Journal of Agricultural Science and Technology ›› 2022, Vol. 24 ›› Issue (12): 120-128.DOI: 10.13304/j.nykjdb.2022.0711
• INNOVATIVE GERMPLASM • Previous Articles Next Articles
Received:
2022-08-26
Accepted:
2022-09-28
Online:
2022-12-15
Published:
2023-02-06
Contact:
Wei HU
通讯作者:
胡炜
作者简介:
孙永华 E-mail:yhsun@ihb.ac.cn;
基金资助:
CLC Number:
Yonghua SUN, Wei HU. Development of Biobreeding Techniques in Main Aquaculture Fish Species[J]. Journal of Agricultural Science and Technology, 2022, 24(12): 120-128.
孙永华, 胡炜. 重要养殖鱼类生物育种技术研究[J]. 中国农业科技导报, 2022, 24(12): 120-128.
1 | GOLDEN C D, KOEHN J Z, SHEPON A, et al.. Aquatic foods to nourish nations [J]. Nature, 2021, 598(7880): 315-320. |
2 | CRESSEY D. Future Fish [J]. Nature, 2009, 458(7237): 398-400. |
3 | GUI J, TANG Q, LI Z, et al.. Aquaculture in China: Success Stories and Modern Trends [M]. Wiley-Blackwell, 2018:. |
4 | NELSON J S, GRANDE T C, WILSON M V. Fishes of the World [M]. John Wiley & Sons, 2016: 1-3. |
5 | NAKAJIMA T, HUDSON M J, UCHIYAMA J, et al.. Common carp aquaculture in Neolithic China dates back 8,000 years [J]. Nat. Ecol. Evol., 2019, 3(10): 1415-1418. |
6 | 伍献文,钟麟.鲩、青、鲢、鳙的人工繁殖在我国的进展和成就[J].科学通报, 1964, 10: 900-907. |
WU X W, ZHONG L. Progress and achievements of artificial propagation of bighead carp, green carp, silver carp and bighead carp in China [J]. Chin. Sci. Bull., 1964, 10: 900-907. | |
7 | 钟麟.鲢鳙的池塘繁殖[J].科学通报, 1958, 21: 658-659. |
ZHONG L. Pond breeding of silver carp and bighead carp [J]. Chin. Sci. Bull., 1958, 21: 658-659. | |
8 | 朱宁生.青、鲩、鲢、鳙等家鱼催情试验的初步报告[J].水生生物学报, 1955(2): 60-69. |
ZHU N S. Preliminary experiments on induced ovulationof some economical cyprinids [J]. Acta Hydrobiol. Sin., 1955(2): 60-69. | |
9 | 徐康,段巍,肖军,等.鱼类遗传育种中生物学方法的应用及研究进展[J].中国科学: 生命科学, 2014, 44(12): 1272-1288. |
XU K, DUAN W, XIAO J, et al.. Development and application of biological technologies in fish genetic breeding [J]. Sci. Sin. Vitae, 2014, 44(12): 1272-1288. | |
10 | 刘少军.鱼类远缘杂交[M].北京:科学出版社, 2015:1-358. |
LIU S J. Fish Distance Hybridization [M]. Beijing: Science Press, 2015:1-358. | |
11 | 王石,汤陈宸,陶敏,等.鱼类远缘杂交育种技术的建立及应用[J].中国科学:生命科学, 2018, 48(12): 1310-1329. |
WANG S, TANG C C, TAO M, et al.. Establishment and application of distant hybridization technology in fish [J]. Sci. Sin. Vitae, 2018, 48(12): 1310-1329. | |
12 | LIU S J, LUO J, CHAI J, et al.. Genomic incompatibilities in the diploid and tetraploid offspring of the goldfish × common carp cross [J]. Proc. Natl. Acad. Sci. USA, 2016, 113(5): 1327-1332. |
13 | REN L, LI W, QIN Q, et al.. The subgenomes show asymmetric expression of alleles in hybrid lineages of Megalobrama amblycephala × Culter alburnus [J]. Genome Res., 2019, 29(11): 1805-1815. |
14 | 桂建芳,肖武汉,梁绍昌,等.静水压休克诱导水晶彩鲫三倍体和四倍体的细胞学机理初探[J].水生生物学报, 1995, 19(1): 49-55. |
GUI J F, XIAO W H, LIANG S C, et al.. Preliminary study on the cytological mechanism of triploidy and tetraploidy induced by hydrostatic pressure shock in transparent colored crucian carp [J]. Acta Hydrobiol. Sin., 1995, 19(1): 49-55. | |
15 | 陈松林,李文龙,季相山,等.半滑舌鳎三倍体鱼苗的人工诱导与鉴定[J].水产学报, 2011, 35(6): 925-931. |
