基于GPS、GPRS和GIS的农机监控调度系统[J].农业工程学报,2008,24(S2):119-122. |
LI H, YAO G Q, CHEN L P. Agricultural machinery monitoring and scheduling system based on GPS, GPRS and GIS [J]. J. Agric. Eng., 2008, 24(S2):119-122. | |
8 | 张荣群,张小栓,高万林,等.北斗导航系统在农业领域的应用展望[J].测绘通报,2012():685-686, 694. |
9 | 蒋天小,赵金峰,郭瑞宇,等.北斗导航系统在精细农业系统中的应用[J].数字通信世界,2016(2):9-12. |
JIANG T X, ZHAO J F, GUO R Y, et al.. Application of Beidou navigation system in precision agriculture system [J]. Digital Comm. World, 2016(2):9-12. | |
10 | 谢婷婷.基于GA的农机作业调度研究与应用[D]. 武汉:武汉理工大学,2015. |
XIE T T. Research and application of agricultural machinery operation scheduling based on GA [D]. Wuhan: Wuhan University of Technology, 2015. | |
11 | 王玉巍,贺浩,李江全.基于 GIS 和 GPS的采棉机跨区作业调度与服务系统设计[J].农机化研究,2012(7):135-138. |
WANG Y W, HE H, LI J Q. Based on GIS and GPS cotton picker cross-regional operation scheduling and service system design [J]. Agric. Mech. Res., 2012(7):135-138. | |
12 | 徐秀英.完善和发展农机跨区作业模式的思考[J].农机化研究,2011,33(6):240-244, 248. |
XU X Y. Thoughts on improving and developing the cross-regional operation mode of agricultural machinery [J]. Agric. Mech. Res., 2011, 33 (6):240-244, 248. | |
13 | 马军岩,袁逸萍,任年鲁,等.多区域协调调度架构下的农机服务资源优化配置方法[J].中国农业大学学报,2020,25(4):113-122. |
MA J Y, YUAN Y P, REN N L, et al.. The optimal allocation method of agricultural machinery service resources under the multi-regional coordinated scheduling framework [J]. J. China Agric.Univ., 2020, 25(4):113-122.. | |
14 | ELDEREN E V. Models and techniques for scheduling farm operations: A comparison [J]. Agric. Syst., 1980, 5(1):1-17. |
15 | BOCHTIS D D. Machinery management in bio-production systems:planning and scheduling aspects [J]. Agric. Eng. Int. CIGR J., 2010,12(2):55-63. |
16 | BOCHTIS D D, SØRENSEN C G, BUSATO P. Advances in agricultural machinery management: a review [J]. Biosyst. Eng., 2014, 126:69-81. |
17 | SAWICKI D, SCHAEFFER B. An affirmative approach to the LD/JD Link [J]. Juvenile Family Court. J., 1979, 30(2):11-16. |
18 | SINGH G, PATHAK B K. A decision support system for mechanical harvesting and transportation of sugarcane in Thailand [J]. Comput. Electron. Agric., 1994, 11(2-3):173-182. |
19 | MAZZETTO F, LANDONIO S, VACCARONI M. Farm activity information system based on automatic of machinery use [M]// STAFFORD J V.Precision Agricultural,97. VolumeⅡ. Technology, IT and Management, 1997:91-94. |
20 | LAZZARI M, MAZZETTO F. A PC model for selecting multicropping farm machinery systems [J]. Comput. Electron. Agric., 1996, 14(1):43-59. |
21 | 刘振宇,梁建平.基于BDS的农机精确调度和高效作业平台设计与应用[J].中国农机化学报,2018,39(10):97-102. |
LIU Z Y, LIANG J P. Design and application of agricultural machinery precise scheduling and efficient operation platform based on BDS [J]. China J. Agric. Mach. Chem., 2018, 39(10):97-10. | |
22 | 王春山,张璠,滕桂法,等.智慧农机调配管理平台设计与实现[J].中国农机化学报,2018,39(1):61-68. |
