Journal of Agricultural Science and Technology ›› 2023, Vol. 25 ›› Issue (3): 212-220.DOI: 10.13304/j.nykjdb.2022.0301
• BIO-MANUFACTURING & RESOURCE AND ECOLOGY • Previous Articles
Xiaoxia DING1(), Shengjun MA1(
), Wenfeng CHEN2, Aogang ZHANG1, Hongchao YU1, Yilihanmujiang Jiapaer1
Received:
2022-04-13
Accepted:
2022-05-17
Online:
2023-03-15
Published:
2023-05-22
Contact:
Shengjun MA
丁晓霞1(), 马生军1(
), 陈文峰2, 张澳港1, 于宏超1, 依里汗木江·加帕尔1
通讯作者:
马生军
作者简介:
丁晓霞 E-mail:1758485697@qq.com;
基金资助:
CLC Number:
Xiaoxia DING, Shengjun MA, Wenfeng CHEN, Aogang ZHANG, Hongchao YU, Yilihanmujiang Jiapaer. Effects of Rhizobia Inoculated On Content of Main Active Ingredients in Licorice and Multivariate Statistical Analysis[J]. Journal of Agricultural Science and Technology, 2023, 25(3): 212-220.
丁晓霞, 马生军, 陈文峰, 张澳港, 于宏超, 依里汗木江·加帕尔. 接种根瘤菌对甘草主要活性成分含量的影响及多元统计分析[J]. 中国农业科技导报, 2023, 25(3): 212-220.
时间 Time/min | 流动相A Mobile phases A/% | 流动相B Mobile phases B/% |
---|---|---|
0~8 | 22 | 78 |
8~10 | 22→25 | 78→75 |
10~28 | 25→54 | 75→46 |
28~35 | 54→95 | 46→5 |
35~36 | 95→22 | 5→78 |
Table 1 Timetable for gradient of eluate
时间 Time/min | 流动相A Mobile phases A/% | 流动相B Mobile phases B/% |
---|---|---|
0~8 | 22 | 78 |
8~10 | 22→25 | 78→75 |
10~28 | 25→54 | 75→46 |
28~35 | 54→95 | 46→5 |
35~36 | 95→22 | 5→78 |
成分Ingredient | 线性回归方程 Linear regression equations | R2 | 线性范围 Linearity range/μg |
---|---|---|---|
甘草酸Glycyrrhizic acid | Y1= 448 539X1-32 262 | 0.999 8 | 0.56~11.25 |
甘草苷Liquiritin | Y2= 204 844X2-671.34 | 1.000 0 | 0.50~10.00 |
甘草素Liquiritigenin | Y3= 763 588X3-64 713 | 0.999 6 | 0.44~8.76 |
异甘草苷Isoliquiritin | Y4 = 637 135X4-52 369 | 0.999 9 | 0.63~12.50 |
异甘草素Isoliquiritigenin | Y5= 1 013 900.07X5-74 649.97 | 1.000 0 | 0.25~5.00 |
Table 2 Linear relationship of active ingredients
成分Ingredient | 线性回归方程 Linear regression equations | R2 | 线性范围 Linearity range/μg |
---|---|---|---|
甘草酸Glycyrrhizic acid | Y1= 448 539X1-32 262 | 0.999 8 | 0.56~11.25 |
甘草苷Liquiritin | Y2= 204 844X2-671.34 | 1.000 0 | 0.50~10.00 |
甘草素Liquiritigenin | Y3= 763 588X3-64 713 | 0.999 6 | 0.44~8.76 |
异甘草苷Isoliquiritin | Y4 = 637 135X4-52 369 | 0.999 9 | 0.63~12.50 |
异甘草素Isoliquiritigenin | Y5= 1 013 900.07X5-74 649.97 | 1.000 0 | 0.25~5.00 |
成分Ingredient | 相对标准偏差RSD/% | ||||
---|---|---|---|---|---|
0 h | 4 h | 8 h | 12 h | 24 h | |
甘草酸Glycyrrhizic acid | 1.12 | 0.82 | 1.78 | 2.35 | 2.14 |
甘草苷Liquiritin | 1.44 | 1.96 | 2.02 | 1.63 | 1.84 |
甘草素Liquiritigenin | 0.88 | 2.04 | 0.91 | 1.26 | 2.47 |
异甘草苷Isoliquiritin | 1.64 | 1.86 | 0.74 | 1.15 | 2.06 |
异甘草素Isoliquiritigenin | 1.75 | 0.99 | 1.28 | 1.89 | 2.71 |
Table 3 Stability test of active ingredients
成分Ingredient | 相对标准偏差RSD/% | ||||
---|---|---|---|---|---|
0 h | 4 h | 8 h | 12 h | 24 h | |
甘草酸Glycyrrhizic acid | 1.12 | 0.82 | 1.78 | 2.35 | 2.14 |
甘草苷Liquiritin | 1.44 | 1.96 | 2.02 | 1.63 | 1.84 |
甘草素Liquiritigenin | 0.88 | 2.04 | 0.91 | 1.26 | 2.47 |