CHEN S L, LI W L, JI X S, et al.. Induction and identification of artificial triploid fry in Cynoglossus semilaevis [J]. J. Fish China, 2011, 35(6): 925-931. | |
16 | 蒋一珪,梁绍昌,陈本德,等.异源精子在银鲫雌核发育子代中的生物学效应[J].水生生物学报, 1983, 8(1): 1-13. |
JIANG Y G, LIANG S C, CHEN B D, et al.. Biological effect of heterologous sperm on gynogenetic offspring in Carassius auratus gibelio [J]. Acta Hydrobiol. Sin., 1983, 8(1): 1-13. | |
17 | 桂建芳,周莉.多倍体银鲫克隆多样性和双重生殖方式的遗传基础和育种应用[J].中国科学: 生命科学, 2010, 40(2): 97-103. |
GUI J F, ZHOU L. Genetic basis and breeding application on clonal diversity and dual reproduction modes in polyploid Carassius auratus gibelio [J]. Sci. Sin. Vitae, 2010, 40(2): 97-103. | |
18 | WANG Y, LI X Y, XU W J, et al.. Comparative genome anatomy reveals evolutionary insights into a unique amphitriploid fish [J]. Nat. Ecol. Evol., 2022, 6:1354-1366. |
19 | 张晓娟,周莉,桂建芳.遗传育种生物技术创新与水产养殖绿色发展[J].中国科学:生命科学, 2019, 49(1): 1409-1429. |
ZHANG X J, ZHOU L, GUI J F. Biotechnological innovation in genetic breeding and sustainable green development in Chinese aquaculture [J]. Sci. Sin. Vitae, 2019, 49(1):1409-1429. | |
20 | 陈戟,胡炜,朱作言.鱼类生殖发育调控研究进展[J].科学通报, 2013, 58(2): 103-114. |
CHEN J, HU W, ZHU Z Y. Progress in studies of fish reproductive development regulation [J]. Chin. Sci. Bull., 2013, 58(2): 103-114. | |
21 | 梅洁,桂建芳.鱼类性别异形和性别决定的遗传基础及其生物技术操控[J].中国科学:生命科学, 2014, 44(12): 1198-1212. |
MEI J, GUI J F. Genetic basis and biotechnological manipulation of sexual dimorphism and sex determination in fish [J]. Sci. Sin. Vitae, 2014, 44(12): 1198-1212. | |
22 | CHEN J, ZHU Z, HU W. Progress in research on fish sex determining genes [J/OL]. Water Biol. Security, 2022, 1(1): 100008 [2022-09-22]. . |
23 | 陶彬彬,胡炜.鱼类性别控制育种研究进展[J].中国农业科技导报,2022, 24(2): 1-10. |
TAO B B, HU W. Research progress on sex control breeding of fish [J]. J. Agric. Sci. Technol., 2022, 24(2): 1-10. | |
24 | ZHU Z Y, LI G L, HE L, et al.. Novel gene transfer into the fertilized eggs of gold fish (Carassius auratus L. 1758) [J]. J. Appl. Ichthyol., 1985, 1:31-34. |
25 | 朱作言,许克圣,谢岳峰,等.转基因鱼模型的建立[J].中国科学:B 辑,1989(2): 147-155. |
ZHU Z Y, XU K S, XIE Y F, et al.. Establishment of transgenic fish model [J]. Sci. Sin. Chim. B, 1989(2): 147-155. | |
26 | 叶鼎,朱作言,孙永华.鱼类基因组操作与定向育种[J].中国科学:生命科学, 2014, 44(12): 1253-1261. |
YE D, ZHU Z Y, SUN Y H, et al.. Fish genome manipulation and directional breeding [J]. Sci. Sin. Vitae, 2014, 44(12): 1253-1261. | |
27 | 胡炜,朱作言.美国转基因大西洋鲑产业化对我国的启示[J].中国工程科学, 2016, 18(3): 105-109. |
HU W, ZHU Z Y. Enlighenments for China from the industrialization of the transclenic Atlantic salmon in the US [J]. Strategic Study CAE, 2016, 18(3): 105-109. | |
28 | PANG S C, WANG H P, ZHU Z Y, et al.. Transcriptional activity and DNA methylation dynamics of the Gal4/UAS system in zebrafish [J]. Mar. Biotechnol., 2015, 17(5): 593-603. |
29 | ZHANG X, PANG S, LIU C, et al.. A novel dietary source of EPA and DHA: metabolic engineering of an important freshwater species-common carp by fat1-transgenesis [J]. Mar. Biotechnol., 2019, 21(2): 171-185. |
