1 |
MOHAMAD F A J, SUHARDI H, SALEHUDDIN S, et al.. Leaf features extraction and recognition approaches to classify plant [J]. Comp. Sci., 2013, 9(10):1295-1304.
|
2 |
JAGADEESH D, PUJAR I, RAJES H, et al.. Automatic fungal disease detection based on wavelet feature extraction and PCA analysis in commercial crops [J]. J. Img. Graph. Sig. Pro. (IJIGSP), 2014, 6(1):24-31.
|
3 |
师韵,安琪,张善文.基于分层卷积神经网络的冬枣果实病害识别方法[J].东北农业科学,2021,46(4):128-134.
|
|
SHI Y, AN Q, ZHANG S W. Identification method of winter jujube fruit disease based on hierarchical convolution neural network [J]. J. Northeast Agric. Sci., 2021, 46(4):128-134.
|
4 |
郭小清,范涛杰.用数字图像技术评估番茄苗期钙素水平[J].安徽农业科学,2018,46(36):192-195.
|
|
GUO X Q, FAN T J. Using digital image technology to evaluate the calcium level of tomato seedlings [J]. J. Anhui Agric. Sci., 2018,46(36):192-195.
|
5 |
鲍文霞,孙庆,胡根生,等.基于多路卷积神经网络的大田小麦赤霉病图像识别[J].农业工程学报,2020,36(11):174-181.
|
|
BAO W X, SUN Q, HU G S, et al.. Image recognition of wheat scab in the field based on multi-channel convolution neural network [J]. Trans. Chin. Soc. Agric. Eng., 2020, 36(11):174-181.
|
6 |
SLADOJEVIC S, ARSENOVIC M, ANDERLA A, et al.. Deep neural networks based recognition of plant diseases by leaf image classification [J/OL]. Comp. Int. Neuro. Sci., 2016, 2016:3289801 [2023-01-19]. .
|
7 |
冯晓,李丹丹,王文君,等.基于轻量级卷积神经网络和迁移学习的小麦叶部病害图像识别[J].河南农业科学,2021,50(4):174-180.
|
|
FENG X, LI D D, WANG W J, et al.. Image recognition of wheat leaf diseases based on lightweight convolutional neural network and transfer learning [J]. J. Henan Agric. Sci., 2021,50(4):174-180.
|
8 |
AMANDA R, KELSEE B, PETER M, et al.. Deep learning for image-based cassava disease detection [J/OL]. Front. Plant Sci., 2017, 8:1852 [2023-01-19]. .
|
9 |
AFIFI A, ALHUMAM A, ABDELWAHAB A. Convolutional neural network for automatic identification of plant diseases with limited data [J]. Plants, 2020, 10(1):28-36.
|
10 |
HE K M, ZHANG X Y, REN S Q, et al.. Deep residual learning for image recognition[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2016:770-778.
|
11 |
TAN M X, LE Q V. EfficientNet: rethinking model scaling for convolutional neural networks [J]. Comp. Sci., 2019, 12(9):34-42.
|
12 |
SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition [J/OL]. Comp. Sci., 2014, 9:1409.1556 [2023-01-19]. .
|
13 |
CHRISTIAN S, SERGEY I, VINCENT V. Inception-v4, inception-ResNet and the impact of residual connections on learning [J/OL]. IEICE Trans. Fund. Elect., Comm. Computer Sci., 2016, abs:11231 [2023-01-19]. .
|
14 |
HU J, SHEN L, ALBANIE S, et al.. Squeeze-and-excitation networks [J]. IEEE Trans. Pattern Anal. Mach. Intelligence, 2019, 42(8):2011-2023.
|
15 |
TANG K, NIU Y, HUANG J, et al.. Unbiased scene graph generation from biased training[C]//Process Conference on Computer Vision and Pattern Recognition, 2020:3713-3722.
|