WANG C S, ZHANG F, TENG G F, et al.. The design and implementation of intelligent agricultural machinery deployment management platform [J]. China J. Agric. Mach. Chem., 2018, 39(1):61-68. | |
23 | 叶文超,张小花,廖东东,等.基于Android的农机调度与管理平台设计与应用[J].仲恺农业工程学院学报,2019,32(3):53-57. |
YE W C, ZHANG X H, LIAO D D, et al.. Design and application of agricultural machinery scheduling and management platform based on Android [J]. J. Zhongkai Acad. Agric. Eng., 2019, 32(3):53-57. | |
24 | 张俊艺,冯泽佳,高磊,等.基于Android系统的农机调度管理平台的设计与开发[J].中国农机化学报,2018,39(5):91-96. |
ZHANG J Y, FENG Z J, GAO L, et al.. The design and development of agricultural machinery dispatching management platform based on Android system [J]. China J. Agric. Mach. Chem., 2018, 39(5):91-96. | |
25 | 姚强,郭彩霞,吕斌.农业机械远程管理信息系统研究[J].农业网络信息,2018(2):26-32. |
YAO Q, GUO C, LV B. Research on remote management information system of agricultural machinery [J]. Agric. Network Inf., 2018(2):26-32 | |
26 | 刘文娜.农业机械远程控制管理与农机化信息服务[J].河北农机,2015(4):35. |
LIU W N. Agricultural machinery remote control management and agricultural mechanization information service [J]. Hebei Agric. Mach., 2015(4):35. | |
27 | 刘阳春,苑严伟,张俊宁.深松作业远程管理系统设计与试验[J].农业机械学报,2016,47(S1):43-48. |
LIU Y C, YUAN Y W, ZHANG J N. Design and test of remote management system for subsoiling operations [J]. J. Agric. Mach., 2016, 47 (S1):43-48. | |
28 | 朱登胜,方慧,胡韶明,等.农机远程智能管理平台研发及其应用[J].智慧农业,2020,2(2):67-81. |
ZHU D S, FANG H, HU S M, et al.. Development and application of remote intelligent management platform for agricultural machinery [J]. Smart Agric., 2020, 2(2):67-81. | |
29 | 刘碧贞,黄华,祝诗平,等.基于北斗/GPS的谷物收割机作业综合管理系统[J].农业工程学报,2015,31(10):204-210. |
LIU B Z, HUANG H, ZHU S P, et al.. The integrated management system of grain harvester operation based on Beidou / GPS [J]. Agric. Eng. J., 2015, 31(10):204-210. | |
30 | 刘娜.农机信息化综合服务平台设计——基于智慧城市嵌入式快递系统[J].农机化研究,2020,42(5):196-200. |
LIU N. Design of agricultural machinery information integrated service platform-based on smart city embedded express system [J]. Agric. Mechanization Res., 2020, 42(5):196-200. | |
31 | 杨立国,李传友,贾生,等.北京市农机管理调度系统设计与实现[J].农学学报,2014,4(8):96-100. |
YANG L G, LI C Y, JIA S, et al.. Design and implementation of agricultural machinery management and scheduling system in Beijing [J]. J. Agric., 2014, 4(8):96-100. | |
32 | 何成龙.北斗导航系统在我国精准农业中的应用[J].卫星应用,2014(12):24-27. |
HE C L. Application of Beidou navigation system in precision agriculture in China [J]. Satellite Appl., 2014(12):24-27. | |
33 | 郭鸿鹏,冯甘雨.农机作业监控与优化调度系统结构设计—基于北斗卫星导航系统(BDS)[J].农机化研究,2014(2):188-191, 196. |
GUO H P, FENG G Y. The structure design of agricultural machinery operation monitoring and optimal scheduling system based on Beidou satellite navigation system (BDS) [J]. Agric. Mechanization Res., 2014(2):188-191, 196. | |
34 | 戴广.网约车辆在线均衡调度分派算法的研究与实现[D].西安:西安电子科技大学,2018. |