30 | REES H A, LIU D R. Base editing: precision chemistry on the genome and transcriptome of living cells [J]. Nat. Rev. Genet., 2018, 19(12): 770-788. |
31 | ANZALONE A V, RANDOLPH P B, DAVIS J R, et al.. Search-and-replace genome editing without double-strand breaks or donor DNA [J]. Nature, 2019, 576(7785): 149-157. |
32 | SUN Y H, ZHANG B, LUO L F, et al.. Systematic genome editing of the genes on zebrafish chromosome 1 by CRISPR/Cas9 [J]. Genome Res., 2020, 30(1): 118-126. |
33 | DONG Z J, GE J C, LI K, et al.. Heritable targeted inactivation of Myostatin gene in yellow catfish (Pelteobagrus fulvidraco) using engineered zinc finger nucleases [J/OL]. PLoS One, 2011, 6(12): e28897 [2022-09-22]. . |
34 | YANO A, GUYOMARD R, NICOL B, et al.. An immune-related gene evolved into the master sex-determining gene in rainbow trout, Oncorhynchus mykiss [J]. Curr. Biol., 2012, 22(15): 1423-1428. |
35 | LI M H, YANG H H, LI M R, et al.. Antagonistic roles of Dmrt1 and Foxl2 in sex differentiation via estrogen production in tilapia as demonstrated by TALENs [J]. Endocrinology, 2013, 154(12): 4814-4825. |
36 | QIN Z K, LI Y, SU B F, et al.. Editing of the luteinizing hormone gene to sterilize channel catfish, Ictalurus punctatus, using a modified zinc finger nuclease technology with electroporation [J]. Mar. Biotechnol., 2016, 18(2): 255-263. |
37 | FENG K, LUO H R, LI Y M, et al.. High efficient gene targeting in rice field eel Monopterus albus by transcription activator-like effector nucleases [J]. Sci. Bull., 2017, 62(3): 162-164. |
38 | ZHONG Z, NIU P, WANG M, et al.. Targeted disruption of sp7 and myostatin with CRISPR-Cas9 results in severe bone defects and more muscular cells in common carp [J/OL]. Sci. Rep., 2016, 6: 22953 [2022-09-22]. . |
39 | CUI Z K, LIU Y, WANG W W, et al.. Genome editing reveals dmrt1 as an essential male sex-determining gene in Chinese tongue sole (Cynoglossus semilaevis) [J/OL]. Sci. Rep., 2017, 7: 42213 [2022-09-22]. . |
40 | LIU Q F, QI Y H, LIANG Q L, et al.. Targeted disruption of tyrosinase causes melanin reduction in Carassius auratus cuvieri and its hybrid progeny [J]. Sci. China Life Sci., 2019, 62(9): 1194-1202. |
41 | CHEN J, WANG W, TIAN Z H, et al.. Efficient gene transfer and gene editing in sterlet (Acipenser ruthenus) [J/OL]. Front. Genet., 2018, 9:117 [2022-09-22]. . |
42 | TAO B, TAN J, CHEN L, et al.. CRISPR/Cas9 system-based myostatin-targeted disruption promotes somatic growth and adipogenesis in loach, Misgurnus anguillicaudatus [J/OL]. Aquaculture, 2021, 544: 737097 [2022-09-22]. . |
43 | NIE C H, WAN S M, CHEN Y L, et al.. Single-cell transcriptomes and runx2b -/- mutants reveal the genetic signatures of intermuscular bone formation in zebrafish [J/OL]. Natl. Sci. Rev., 2022, 9: nwac152 [2022-09-22]. . |
44 | XU H, TONG G, YAN T, et al.. Transcriptomic analysis provides insights to reveal the bmp6 function related to the development of intermuscular bones in zebrafish [J/OL]. Front. Cell Dev. Biol., 2022, 10: 821471 [2022-09-22]. . |
