1 |
朱永波,韩展誉,程方民. 氮肥对水稻营养品质、外观品质和加工品质的影响[J]. 基层农技推广, 2019,7(12):26-29.
|
2 |
YU X, LU H, LIU Q. Deep learning based regression model and hyperspectral imaging for rapid detection of nitrogen concentration in oilseed rape (Brassica napus L.) leaf [J]. Chemom. Intell. Lab. Syst., 2018,172:188-193.
|
3 |
CAMERON K C, DI H J, MOIR J L. Nitrogen losses from the soil/plant system: a review [J]. Ann. Appl. Biol., 2013,162(2):145-173.
|
4 |
刘晓伟,王火焰,朱德进,等. 氮肥施用方式对水稻产量以及氮、磷、钾养分吸收利用的影响[J]. 南京农业大学学报, 2017,40(2):203-210.
|
|
LIU X W, WANG H Y, ZHU D J, et al.. Effect of N fertilization method on rice yield and N, P and K uptake and use efficiency [J]. J. Nanjing Agric. Univ., 2017,40(2):203-210.
|
5 |
孙棋. 基于数字图像处理技术的水稻氮素营养诊断研究[D]. 杭州:浙江大学,2008.
|
|
SUN Q. Rice nitrogen nutrition diagnosis based on digital image processing technique [D]. Hangzhou:Zhejiang University, 2008.
|
6 |
张国圣,许童羽,于丰华,等. 基于高光谱的水稻叶片氮素估测与反演模型[J]. 浙江农业学报, 2017,29(5):845-849.
|
|
ZHANG G S, XU T Y, YU F H, et al.. Nitrogen content inversion of rice leaf based on the hyperspectral data [J]. Zhejiang Agric. J., 2017,29(5):845-849.
|
7 |
HUANG S, MIAO Y, ZHAO G, et al.. Estimating rice nitrogen status with satellite remote sensing in Northeast China [C]//Proceedings of 2013 Second International Conference on Agro-Geoinformatics (Agro-Geoinformatics). USA Virginia, IEEE, 2013:550-557.
|
8 |
郭建华,王秀,孟志军,等. 主动遥感光谱仪Greenseeker与SPAD对玉米氮素营养诊断的研究[J]. 植物营养与肥料学报, 2008, 14(1):43-47.
|
|
GUO J H, WANG X, MENG Z J, et al.. Study on diagnosing nitrogen nutrition status of corn using Greenseeker and SPAD meter [J]. J. Plant Nutr. Fert., 2008,14(1):43-47.
|
9 |
杨红云,罗建军,万颖,等. 计算机视觉技术在水稻氮素营养诊断中应用的研究进展[J]. 中国农学通报, 2020,36(16):149-155.
|
|
YANG H Y, LUO J J, WAN Y, et al.. Application of computer vision technology in nitrogen nutrition diagnosis of rice: research progress [J]. Chin. Agric. Sci. Bull., 2020,36(16):149-155.
|
10 |
李岚涛,张萌,任涛,等. 应用数字图像技术进行水稻氮素营养诊断[J]. 植物营养与肥料学报, 2015,21(1):259-268.
|
|
LI L T, ZHANG M, REN T, et al.. Diagnosis of N nutrition of rice using digital image processing technique [J]. J. Plant Nutr. Fert., 2015,21(1):259 -268.
|
11 |
周琼,杨红云,杨珺,等. 基于BP神经网络和概率神经网络的水稻图像氮素营养诊断[J]. 植物营养与肥料学报, 2019,25(1):134-141.
|
|
ZHOU Q, YANG H Y, YANG J, et al.. Feasibility study of BP neural network and probabilistic neural network for nitrogen nutrition diagnosis of rice images [J]. J. Plant Nutr. Fert., 2019,25(1):134-141.
|
12 |
XU Z, GUO X, ZHU A, et al.. Using deep convolutional neural networks for image-based diagnosis of nutrient deficiencies in rice [J/OL]. Comput. Intell. Neurosci., 2020,9:7307252 [2022-07-22]..
|
13 |
YUAN Y, CHEN L, LI M, et al.. Diagnosis of nitrogen nutrition of rice based on image processing of visible light [C]// Proceedings of 2016 IEEE International Conference on Functional-Structural Plant Growth Modeling, Simulation, Visualization and Applications (FSPMA). China Qingdao, IEEE, 2016:228-232.