DAI G. Research and implementation of online balanced dispatching algorithm for networked vehicles [D]. Xi’an: Xi’an University of Electronic Science and Technology, 2018. | |
35 | SAVELSBERGH M. Local search in routing problems with time windows [J]. Ann. Operat. Res., 1985, 4(1):285-305. |
36 | GERALD A G, REIMANN M. Evaluating two new heuristics for constructing customer clusters in a VRPTW with multiple service workers [J]. Central Eur. J. Operat. Res., 2014, 23(2):479-500. |
37 | MESTER D, BRAYSY O. Active guided evolution strategies for large- scale vehicle routing problems with time windows [J]. Computers Operations Res., 2005, 32(6):1593-1614. |
38 | EHMKE J F, CAMPBELL A M, URBAN T L. Ensuring service levels in routing problems with time windows and stochastic travel times [J]. Eur. J. Operat. Res., 2015, 240(2):539-550. |
39 | BHAWNA M, SASWATI T, MOHAN C. Solving Vehicle Routing and Scheduling Problems using Hybrid Genetic Algorithm[C]//. Proceedings of Electronics Computer Technology (ICECT), 2011 3rd International Conference. IEEE, 2011:189-193. |
40 | SANA J, SALWANI A. Sequential insertion heuristic with adaptive bee colony optimisation algorithm for vehicle routing problem with time windows [J]. PloS One, 2015, 10(7):343-352. |
41 | HASHIMOTO H, IBARAKI T, IMAHORI S, et al.. The vehicle routing problem with flexible time windows and traveling times [J]. Discrete Appl. Mathematics, 2006, 154(16):2271-2290. |
42 | CALVETE H I, GALE C, OLIVEROS M, et al.. A goal programming approach to vehicle routing problems with soft time windows [J]. Eur. J. Operat. Res., 2007, 177(3):1720-1733. |
43 | TASA D, GENDREAUB M, DELLAERTA N, et al.. Vehicle routing with soft time windows and stochastic travel times:a column generation and branch-and-price solution approach [J]. Eur. J. Operat. Res., 2014, 236(3):789-799. |
44 | GUERRIERO F, SURACE R, LOSCRI V, et al.. A multi-objective approach for unmanned aerial vehicle routing problem with soft time windows constraints [J]. Appl. Mathematical Mod., 2014, 38(3):839-852. |
45 | THARINEE M, ANAN M, GERRIT K J, et al.. A hybrid algorithm for the vehicle routing problem with soft time windows and hierarchical objectives [J]. J. Inf. Optimiz. Sci., 2015, 36(3):283-300. |
46 | SUMAIYA I, KAYKOBADA M, RAHMANA M S. Solving the multi-objective vehicle routing problem with soft time windows with the help of bees [J]. Swarm Evol. Comput., 2015, 24(6):54-60. |
47 | ASL V M, SADEGHI S A, FATHI S. A mathematical model and solving method for multi-depot and multi-level vehicle routing problem with fuzzy time windows [J]. Adv. Intell. Transport. Syst., 2012, 1(1):19-24. |
48 | López-Castro L F, MONTOYATORRES J R. Vehicle routing with fuzzy time windows using a genetic algorithm [C]// 2011 IEEE Workshop. Proceedings of Computational Intelligence In Production And Logistics Systems (CIPLS). IEEE, 2011: 1-8. |