45 | STAR B, NEDERBRAGT A J, JENTOFT S, et al.. The genome sequence of Atlantic cod reveals a unique immune system [J]. Nature, 2011, 477(7363): 207-210. |
46 | CHEN S L, ZHANG G J, SHAO C W, et al.. Whole-genome sequence of a flatfish provides insights into ZW sex chromosome evolution and adaptation to a benthic lifestyle [J]. Nat. Genet., 2014, 46(3): 253-260. |
47 | BERTHELOT C, BRUNET F, CHALOPIN D, et al.. The rainbow trout genome provides novel insights into evolution after whole-genome duplication in vertebrates [J/OL]. Nat. Commun., 2014, 5: 3657 [2022-09-22]. . |
48 | WU C W, ZHANG D, KAN M Y, et al.. The draft genome of the large yellow croaker reveals well-developed innate immunity [J]. Nat. Commun., 2014, 5: 6227 [2022-09-22]. . |
49 | XU P, ZHANG X, WANG X, et al.. Genome sequence and genetic diversity of the common carp, Cyprinus carpio [J]. Nat. Genet., 2014, 46(11): 1212-1219. |
50 | WANG Y P, LU Y, ZHANG Y, et al.. The draft genome of the grass carp (Ctenopharyngodon idellus) provides insights into its evolution and vegetarian adaptation [J]. Nat. Genet., 2015, 47(8): 625-631. |
51 | SHAO C W, BAO B L, XIE Z Y, et al.. The genome and transcriptome of Japanese flounder provide insights into flatfish asymmetry [J]. Nat. Genet., 2017, 49(1): 119-124. |
52 | DU K, STOCK M, KNEITZ S, et al.. The sterlet sturgeon genome sequence and the mechanisms of segmental rediploidization [J]. Nat. Ecol. Evol., 2020, 4(6): 841-852. |
53 | HOUSTON R D, BEAN T P, MACQUEEN D J, et al.. Harnessing genomics to fast-track genetic improvement in aquaculture [J]. Nat. Rev. Genet., 2020, 21(7): 389-409. |
54 | 石米娟,张婉婷,程莹寅,等.基于全基因组分析技术的鱼类育种技术原理与应用 [J]. 中国农业科技导报, 2022, 24(2): 33-41. |
SHI M J, ZHANG W T, CHENG Y Y, et al.. Fish breeding technology based on whole genome analysis and its application [J]. J. Agric. Sci. Technol., 2022, 24(2): 33-41. | |
55 | 宋海亮,胡红霞.基因组选择及其在水产动物育种中的研究进展[J].农业生物技术学报, 2022, 30(2): 379-392. |
SONG H L, HU H X. Genomic selection and its research progress in breeding of aquaculture species [J]. Chin. J. Agric. Biotechol., 2022, 30(2): 379-392. | |
56 | CIRUNA B, WEIDINGER G, KNAUT H, et al.. Production of maternal-zygotic mutant zebrafish by germ-line replacement [J]. Proc. Natl. Acad. Sci. USA, 2002, 99(23): 14919-14924. |
57 | TAKEUCHI Y, YOSHIZAKI G, TAKEUCHI T. Surrogate broodstock produces salmonids [J]. Nature, 2004, 430(7000): 629-630. |
58 | JIN Y H, ROBLEDO D, HICKEY J M, et al.. Surrogate broodstock to enhance biotechnology research and applications in aquaculture [J]. Biotechnol. Adv., 2021, 49: 107756 [2022-09-22]. . |
59 | ZHANG F H, LI X M, HE M D, et al.. Efficient generation of zebrafish maternal-zygotic mutants through transplantation of ectopically induced and Cas9/gRNA targeted primordial germ cells [J]. J. Genet. Genomics, 2020, 47(1): 37-47. |
60 | ZHANG F H, HAO Y K, LI X M, et al.. Surrogate production of genome-edited sperm from a different subfamily by spermatogonial stem cell transplantation [J]. Sci. China Life Sci., 2022, 65(5): 969-987. |