|
14 |
SATHYAVANI R, JAGANMOHAN K, KALAAVATHI B. Classification of nutrient deficiencies in rice crop using denseNet-BC [J]. Mater. Today: Proceed., 2022,56:1783-1789.
|
15 |
WANG C, YE Y, TIAN Y, et al.. Classification of nutrient deficiency in rice based on CNN model with reinforcement learning augmentation [C]// Proceedings of 2021 International Symposium on Artificial Intelligence and its Application on Media (ISAIAM). China Xi’an, IEEE, 2021:107-111.
|
16 |
HU J, SHEN L, SUN G. Squeeze-and-excitation networks [C]//Proceedings of the IEEE conference on computer vision and pattern recognition. USA Salt Lake City, IEEE, 2018:7132-7141.
|
17 |
杨红云,肖小梅,黄琼,等. 基于卷积神经网络和迁移学习的水稻害虫识别[J]. 激光与光电子学进展,2022,59(16): 333-340.
|
|
YANG H Y, XIAO X M, HUANG Q, et al.. Rice pest identification based on convolutional neural network and transfer learning [J]. Adv. Lasers Optoelectr., 2022,59(16): 333-340.
|
18 |
姚强,粟超,李波,等. 深度学习方法在水稻氮素营养诊断中的应用初探[J]. 南方农业,2021,15(31):125-129.
|
19 |
程慧煌,商庆银,易振波,等. 不同产量水平超级杂交稻产量形成特征及其对施肥量的响应[J]. 中国稻米,2017,23(4):81-88.
|
|
CHENG H H, SHANG Q Y, YI Z B, et al.. Feasibility study of BP neural network and probabilistic neural network for nitrogen nutrition diagnosis of rice images [J]. China Rice, 2017,23(4):81-88.
|
20 |
孙振宇,黄巍,于艳丽,等. 提高水稻区试质量的主要技术措施[J]. 吉林农业,2009(2):20.
|
21 |
林洪鑫,潘晓华,石庆华,等. 栽插密度与施氮量对双季稻上部三叶叶长和叶角的影响[J]. 作物学报,2010,36(10):1743-1751.
|
|
LIN H X, PAN X H, SHI Q H, et al.. Effects of nitrogen application amount and planting density on angle and length of top three leaves in double-cropping rice [J]. Acta Agron. Sin., 2010,36(10):1743-1751.
|
22 |
RICE L, WONG E, KOLTER Z. Overfitting in adversarially robust deep learning [C]//International Conference on Machine Learning. Austria Vienna, PMLR, 2020:8093-8104.
|
23 |
SHORTEN C, KHOSHGOFTAAR T M. A survey on image data augmentation for deep learning [J/OL]. J. Big Data, 2019,6(1):197[2022-07-22]. .
|
24 |
张顺,龚怡宏,王进军. 深度卷积神经网络的发展及其在计算机视觉领域的应用[J]. 计算机学报,2019,42(3):453-482.
|
|
ZHANG S, GONG Y H, WANG J J. The development of deep convolution neural network and its applications on computer vision [J]. Chin. J. Comput., 2019,42(3):453-482.
|
25 |
HE K, ZHANG X, REN S, et al.. Deep residual learning for image recognition [C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. USA Las Vegas, IEEE, 2016:770-778.
|
26 |
罗建军,杨红云,路艳,等. 基于遗传算法优化的BP神经网络进行水稻氮素营养诊断[J]. 中国农业科技导报,2020,22(8):83-92.
|
|
LUO J J, YANG H Y, LU Y, et al.. Identification of nitrogen nutrition in rice based on BP neural network optimized by genetic algorithms [J]. J. Agric. Sci. Technol., 2020,22(8):83-92.
|
27 |
张林朋,杨红云,钱政,等. 基于改进的VGG16网络和迁移学习的水稻氮素营养诊断[J].中国农业大学学报,2023,28(6):219-229.
|
|
ZHANG L P, YANG H Y, QIAN Z, et al.. Nitrogen nutrition diagnosis in rice based on improved VGG16 network and transfer learning [J]. J. Chin. Agric. Univ., 2023,28(6):219-229.
|
28 |
CAP Q H, UGA H, KAGIWADA S, et al.. LeafGAN: an effective data augmentation method for practical plant disease diagnosis [J]. IEEE Trans. Autom. Sci. Eng., 2022,19(2):1258-1267.
|