49 | BRITO J, MARTINEZF. J., JOSE A, et al.. ACO- GRASP-VNS Metaheuristic for VRP with fuzzy windows time constraints[C]// Proceedings of Computer Aided Systems Theory-EUROCAST 2011-13th International Conference. Las Palmas de Gran Canaria, Spain, 2011. |
50 | GHANNADPOURA S F, NOORI S, TAVAKKOLI MOGHADDAM R, et al.. A multi objective dynamic vehicle routing problem with fuzzy time windows: model, solution and application [J]. Appl. Soft Comput., 2014, 14(1):504-527. |
51 | ADELZADEH M, MAHDAVI ASL V, KOOSHA M. A mathematical model and a solving procedure for multi-depot vehicle routing problem with fuzzy time window and heterogeneous vehicle [J]. Int. J. Adv. Manuf. Technol., 2014, 75(8):793-802. |
52 | 吕雄伟.邮政物流车辆路径问题研究[D].成都:西南交通大学,2009. |
LU X W. Research on postal logistics vehicle routing problem [D]. Chengdu: Southwest Jiaotong University, 2009. | |
53 | 丁宝录.集送一体化条件下的车辆路径优化问题研究[D].山东青岛:青岛大学,2009. |
DING B L. Research on vehicle routing optimization under the condition of gathering and transportation integration [D]. Shandong Qingdao: Qingdao University, 2009. | |
54 | 吕游,杨波.一种改进型蚁群算法在带硬时间窗的战场车辆路径问题中的应用研究[J].物流科技,2015,38(10):123-126. |
LV Y, YANG B. Research on the application of an improved ant colony algorithm in the battlefield vehicle routing problem with hard time windows [J]. Logistics Technol., 2015, 38(10):123-126. | |
55 | 范志强,乐美龙.面向随机环境的带软时间窗多式联运路径优化[J].工业工程与管理,2011,16(5):68-72. |
FAN Z Q, LE M L. Path optimization of multimodal transport with soft time windows for random environments [J]. Ind. Eng. Manage., 2011,16(5):68-72. | |
56 | 王万良,黄海鹏,赵燕伟,等.基于车辆共享的软时间窗动态需求车辆路径问题[J].计算机集成制造系统,2011,17(5):1056-1063. |
WANG W L, HUANG H P, ZHAO Y W, et al.. Dynamic demand vehicle routing problem based on vehicle sharing soft time window [J]. Comput. Integr. Manuf. Syst., 2011, 17(5):1056-1063. | |
57 | 周虹,张磊,谭阳.旁域更新智能水滴算法软时间窗车辆路径优化[J].计算机工程与应用,2015,51(20):253-270. |
ZHOU H, ZHANG L, TAN Y. Soft time window vehicle path optimization of intelligent water drop algorithm update in the side domain [J]. Comput. Eng. Appl., 2015, 51(20):253-270. | |
58 | 侯玉梅,贾震环,田歆,等.带软时间窗整车物流配送路径优化研究[J].系统工程学报,2015(2):240-250. |
HOU Y M, JIA Z H, TIAN X, et al.. Research on vehicle logistics distribution path optimization with soft time window [J]. J. Syst. Eng., 2015(2):240-250. | |
59 | 范厚明,刘文琪,徐振林,等.混合粒子群算法求解带软时间窗的 VRPSPD 问题[J].计算机工程与应用,2018,54 (19):221-229. |
FAN H M, LIU W Q, XU Z L, et al.. The hybrid particle swarm optimization algorithm is used to solve the VRPSPD problem with soft time windows [J]. Comput. Eng. Appl., 2018, 54(19):221-229. | |
60 | 张建勇,李军,郭耀煌.带模糊预约时间的动态VRP的插入启发式算法[J].西南交通大学学报,2008,43(1):107-113. |
ZHANG J Y, LI J, GUO Y H. Insertion heuristic algorithm for dynamic VRP with fuzzy reservation time [J]. J. Southwest Jiaotong Univ., 2008, 43(1):107-113. | |
61 | 王旭坪,张凯,胡祥培.基于模糊时间窗的车辆调度问题研究[J].管理工程学报,2011,25(3):148-154. |
WANG X P, ZHANG K, HU X P. Research on vehicle scheduling problem based on fuzzy time window [J]. Manage. Eng. J., 2011, 25(3):148-154. | |