异甘草苷Isoliquiritin | 1.64 | 1.86 | 0.74 | 1.15 | 2.06 |
异甘草素Isoliquiritigenin | 1.75 | 0.99 | 1.28 | 1.89 | 2.71 |
成分 Ingredient | 相对标准偏差RSD/% | 加样回收率 Adding standard recovery/% | ||
---|---|---|---|---|
精密性Precision | 重复性Repeatability | 均值Mean | 相对标准偏差RSD | |
甘草酸Glycyrrhizic acid | 1.04 | 1.03 | 99.45 | 0.95 |
甘草苷Liquiritin | 1.37 | 1.42 | 98.20 | 2.86 |
甘草素Liquiritigenin | 1.83 | 2.43 | 97.91 | 2.33 |
异甘草苷Isoliquiritin | 2.10 | 1.75 | 100.74 | 1.66 |
异甘草素Isoliquiritigenin | 2.65 | 1.38 | 97.60 | 1.44 |
Table 4 Precision, repeatability and recovery of active ingredients
成分 Ingredient | 相对标准偏差RSD/% | 加样回收率 Adding standard recovery/% | ||
---|---|---|---|---|
精密性Precision | 重复性Repeatability | 均值Mean | 相对标准偏差RSD | |
甘草酸Glycyrrhizic acid | 1.04 | 1.03 | 99.45 | 0.95 |
甘草苷Liquiritin | 1.37 | 1.42 | 98.20 | 2.86 |
甘草素Liquiritigenin | 1.83 | 2.43 | 97.91 | 2.33 |
异甘草苷Isoliquiritin | 2.10 | 1.75 | 100.74 | 1.66 |
异甘草素Isoliquiritigenin | 2.65 | 1.38 | 97.60 | 1.44 |
Fig. 3 Glycyrrhizic acid content in rhizobia treated by different rhizobiasNote: Different lowercase letters indicate significant differences between different treatments at P<0.05 level.
Fig. 4 Liquiritin content in licorice treated by different rhizobiasNote: Different lowercase letters indicate significant differences between different treatments at P<0.05 level.
Fig. 5 Liquiritigenin content in licorice treated by different rhizobiasNote: Different lowercase letters indicate significant differences between different treatments at P<0.05 level.
Fig. 6 Isoliquiritin content in licorice treated by different rhizobiasNote: Different lowercase letters indicate significant differences between different treatments at P<0.05 level.
Fig. 7 Isoliquiritigenin content in licorice treated by different rhizobiasNote: Different lowercase letters indicate significant differences between different treatments at P<0.05 level.
指标Index | 甘草苷Liquiritin | 甘草酸 Glycyrrhizic acid | 甘草素Liquiritigenin | 异甘草苷Isoliquiritin | 异甘草素Isoliquiritigenin |
---|---|---|---|---|---|
甘草苷Liquiritin | 0.670** | 0.485** | 0.777** | 0.397** | |
甘草酸Glycyrrhizic acid | -0.245 | 0.694** | 0.674** | 0.763** | |
甘草素Liquiritigenin | 0.813** | -0.562 | 0.610** | 0.836** | |
异甘草苷Isoliquiritin | -0.133 | -0.693* | 0.198 | 0.622** | |
异甘草素Isoliquiritigenin | 0.158 | 0.833** | -0.275 | -0.694* |
Table 5 Correlation analysis of main active components in rhizobia treated licorice
指标Index | 甘草苷Liquiritin | 甘草酸 Glycyrrhizic acid | 甘草素Liquiritigenin | 异甘草苷Isoliquiritin | 异甘草素Isoliquiritigenin |
---|---|---|---|---|---|
甘草苷Liquiritin | 0.670** | 0.485** | 0.777** | 0.397** | |
甘草酸Glycyrrhizic acid | -0.245 | 0.694** | 0.674** | 0.763** | |
甘草素Liquiritigenin | 0.813** | -0.562 | 0.610** | 0.836** | |
异甘草苷Isoliquiritin | -0.133 | -0.693* | 0.198 | 0.622** | |
异甘草素Isoliquiritigenin | 0.158 | 0.833** | -0.275 | -0.694* |
