Journal of Agricultural Science and Technology ›› 2022, Vol. 24 ›› Issue (5): 180-188.DOI: 10.13304/j.nykjdb.2021.0781
• BIO-MANUFACTURING & RESOURCE AND ECOLOGY • Previous Articles
Kuiyuan CHEN(), Hui LIU, Wei DING(
)
Received:
2021-09-06
Accepted:
2021-11-22
Online:
2022-05-15
Published:
2022-06-06
Contact:
Wei DING
通讯作者:
丁伟
作者简介:
陈奎元 E-mail: 479115079@qq.com;
基金资助:
CLC Number:
Kuiyuan CHEN, Hui LIU, Wei DING. Effect of Glyphosate on Soil Nutrient and the Functional Enzyme Activities in Soybean Fields[J]. Journal of Agricultural Science and Technology, 2022, 24(5): 180-188.
陈奎元, 刘卉, 丁伟. 草甘膦对大豆田土壤养分及其功能酶活性的影响[J]. 中国农业科技导报, 2022, 24(5): 180-188.
年份 Year | 处理 Treatment | 碱解氮含量 Alkaline soluble nitrogen content/(mg·kg-1) | |||
---|---|---|---|---|---|
7 d | 14 d | 21 d | 28 d | ||
2019 | CK | 156.25±4.44 c | 159.20±2.53 b | 170.15±1.93 a | 152.04±3.86 c |
T1 | 172.68±1.93 a | 169.52±0.97 a | 160.04±1.93 b | 176.47±1.93 a | |
T2 | 167.20±1.93 ab | 145.72±3.18 c | 153.73±4.44 bc | 167.20±3.18 b | |
T3 | 162.57±2.63 b | 148.25±3.18 c | 150.36±5.51 c | 141.93±3.86 d | |
2020 | CK | 168.55±3.74 a | 157.31±7.20 a | 135.32±3.85 a | 129.26±10.32 a |
T1 | 150.61±6.78 b | 115.74±9.89 c | 120.79±0.22 b | 117.51±6.47 ab | |
T2 | 150.86±2.73 b | 137.34±9.99 b | 121.55±8.27 b | 111.57±3.06 b | |
T3 | 133.17±2.73 c | 140.50±1.95 b | 134.56±8.10 a | 119.02±10.09 ab |
Table 1 Soil alkaline soluble nitrogen content under different treatments
年份 Year | 处理 Treatment | 碱解氮含量 Alkaline soluble nitrogen content/(mg·kg-1) | |||
---|---|---|---|---|---|
7 d | 14 d | 21 d | 28 d | ||
2019 | CK | 156.25±4.44 c | 159.20±2.53 b | 170.15±1.93 a | 152.04±3.86 c |
T1 | 172.68±1.93 a | 169.52±0.97 a | 160.04±1.93 b | 176.47±1.93 a | |
T2 | 167.20±1.93 ab | 145.72±3.18 c | 153.73±4.44 bc | 167.20±3.18 b | |
T3 | 162.57±2.63 b | 148.25±3.18 c | 150.36±5.51 c | 141.93±3.86 d | |
2020 | CK | 168.55±3.74 a | 157.31±7.20 a | 135.32±3.85 a | 129.26±10.32 a |
T1 | 150.61±6.78 b | 115.74±9.89 c | 120.79±0.22 b | 117.51±6.47 ab | |
T2 | 150.86±2.73 b | 137.34±9.99 b | 121.55±8.27 b | 111.57±3.06 b | |
T3 | 133.17±2.73 c | 140.50±1.95 b | 134.56±8.10 a | 119.02±10.09 ab |
年份 Years | 处理 Treatment | 速效磷含量Available phosphorus content/(mg·kg-1) | |||
---|---|---|---|---|---|
7 d | 14 d | 21 d | 28 d | ||
2019 | CK | 28.02±0.81 c | 38.25±0.96 a | 36.37±0.22 b | 35.46±1.08 a |
T1 | 33.20±0.81 a | 35.08±1.59 b | 34.56±1.62 c | 33.07±0.49 b | |
T2 | 31.84±1.76 ab | 33.46±0.41 b | 37.86±0.81 b | 34.43±0.79 ab | |
T3 | 30.28±0.30 b | 34.75±0.68 b | 39.93±0.19 a | 33.65±0.74 b | |
2020 | CK | 29.25±1.66 b | 38.57±2.16 a | 33.85±1.51 a | 37.41±2.16 a |
T1 | 34.75±1.70 a | 35.08±0.27 b | 33.33±1.85 a | 32.61±1.00 b | |
T2 | 33.52±0.89 ab | 34.69±1.59 b | 34.56±1.29 a | 35.08±1.08 ab | |
T3 | 29.89±1.65 ab | 33.91±1.97 b | 35.46±1.75 a | 36.18±0.79 a |
Table 2 Soil available phosphorus content under different treatments
年份 Years | 处理 Treatment | 速效磷含量Available phosphorus content/(mg·kg-1) | |||