62 | 李华,赵冬梅,崔国成.具有模糊可选时间窗的VRPSPD问题及其混合遗传算法[J].物流技术,2013(9):315-318. |
LI H, ZHAO D M, CUI G C. The VRPSPD problem with fuzzy optional time window and its hybrid genetic algorithm [J]. Logistics Technol., 2013(9):315-318. | |
63 | 闫芳,王媛媛.多模糊时间窗车辆路径问题的建模及求解[J].交通运输系统工程与信息,2016,16(6):182-188. |
YAN F, WANG Y Y. Modeling and solving of vehicle routing problem with multiple fuzzy time windows [J]. Transport. Syst. Eng. Inf., 2016, 16(6):182-188. | |
64 | 雷晖,杨皎平,张丽凤,等.具有模糊时间窗的转运联盟车辆路径及遗传优化[J].计算机系统应用,2014,23(3):112-118. |
LEI H, YANG J P, ZHANG L F, et al.. Transportation alliance vehicle routing and genetic optimization with fuzzy time window [J]. Comput. Syst. Appl., 2014, 23(3):112-118. | |
65 | 刘雪梅,王笑,柳跃雷.模糊时间窗约束下的装配线物料配送方案优化[J].中国机械工程,2020,31(17):2095-2103. |
LIUX M, WANG X, LIU Y L. The optimization of assembly line material distribution scheme under fuzzy time window constraints [J]. China Mech. Eng., 2020, 31(17):2095-2103. | |
66 | 曹庆奎,杨凯文,任向阳,等.基于交通流的多模糊时间窗车辆路径优化[J].运筹与管理,2018,27(8):20-26. |
CAO Q K, YANG K W, REN X Y, et al.. Multi-fuzzy time window vehicle routing optimization based on traffic flow [J]. Oper. Res. Manag., 2018, 27(8):20-26. | |
67 | 张惠珍,刘云,倪静.基于客户满意度的MOVRPFTW的单亲遗传混合蚁群算法[J].系统管理学报,2019,28(5):927-933. |
ZHANG H Z, LIU Y, NI J. Single-parent genetic hybrid ant colony algorithm based on customer satisfaction MOVRPFTW [J]. J. Syst. Manage., 2019, 28(5):927-933. | |
68 | FOULDS L R, WILSON J M. Scheduling operations for the harvesting of renewable resources [J]. J. Food Eng., 2005, 70(3):281-292. |
69 | BOCHTIS D, VOUGIOUKAS S, AMPATZIDIS Y, et al.. Field operations planning for agricultural vehicles:A hierarchical modeling framework [J]. Agric. Eng. Int. (CIGR J.), 2007(2):1-12. |
70 | BOCHTIS D D, VOUGIOUKAS S G. Minimising the non-working distance travelled by machines operating in a headland field pattern [J]. Biosyst. Eng.. 2008, 101(1):1-12. |
71 | BOCHTIS D D, SØRENSEN C G, BUSATO P, et al.. Benefits from optimal route planning based on B-patterns [J]. Biosyst. Eng.. 2013, 115(4):389-395. |
72 | JENSEN M A F, BOCHTIS D, SØRENSEN C G, et al.. In-field and inter-field path planning for agricultural transport units [J]. Comput. Ind. Eng., 2012, 63(4):1054-1061. |
73 | ALAISO S, BACKMAN J, VISALA A. Ant colony optimization for scheduling of agricultural contracting work [J]. IFAC Proceed., 2013, 46(18):133-137. |
74 | ORFANOU A, BUSATO P, BOCHTIS D D, et al.. Scheduling for machinery fleets in biomass multiple-field operations [J]. Comput. Electron. Agric., 2013, 94:12-19. |
75 | RAMOS-CASTILLO M, ORVAIN M, NAVES MASCHIETTO G, et al.. Optimal agricultural spreading scheduling through surrogate-based optimization and MINLP models [J]. Inf. Process. Agric., 2020 8(1):14-28. |