1 | 罗青红, 宁虎森, 刘永萍, 等. 新疆罗布麻和甘草资源现状分析与评价[J]. 防护林科技, 2019(5): 13-16. |
2 | ALEMNEH A A, ZHOU Y, RYDER M H, et al.. Mechanisms in plant growth promoting rhizobacteria that enhance legume rhizobial symbioses [J]. J. Appl. Microbiol., 2020, 129(5): 1133-1156. |
3 | 马帅, 王诺, 杨光, 等. 我国甘草及其制品进出境调查研究[J]. 中国中药杂志, 2017, 42(11): 2193-2199. |
MA S, WANG N, YANG G, et al.. Import and export of licorice and its products in China [J]. China J. Chin. Materia Med., 2017, 42(11):2193-2199. | |
4 | 张广袤, 李成义, 梁婷婷, 等. 药用植物与根瘤菌共生体系研究进展[J]. 中药材, 2022, 45(1): 260-264. |
ZHANG G M, LI C Y, LIANG T T, et al.. Research progress of symbiotic system between medicinal plants and rhizobia [J]. Chin. Materia Med., 2022, 45(1): 260-264. | |
5 | 唐美琼, 闵丹丹, 李刚, 等. 山豆根根瘤菌的生物学特性及其不同菌株对山豆根幼苗药用有效成分的影响[J]. 江苏农业科学, 2017, 45(1): 131-134. |
TANG M Q, MIN D D, LI G, et al.. Biological properties of Rhizobium santoni and the effect of different strains on the medicinal active ingredients of santoni seedlings [J]. Jiangsu Agric. Sci., 2017, 45(1): 131-134. | |
6 | 刘潇晗, 杜勤, 石志棉, 等. 田菁茎瘤固氮根瘤菌对穿心莲植株生长和有效成分含量的影响[J]. 中药材, 2019, 42(12): 2746-2750. |
LIU X H, DU Q, SHI Z M, et al.. Effects of Azorhizobium caulinodans on growth and effective components contents of Andrographis paniculata [J]. Chin. Materia Med., 2019, 42 (12): 2746-2750. | |
7 | WU Z Y, MENG X F, JIAO Y J, et al. Bradyrhizobia arachidis mediated enhancement of (oxy) matrine content in the medicinal legume Sophora flavescens [J]. Letters Appl. Microbiol., 2021, 72(5): 570-577. |
8 | 严雪瑞, 陈文峰, 陈文新, 等. 小叶锦鸡儿根瘤菌的分离及其16S rDNA PCR-RFLP分析[J]. 华中农业大学学报, 2007, 26(2): 141-146. |
YAN X R, CHEN W F, CHEN W X, et al.. 16S rDNA PCR-RFLP analysis of the 65 Rhizobium strains isolated from Caragana microphylla of Liaoning in China [J]. J. Huazhong Agric. Univ., 2007, 26(2): 141-146. | |
9 | 严雪瑞, 陈文峰, 陈文新, 等. 辽宁营口地区锦鸡儿与树锦鸡儿根瘤菌遗传多样性研究[J]. 沈阳农业大学学报, 2007, 38(1): 44-48. |
YAN X R, CHEN W F, CHEN W X, et al.. Genetic diversity of rhizobia of Caragana and Caragana tree in Yingkou, Liaoning province [J]. J. Shenyang Agric. Univ., 2007, 38(1): 44-48. | |
10 | 陈文峰, 陈文新. 我国豆科植物根瘤菌资源多样性及应用基础研究[J]. 生物学通报, 2003, 38(7): 1-4. |
CHEN W F, CHEN W X. Study on resource diversity and application of Rhizobia of legumes in China [J]. Biol. Bull., 2003, 38(7): 1-4. | |
11 | 国家药典委员会. 中华人民共和国药典: 一部[M]. 2020年版.北京: 中国医药科技出版社, 2020: 340-341. |
12 | 陈佳, 张权, 杨蕊, 等. 甘草药材及其炮制品炙甘草化学模式识别分析[J]. 药物分析杂志, 2020, 40(11): 1963-1976. |
CHEN J, ZHANG Q, YANG R, et al.. Chemical pattern recognition analysis of processed glycyrrhiza glycyrrhiza [J]. Chin. J. Pharmaceutical Anal., 2020, 40(11): 1963-1976. | |
13 | 罗燕燕, 刘效栓, 肖正国, 等. HPLC双波长法同时测定甘草药渣提取物中甘草苷、异甘草苷、甘草素、异甘草素及甘草酸含量[J]. 中国中医药信息杂志, 2017, 24(12): 64-67. |
LUO Y Y, LIU X S, XIAO Z G, et al.. Simultaneous determination of liquiritin, isoliquiritin, liquiritin, isoliquiritin and glycyrrhizic acid in extract of liquorice residue by HPLC dual wavelength method [J]. Chin. J. Trad. Chin. Med. Inf., 2017, 24(12): 64-67. | |