---|---|---|---|---|---|
7 d | 14 d | 21 d | 28 d | ||
2019 | CK | 28.02±0.81 c | 38.25±0.96 a | 36.37±0.22 b | 35.46±1.08 a |
T1 | 33.20±0.81 a | 35.08±1.59 b | 34.56±1.62 c | 33.07±0.49 b | |
T2 | 31.84±1.76 ab | 33.46±0.41 b | 37.86±0.81 b | 34.43±0.79 ab | |
T3 | 30.28±0.30 b | 34.75±0.68 b | 39.93±0.19 a | 33.65±0.74 b | |
2020 | CK | 29.25±1.66 b | 38.57±2.16 a | 33.85±1.51 a | 37.41±2.16 a |
T1 | 34.75±1.70 a | 35.08±0.27 b | 33.33±1.85 a | 32.61±1.00 b | |
T2 | 33.52±0.89 ab | 34.69±1.59 b | 34.56±1.29 a | 35.08±1.08 ab | |
T3 | 29.89±1.65 ab | 33.91±1.97 b | 35.46±1.75 a | 36.18±0.79 a |
相关系数 Correlation coefficient | 脲酶 Urease | 磷酸酶 Phosphatase | 过氧化 氢酶 Catalase | 纤维素酶 Cellulase | 根瘤固氮酶 Nodule nitrogenase | 碱解氮 Alkaline nitrogen | 速效磷 Available phosphorus | 速效钾 Available potassium |
---|---|---|---|---|---|---|---|---|
脲酶 Urease | 1. 00 | |||||||
磷酸酶 Phosphatase | 0.26 | 1. 00 | ||||||
过氧化氢酶 Catalase | 0.02 | 0.56** | 1. 00 | |||||
纤维素酶 Cellulase | 0.24 | 0.45** | 0.08 | 1. 00 | ||||
根瘤固氮酶 Nodule nitrogenase | 0.36* | 0.32 | 0.01 | 0.19 | 1. 00 | |||
碱解氮 Alkaline nitrogen | 0.22 | 0.12 | -0.01 | -0.17 | 0.34 | 1. 00 | ||
速效磷 Available phosphorus | -0.31 | -0.45** | -0.40* | -0.13 | -0.47** | -0.10 | 1. 00 | |
速效钾 Available potassium | 0.12 | 0.48** | 0.18 | 0.68** | 0.33 | -0.40* | -0.44** | 1. 00 |
Table 3 Correlation between soil enzyme activity and soil nutrients
相关系数 Correlation coefficient | 脲酶 Urease | 磷酸酶 Phosphatase | 过氧化 氢酶 Catalase | 纤维素酶 Cellulase | 根瘤固氮酶 Nodule nitrogenase | 碱解氮 Alkaline nitrogen | 速效磷 Available phosphorus | 速效钾 Available potassium |
---|---|---|---|---|---|---|---|---|
脲酶 Urease | 1. 00 | |||||||
磷酸酶 Phosphatase | 0.26 | 1. 00 | ||||||
过氧化氢酶 Catalase | 0.02 | 0.56** | 1. 00 | |||||
纤维素酶 Cellulase | 0.24 | 0.45** | 0.08 | 1. 00 | ||||
根瘤固氮酶 Nodule nitrogenase | 0.36* | 0.32 | 0.01 | 0.19 | 1. 00 | |||
碱解氮 Alkaline nitrogen | 0.22 | 0.12 | -0.01 | -0.17 | 0.34 | 1. 00 | ||
速效磷 Available phosphorus | -0.31 | -0.45** | -0.40* | -0.13 | -0.47** | -0.10 | 1. 00 | |
速效钾 Available potassium | 0.12 | 0.48** | 0.18 | 0.68** | 0.33 | -0.40* | -0.44** | 1. 00 |
主成分 Principal components | 特征值 Eigenvalue | 方差贡献率 Variance contribution value/% | 累计贡献率 Cumulative contribution value/% |
---|---|---|---|
1 | 2.938 | 36.730 | 36.730 |
2 | 1.645 | 20.566 | 57.296 |
3 | 1.201 | 15.012 | 72.308 |
Table 4 Eigenvalue,variance contribution rate and cumulative variance contribution rate of principal components
主成分 Principal components | 特征值 Eigenvalue | 方差贡献率 Variance contribution value/% | 累计贡献率 Cumulative contribution value/% |
---|---|---|---|
1 | 2.938 | 36.730 | 36.730 |
2 | 1.645 | 20.566 | 57.296 |
3 | 1.201 | 15.012 | 72.308 |
处理名称 Treatments | F1 | 排名 Rank | F2 | 排名 Rank | F3 | 排名 Rank | S | 综合排名 Comprehensive rank |
---|---|---|---|---|---|---|---|---|
CK | 80.247 318 | 2 | 36.672 495 | 2 | 6.842 781 2 | 3 | 35.166 675 | 3 |
T1 | 79.883 578 | 4 | 37.453 245 | 1 | 6.355 119 2 | 4 | 34.729 540 | 4 |