76 | GUAN S L, NAKAMURA M, SHIKANAI T, et al.. Resource assignment and scheduling based on a two-phase metaheuristic for cropping system [J]. Comput. Electron. Agric., 2009, 66(2):181-190. |
77 | GUAN S, NAKAMURA M, SHIKANAI T, et al.. A two-phase metaheuristic for farm work scheduling [J]. Ifip Adv. Inf. Commun. Technol., 2009, 295:1999-2009. |
78 | DARBY-DOWMAN K, BARKER S, AUDSLEY E, et al.. A two-stage stochastic programming with recourse model for determining robust planting plans in horticulture [J]. J. Oper. Res. Soc., 2000, 51(1):83-89. |
79 | EDWARDS G T C, HINGE J, SKOU-NIELSEN N, et al.. Route planning evaluation of a prototype optimised infield route planner for neutral material flow agricultural operations [J]. Biosyst. Eng., 2017(153):149-157. |
80 | SEYYEDHASANI H, DVORAK J S. Reducing field work time using fleet routing optimization [J]. Biosyst. Eng., 2018, 169:1-10. |
81 | 吴才聪,蔡亚平,罗梦佳,等.基于时间窗的农机资源时空调度模型[J].农业机械学报,2013,44(5):237-241, 231. |
WU C C, CAI Y P, LUO M J, et al.. Spatiotemporal scheduling model of agricultural machinery resources based on time window [J]. J. Agric. Mach., 2013, 44(5):237-241, 231. | |
82 | 王雪阳,苑侗侗,苑迎春,等.带时间窗的农机调度方法研究[J].河北农业大学学报,2016,39(6):117-123. |
WANG X Y, YUAN D D, YUAN Y C, et al.. Agricultural machinery scheduling method with time windows research [J]. J. Hebei Agric.Univ., 2016, 39(6):117-123. | |
83 | 王壮,陈立平,刘永生.农机监控调度系统的设计与实现[J].计算机工程,2010,36(11):232 -237. |
WANG Z, CHEN L P, LIU Y S. Design and implementation of agricultural machinery monitoring and scheduling system [J]. Comput. Eng., 2010, 36(11):232-237. | |
84 | 李小龙,李治国,陈华.北京市农机作业调度管理与精准作业系统[J].农业工程,2013,3(S2):44-48, 50. |
LI X L, LI Z G, CHEN H. Agricultural machinery operation scheduling management and precision operation system in Beijing [J]. Agric. Eng., 2013, 3(S2):44-48, 50. | |
85 | 吴利华,刘占良,王辉.农业机械跨区作业距离模型研究[J].中国农机化学报,2015,36(1):316-318. |
WU L H, LIU Z L, WANG H. Agricultural machinery cross-regional operating distance model [J]. China J. Agric. Machinery Chem., 2015, 36(1):316-318. | |
86 | 张璠,滕桂法,苑迎春,等.农机跨区作业紧急调配算法适宜性选择[J].农业工程学报,2018,34(5):47-53. |
ZHANG F, TENG G F, YUAN Y C, et al.. Suitability selection of emergency allocation algorithm for agricultural machinery interregional operations [J]. J. Agric. Eng., 2018, 34(5):47-53. | |
87 | 闫美君,李建堂,文丽,等.基于多区域协调模式的大型农机调度研究[J].农业展望,2021,17(12):107-113. |
YAN M J, LI J T, WEN L, et al.. Research on large-scale agricultural machinery scheduling based on multi-region coordination mode [J]. Agric. Outlook,2021,17(12):107-113. | |
88 | 任建顺,齐清文,周芳,等.基于3S技术的收获期农机调度[J].测绘科学,2013,38(2):44-46. |
REN J S, QI Q W, ZHOU F, et al.. Agricultural machinery scheduling in harvest period based on 3S technology [J]. Sci. Survey. Map., 2013, 38(2):44-46. | |
89 | 王文权.带时间窗农机调度问题模型及算法研究[D].杭州:浙江大学,2019. |
WANG W Q. Research on the model and algorithm of agricultural machinery scheduling problem with time windows [D]. Hangzhou: Zhejiang University, 2019. | |