61 | GUI J F, ZHOU L, LI X Y. Rethinking fish biology and biotechnologies in the challenge era for burgeoning genome resources and strengthening food security [J/OL]. Water Biol. Security, 2022, 1(1): 100002 [2022-09-22]. . |
62 | 胡炜,汪亚平,朱作言.转基因鱼生态风险评价及其对策研究进展[J].中国科学: 生命科学, 2007, 37(4): 377-381. |
HU W, WANG Y P, ZHU Z Y. Progress in the evaluation of transgenic fish for possible ecological risk and its containment strategies [J]. Sci. Sin. Vitae, 2007, 37(4): 377-381. | |
63 | ZHANG Y, CHEN J, CUI X, et al.. A controllable on-off strategy for the reproductive containment of fish [J/OL]. Sci. Rep., 2015, 5: 7614 [2022-09-22]. . |
64 | FAN G Y, SONG Y, YANG L D, et al.. Initial data release and announcement of the 10,000 Fish Genomes Project (Fish10K) [J/OL]. Gigascience, 2020, 9(8): giaa080 [2022-09-22]. . |
65 | OKUTSU T, SHIKINA S, SAKAMOTO T, et al.. Successful production of functional Y eggs derived from spermatogonia transplanted into female recipients and subsequent production of YY supermales in rainbow trout, Oncorhynchus mykiss [J]. Aquaculture, 2015, 446: 298-302. |
66 | WANG Y Q, YE D, ZHANG F H, et al.. Cyp 11a2 is essential for oocyte development and spermatogonial stem cell differentiation in zebrafish [J/OL]. Endocrinology, 2022, 163(2):bqab258 [2022-09-22]. . |
67 | LI X M, ZHANG F H, WU N, et al.. A critical role of foxp3a-positive regulatory T cells in maintaining immune homeostasis in zebrafish testis development [J]. J. Genet. Genomics, 2020, 47(9): 547-561. |
[1] | Abudukeyoumu Abudurezike, Gulimila Aikebaier, Lin XU, Guorong YAN, Ning LIU, Lianjia ZHAO, Chaohong DENG, Palidan Aihaiti, Wei WANG. Review, Status and Suggestions of the Protection on New Agricultural Plant Varieties in China [J]. Journal of Agricultural Science and Technology, 2022, 24(9): 1-11. |
[2] | Shuai WANG, Wei SONG, Ronghuan WANG, Jiuran ZHAO. Progress of Maize Biology Research in China [J]. Journal of Agricultural Science and Technology, 2022, 24(7): 23-31. |
[3] | Yuan YI, Huiyun ZHANG, Liwei LIU, Jing WANG, Xuecheng ZHU, Na ZHAO, Guohua FENG. Effects of Slow-released Fertilizer Compound Humic Acid Instead of Urea on Grain Yield and Population Quality in Xumai New Varieties [J]. Journal of Agricultural Science and Technology, 2022, 24(4): 144-153. |
[4] | Binbin TAO, Wei HU. Research Progress on Sex Control Breeding of Fish [J]. Journal of Agricultural Science and Technology, 2022, 24(2): 1-10. |
[5] | CHANG Ya\|qing, TIAN Yi, ZHANG Wei\|jie. Progress of Mariculture Biological Genetic Breeding Technology in China [J]. , 2013, 15(6): 8-15. |
[6] | GENG Xiao-jun, ZHOU Bo. The High Yield and Stability Study of Ecological Identification Experiment on New Rice Varieties [J]. , 2009, 11(S2): 37-42. |
[7] | LIU Xun-sheng, XIE Ju-lin, YANG Tian-ying, QIN Zhi-shun, WANG Tao, WANG Yong-hua. The Selection and Application of a High-yield Soybean Variety Andou No.5 [J]. , 2009, 11(S2): 130-132. |
[8] | REN Shi-fu, LI BAO-hui . Practice and Thinking of New Agriculture and Forestry Varieties and Technology Integrated Demon stration Base in Hebei Agricultural University [J]. , 2005, 7(4): 72-76. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||