T2 | 80.127 036 | 3 | 36.396 559 | 3 | 8.087 030 2 | 2 | 38.417 347 | 1 |
T3 | 80.298 817 | 1 | 34.518 943 | 4 | 9.287 650 8 | 1 | 36.006 689 | 2 |
Table 5 Soil nutrient principal components scores and rankings
处理名称 Treatments | F1 | 排名 Rank | F2 | 排名 Rank | F3 | 排名 Rank | S | 综合排名 Comprehensive rank |
---|---|---|---|---|---|---|---|---|
CK | 80.247 318 | 2 | 36.672 495 | 2 | 6.842 781 2 | 3 | 35.166 675 | 3 |
T1 | 79.883 578 | 4 | 37.453 245 | 1 | 6.355 119 2 | 4 | 34.729 540 | 4 |
T2 | 80.127 036 | 3 | 36.396 559 | 3 | 8.087 030 2 | 2 | 38.417 347 | 1 |
T3 | 80.298 817 | 1 | 34.518 943 | 4 | 9.287 650 8 | 1 | 36.006 689 | 2 |
1 | PRIMOST J E, MARINO D J G, APARICIO V C, et al.. Glyphosate and AMPA, “pseudo-persistent” pollutants under real-world agricultural management practices in the Mesopotamic Pampas agroecosystem, Argentina [J]. Environ. Pollut., 2017, 229:771-779. |
2 | JEYASEKHAR M P. A study to investigate the organic carbon status of glyphosate soils [J]. Int. J. Environ. Res., 2021, 3(1):23-27. |
3 | LANE M, LORENZ N, SAXENA J, et al.. Microbial activity, community structure and potassium dynamics in rhizosphere soil of soybean plants treated with glyphosate [J]. Pedobiologia, 2012, 55(3):153-159. |
4 | 姚玉波.大豆根瘤固氮特性与影响因素的研究[D]. 哈尔滨:东北农业大学, 2012. |
YAO Y B. Study on characteristics of nodule nitrogen fixation and influencing factors of soybean [D]. Harbin: Northeast Agricultural University, 2012. | |
5 | 周垂帆,林静雯,李莹,等.草甘膦对土壤磷形态及有效性的影响[J].西北林学院学报, 2016, 31(6): 71-77. |
ZHOU C F, LIN J W, LI Y, et al.. Effects of glyphosate on inorganic phosphorus transformation in soil [J]. J. Northwest Forest.Univ., 2016,31(6):71-77. | |
6 | 呼蕾,和文祥,王旭东,等.草甘膦的土壤酶效应研究[J].农业环境科学学报, 2009, 28(4): 680-685. |
HU L, HE W X, WANG X D, et al.. Effect of glyphosate on soil enzyme [J]. J. Agro-Environ. Sci., 2009, 28(4): 680-685. | |
7 | YU Y, ZHANG H, ZHOU Q. Using soil available P and activities of soil dehydrogenase and phosphatase as indicators for biodegradation of organophosphorus pesticide methamidophos and glyphosate [J]. Soil Sediment Contam., 2011, 20(6):688-701. |
8 | LANE M, LORENZ N, SAXENA J, et al.. The effect of glyphosate on soil microbial activity, microbial community structure, and soil potassium [J]. Pedobiologia, 2012, 55(6):688-701. |
9 | FAN L, FENG Y, WEAVER D B, et al.. Glyphosate effects on symbiotic nitrogen fixation in glyphosate-resistant soybean [J]. Appl. Soil Ecol., 2017, 121:11-19. |
10 | 严君,韩晓增.盆栽条件下土壤无机氮浓度对大豆结瘤、固氮和产量的影响[J].中国农业科学, 2014, 47(10): 1929-1938. |
YAN J, HAN X Z. Effect of soil inorganic N concentrations on the nodulation, N2 fixation and yield in soybean in a pot experiment [J]. Sci. Agric. Sin., 2014, 47(10): 1929-1938. | |
11 | 姜伟丽,马小艳,彭军,等.除草剂草甘膦对棉田土壤酶活性的影响[J].棉花学报, 2014, 26(5): 431-437. |
JIANG W L, MA X Y, PENG J, et al.. Effects of glyphosate on soil enzyme activities in cotton fields [J]. Cotton. Sci., 2014, 26(5): 431-437. | |
12 | 侯文军,邹明,李宝福,等.草甘膦对桉树人工林土壤酶活性的影响[J].东北林业大学学报, 2020, 48(11): 76-79. |