90 | 吕云杰,郭辉,鲁东.带时间窗农机调度问题的改进遗传算法[J].新疆农机化,2021(2):38-41. |
LV Y J, GUI H, LU D. Improved genetic algorithm for agricultural machinery scheduling problem with time window [J]. Xinjiang Agric. Mech., 2021(2):38-41. | |
91 | 龚瑞昆,吴天华.基于改进蚁群算法的联合收割机调度路径优化[J].江苏农业科学,2019,47(4):197-200. |
GONG R K, WU T H. The scheduling path optimization of combine harvester based on improved ant colony algorithm [J]. Jiangsu Agric. Sci., 2019, 47(4):197-200. | |
92 | 谌林,王晓峰.基于改进蚁群算法的农机运输调度优化设计[J].计算机产品与流通,2020(9):103,204. |
CHEN L, WANG X F. Optimization design of agricultural machinery transportation scheduling based on improved ant colony algorithm [J]. Comput. Prod. Circul., 2020(9):103,204. | |
93 | 曹如月,李世超,季宇寒,等.基于蚁群算法的多机协同作业任务规划[J].农业机械学报,2019,50(S1):34-39. |
CAO R Y, LI S C, JI Y H, et al.. Multi-machine collaborative task planning based on ant colony algorithm [J]. J. Agric. Mach., 2019, 50(S1):34-39. | |
94 | SETHANAN K, NEUNGMATCHA W. Multi-objective particle swarm optimization for mechanical harvester route planning of sugarcane field operations[J]. Eur. J. Oper. Res.. 2016, 252(3):969-984. |
95 | 陈少华,左兴权,杨鑫.一种基于模拟退火算法的公交车辆排班方法[C]//中国智能交通协会.第十二届中国智能交通年会大会论文集.中国智能交通协会,2017:7. |
CHEN S H, ZUO X Q, YANG X. A bus scheduling method based on simulated annealing algorithm [C]// China Intelligent Transportation Association. Proceedings of the Twelfth Annual Conference of China Intelligent Transportation. China Intelligent Transportation Association, 2017:7. | |
96 | OMIDVAR M N, LI X, YAO X. Cooperative co-evolution with delta grouping for large scale non-separable function optimization[C]// IEEE Congress on Evolutionary Computation, IEEE, 2010:1-8. |
97 | 刘明剑,谭国真,魏欣,等.基于禁忌搜索的交叉路口自治车辆调度方法[J].中国公路学报,2016,29(2):123-129. |
LIU M J, TAN G Z, WEI X, et al.. Autonomous vehicle scheduling method based on tabu search at intersections [J]. China J. Highways, 2016, 29(2):123-129. | |
98 | 潘帅,陈钰成,高元,等.带软时间窗的多种服务需求车辆调度问题及其禁忌搜索算法研究[J].武汉理工大学学报(交通科学与工程版),2020,44(6):1123-1128. |
PAN S, CHEN Y C, GAO Y, et al.. Research on vehicle scheduling problem with multiple service requirements and its tabu search algorithm with soft time windows [J]. J. Wuhan Univ. Technol. (Traffic Sci. Eng.), 2020, 44(6):1123-1128. | |
99 | 吴珂.基于蚁群算法的单配送中心车辆调度问题研究[D].辽宁大连:大连海事大学,2013. |
WU K. Research on Vehicle Scheduling Problem of Single Distribution Center Based on Ant Colony Algorithm [D]. Liaoning Dalian: Dalian Maritime University, 2013. | |
100 | 秦勇,梁旭.基于混合遗传算法的并行测试任务调度研究[J].国外电子测量技术,2016,35(9):72-75. |
QIN Y, LIANG X. Research on parallel test task scheduling based on hybrid genetic algorithm [J]. Foreign Electron. Meas. Technol., 2016, 35(9):72-75. |
[1] | Yu WANG, Ling WANG, Jianhua ZONG, Dongxiao LYU, Shumao WANG. Design and Experiment of Dynamic Loading Bench for Tractor [J]. Journal of Agricultural Science and Technology, 2022, 24(1): 91-97. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||