14 | 刘建桥, 朱晓花, 李三要, 等. 基于多元统计分析的不同半夏种质资源中5种成分含量的比较研究[J]. 特产研究, 2022, 44(2): 108-114. |
LIU J Q, ZHU X H, LI S Y, et al.. Comparison of five components in Pinellia ternata germplasm resources based on multivariate statistical analysis [J]. Specialty Res., 2022, 44(2): 108-114. | |
15 | 吴喆, 张霁, 左智天, 等. 红外光谱结合化学计量学快速鉴别云南重楼不同炮制品[J]. 光谱学与光谱分析, 2018, 38(4): 1101-1106. |
WU Z, ZHANG J, ZUO Z T, et al.. Rapid identification of different gun products in Yunnan heavy building by infrared spectroscopy combined with stoichiometry [J]. Spectroscopy Spectral Anal., 2018, 38(4): 1101-1106. | |
16 | LEDERMANN R, SCHUTE C, POOLE P S. How rhizobia adapt to the nodule environment [J/OL]. J. Bacteriol., 2021, 203(12): 20 [2022-02-10]. . |
17 | RUPAM K, GARIMA A, POOJA G, et al.. Insight into the mechanisms of enhanced production of valuable terpenoids by arbuscular mycorrhiza [J]. Phytochem. Rev., 2017, 16(4): 677-692. |
18 | XIE W, HAO Z P, ZHOU X F, et al.. Arbuscular mycorrhiza facilitates the accumulation of glycyrrhizin acid and liquiritin in licorice under drought stress [J]. Mycorrhiza, 2018, 28(3): 285-300. |
19 | 马生军, 靳元元, 徐万里, 等. 根瘤菌与微量元素硒肥对蒙古黄芪生长、品质及富硒的影响[J]. 新疆农业大学学报, 2021, 44(1): 38-44. |
MA S J, JIN Y Y, XU W L, et al.. Effects of rhizobia and selenium fertilizer on growth, quality and selenium enrichment of Astragalus mongolicus [J]. J. Xinjiang Agric. Univ., 2021, 44(1): 38-44. | |
20 | CHEN M L, YANG G, SHENG Y, et al.. Glomus mosseae inoculation improves the root system architecture, photosynthetic efficiency and flavonoids accumulation of liquorice under nutrient stress [J/OL]. Front. Plant Sci., 2017, 8: 931 [2022-02-10]. . |
21 | 孟祥君, 俞联平, 程文定, 等. 接种根瘤菌与施肥对岷山红三叶异黄酮含量的影响[J]. 草业科学, 2010, 27(5): 97-100. |
MENG X J, YU L P, CHENG W D, et al.. Influence of rhizobia inoculation and nitrogen fertilizer application on isoflavone content of minshan red-clover [J]. Acta Pratac. Sin., 2010, 27(5): 97-100. |
[1] | MA Chunying1, HOU Junling2*, WANG Wenquan2,3*, WU Lizhu4. Study on the Influence of Basal Fertilizer on Growth Characteristics and Active Ingredient Content of Anemarrhenae rhizoma [J]. Journal of Agricultural Science and Technology, 2017, 19(5): 123-128. |
[2] | DENG Qian-chun, LI Wen-lin, YANG Mei, HUANG Feng-hong, HUANG Qing-de, LIU Chang-. Research Progress on Oilseeds Processing and Utilization Technology [J]. , 2011, 13(5): 26-36. |
[3] | SU Fu-hai1, NAN Chun-shi2. Preliminary Exploration of Active Ingredients Reference Materials in Propolis [J]. , 2009, 11(S1): 68-71. |
[4] | YU Zhi-jing, WEI Zheng-yi, XING Shao-chen, CAI Qin-an. Optimization of Inducing Parameters to Express GST Fusion Protein |in Engineered Rhizobia and the Enhancement of Salt Resistance [J]. , 2007, 9(6): 64-70. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||