HOU W J, ZOU M, LI B F, et al.. Effect of glyphosate on soil enzyme activities in eucalyptus plantations [J]. J. Northeast Forest.Univ., 2020, 48(11): 76-79. | |
13 | 鲍士旦.土壤农化分析[M]. 3版.北京:中国农业出版社,2000: 22-23. |
14 | 丁伟, 杨隆华, 程茁,等.氟磺胺草醚对大豆根瘤固氮酶活性及光合速率的影响 [J].作物杂志, 2010(4): 81-84. |
DING W, YANG L H, CHENG Z, et al.. Effect of fomesafen on nitrogenase activity and net photosynthesis rate in soybean [J]. Crops, 2010(4): 81-84. | |
15 | 张立峰, 丁伟. 复合微生物菌肥对水稻苗床土壤养分及pH值的影响[J].江苏农业科学, 2017, 45(11): 67-69. |
16 | JENKINS M E, KRAUSZ R F, MATTHEWS J L, et al.. Control of volunteer horseradish and Palmer Amaranth (Amaranthus palmeri) with dicamba and glyphosate [J]. Weed Technol., 2017, 31(6): 852-862. |
17 | 陶波,蒋凌雪,沈晓峰,等.草甘膦对土壤微生物的影响[J].中国油料作物学报, 2011, 33(2): 162-168, 179. |
TAO B, JIANG L X, SHEN X F, et al.. Effects of glyphosate on soil microorganisms [J]. Chin. J. Oil Crop Sci., 2011, 33(2): 162-168, 179. | |
18 | 冷建田.草甘膦除草剂对高寒地区转基因大豆田间杂草群落的影响[D].北京:中国农业科学院, 2012. |
LENG J T. Effect of glyphosate on weed communities of transgenic soybean field in the high latitude and cold region [D]. Beijing: Chinese Academy of Agricultural Sciences, 2012. | |
19 | OBOUR A K, STAHLMAN P W, HOLMAN J D. Soil chemical properties as influenced by long-term glyphosate-resistant corn and soybean production in the central Great Plains, USA [J]. Geoderma, 2016, 277: 1-9. |
20 | VEREECKEN H. Mobility and leaching of glyphosate: a review [J]. Pest Manag. Sci., 2005, 61(12): 1139-1151. |
21 | 章秋艳,李刚,杨志国,等.转基因大豆种植对根际土壤酶活性和养分的影响[J].中国油料作物学报, 2014, 36(3): 409-413. |
ZHANG Q Y, LI G, YANG Z G, et al.. Effects of transgenic soybean on enzyme activities and nutrients in rhizosphere soil [J]. Chin. J. Oil Crop Sci., 2014, 36(3): 409-413. | |
22 | ZHENG L, LI Y, SHANG W, et al.. The inhibitory effect of cadmium and/or mercury on soil enzyme activity, basal respiration, and microbial community structure in coal mine-affected agricultural soil [J]. Ann. Microbiol., 2019, 69(8): 849-859. |
23 | SPRANKLE P, MEGGITT W F, Adsorption PENNER D., mobility, and microbial degradation of glyphosate in the soil [J]. Weed Sci., 1975, 23(3): 229-234. |
24 | KULIKOVA N A, ZHELEZOVA A D, VOROPANOV M G, et al.. Monoammonium phosphate effects on glyphosate in soils: mobilization, phytotoxicity, and alteration of the microbial community [J]. Eurasian Soil Sci., 2020, 53(6): 787-797. |
25 | 刘攀.草甘膦对土壤微生态的影响及其抗性和降解真菌的研究[D].长春:吉林大学, 2009. |
LIU P. Effects of glyphosate on the soil microecosystem and research of glyphosate-degradation and glyphosate-resistance fungi [D]. Changchun: Jilin University, 2009. | |
26 | JORGE B, MELLADO R P. Relative effect of glyphosate on glyphosate-tolerant maize rhizobacterial communities is not altered by soil properties [J]. J. Microbiol. Biotechnol., 2012, 22(2): 159-165. |
27 | 吴玉红,田霄鸿,同延安,等.基于主成分分析的土壤肥力综合指数评价 [J].生态学杂志, 2010, 29(1): 173-180. |
WU Y H, TIAN X H, TONG Y A, et al.. Assessment of integrated soil fertility index based on principal components analysis [J]. Chin. J. Ecol., 2010, 29(1): 173-180. |
[1] | Zhenjia HE, Wangtao FAN, Yichun DU, Qilong WANG. Effects of Water and Fertilizer Coupling on the Physical and Chemical Properties of Rice Soil and Yield Based on Soil Organic Reconstruction [J]. Journal of Agricultural Science and Technology, 2022, 24(3): 176-185. |
[2] | Lijuan HE, Zhongju MENG, Xiaohong DANG, Tao LYU. Effects of Planting Glycyrrhizauralensis on Mechanical Composition and Nutrients of Aeolian Sandy Soil [J]. Journal of Agricultural Science and Technology, 2022, 24(2): 169-176. |
[3] | PU Quanming1, YANG Peng1*, DENG Yuchuan2, XIANG Chengyong1, LIN Bangmin1, LIU Lisha1, SHI Songmei3, HE Zemin1, YONG Lei1. Effects of Different Fertilization Methods on Soil Enzyme Activity, Soil Nutrients and Quality of Spring Cabbage [J]. Journal of Agricultural Science and Technology, 2020, 22(7): 130-139. |
[4] | YANG Xiaoyan1, LIU Yajuan2, WU Hong1, WANG Zhongwei1, LEI Kairong1, XIE Shuzhang1*. Isolation, Identification and Its Resistant Gene Cloning of a New Glyphosate-resistant Strain [J]. Journal of Agricultural Science and Technology, 2018, 20(6): 47-54. |
[5] | XIE Shu-zhang1, YANG Xiao-yan1, LIN Qing1, WENG Jian-feng2, JIANG Xiao-ying1, LI. Process on Glyphosate-resistant Transgenic Maize [J]. , 2013, 15(3): 36-41. |
[6] | ZHANG Shasha, ZHANG Rui, ZHOU Tao, GUO Sandui*. Construction of a Vector for an Optimized epsps Gene from Abutilon theophrasti Medic Promoted by Multitypes of Promoters and its Transformation [J]. , 2013, 15(1): 48-54. |
[7] | LI Xin-xin1, LI Xiao-hui1, LI Liang1, PING Shu-zhen1, CHEN Ming1, ZHANG Wei1, . Impacts of Transgenic Crops on Soil Microbes [J]. , 2010, 12(6): 24-27. |
[8] | YU Gui-rong1,2, DU Wen-ping2, SONG Jun2, DOU Qian2, LIU Yong-sheng1, LU Wei3, XU. Genetic Transformation of Maize Embryonic Callus and Regeneration of Glyphosate-tolerant Plant [J]. , 2010, 12(4): 108-113. |
[9] | WU Xin-jia, WANG Hong, ZHANG Ai-jun, ZHANG Rui-fang, ZHOU Da-mai. Effect of Different Fertilizer Treatments on Nutrient and Enzymatic Activity of Soil in River Ancient Channel [J]. , 2009, 11(6): 118-122. |
[10] | SUN He, LANG Zhi-hong, LU Wei, LIN Min, HUANG Da-fang. Analysis of Glyphosate Tolerance in Transgenic Tobacco with 2mG2-epsps Gene [J]. , 2009, 11(4): 100-106. |
[11] | LI Hai-hong, WAN Yu-song,JIN Wu-jun,WNAG Ying-dian,LIN Min. Isolation, Identification and Characterization of a Glyphosate-tolerant Bacterial Strain [J]. , 2009, 11(2): 69-72. |
[12] | WANG Xiu-jun, LANG Zhi-hong| LU Wei, LIN Min| SHAN An-shan, HUANG Da-fang . Transferring Glyphosate-tolerant mG2-epsps Gene into Maize |Inbred Line via Pollen-tube Pathway [J]. , 2008, 10(4): 56-62. |
[13] | JIN Dan, CHEN Ming, MA Rui-qiang, YANG Zhi-rong| CHEN Jian. To Identify Sites Related to Glyphosate-tolerance in Glyphosate |N-acetyltransferase by DNA Shuffling Technology [J]. , 2007, 9(5): 110-114. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||