Journal of Agricultural Science and Technology ›› 2024, Vol. 26 ›› Issue (2): 127-136.DOI: 10.13304/j.nykjdb.2022.0835
• INTELLIGENT AGRICULTURE & AGRICULTURAL MACHINERY • Previous Articles
Lin CHEN1(), Nanhui YU1, Lizong WANG1, Jijun FAN2(
), Gang LEI1, Xiaopeng LIU3, Long ZHOU1, Jin ZHOU2
Received:
2022-10-02
Accepted:
2023-04-22
Online:
2024-02-15
Published:
2024-02-04
Contact:
Jijun FAN
陈林1(), 余南辉1, 王立宗1, 范吉军2(
), 雷港1, 刘晓鹏3, 周龙1, 周劲2
通讯作者:
范吉军
作者简介:
陈林 E-mail:1575810724@qq.com;
基金资助:
CLC Number:
Lin CHEN, Nanhui YU, Lizong WANG, Jijun FAN, Gang LEI, Xiaopeng LIU, Long ZHOU, Jin ZHOU. Measurement of Contact Parameters and Discrete Element Simulation Calibration of Rice Bran and Broken Rice[J]. Journal of Agricultural Science and Technology, 2024, 26(2): 127-136.
陈林, 余南辉, 王立宗, 范吉军, 雷港, 刘晓鹏, 周龙, 周劲. 米糠和碎米的接触参数测量与离散元仿真标定[J]. 中国农业科技导报, 2024, 26(2): 127-136.
材料 Material | 密度Density/(kg·m-3) | 泊松比 Poisson’s ratio | 剪切模量Shear modulus/Pa |
---|---|---|---|
碎米Broken rice | 1 500 | 0.4 | 1.1e+7 |
米糠Rice bran | 1 600 | 0.3 | 1.1e+7 |
亚克力Acrylic | 1 200 | 0.4 | 6.2e+7 |
Table 1 Material parameter
材料 Material | 密度Density/(kg·m-3) | 泊松比 Poisson’s ratio | 剪切模量Shear modulus/Pa |
---|---|---|---|
碎米Broken rice | 1 500 | 0.4 | 1.1e+7 |
米糠Rice bran | 1 600 | 0.3 | 1.1e+7 |
亚克力Acrylic | 1 200 | 0.4 | 6.2e+7 |
序号Number | 试验因素Test factor | 试验结果Test result | |||
---|---|---|---|---|---|
x5 | x6 | x7 | θy ´/(°) | ||
1 | 0.35 | 0.10 | 0.25 | 20.5 | 41.3 |
2 | 0.45 | 0.20 | 0.35 | 25.2 | 27.8 |
3 | 0.55 | 0.30 | 0.45 | 27.8 | 20.2 |
4 | 0.65 | 0.40 | 0.55 | 33.1 | 5.2 |
5 | 0.75 | 0.50 | 0.65 | 41.3 | 18.3 |
6 | 0.85 | 0.60 | 0.75 | 43.3 | 24.1 |
Table 2 Steepest climb test design and results
序号Number | 试验因素Test factor | 试验结果Test result | |||
---|---|---|---|---|---|
x5 | x6 | x7 | θy ´/(°) | ||
1 | 0.35 | 0.10 | 0.25 | 20.5 | 41.3 |
2 | 0.45 | 0.20 | 0.35 | 25.2 | 27.8 |
3 | 0.55 | 0.30 | 0.45 | 27.8 | 20.2 |
4 | 0.65 | 0.40 | 0.55 | 33.1 | 5.2 |
5 | 0.75 | 0.50 | 0.65 | 41.3 | 18.3 |
6 | 0.85 | 0.60 | 0.75 | 43.3 | 24.1 |
编码Code | 试验因素Test factor | ||
---|---|---|---|
x5 | x6 | x7 | |
-1.682 | 0.48 | 0.23 | 0.38 |
-1 | 0.55 | 0.30 | 0.45 |
0 | 0.65 | 0.40 | 0.55 |
1 | 0.75 | 0.50 | 0.65 |
1.682 | 0.82 | 0.57 | 0.72 |
Table 3 Simulation test factor coding
编码Code | 试验因素Test factor | ||
---|---|---|---|
x5 | x6 | x7 | |
-1.682 | 0.48 | 0.23 | 0.38 |
-1 | 0.55 | 0.30 | 0.45 |
0 | 0.65 | 0.40 | 0.55 |
1 | 0.75 | 0.50 | 0.65 |
1.682 | 0.82 | 0.57 | 0.72 |
序号Number | 试验因素Test factor | Y/% | ||
---|---|---|---|---|
A | B | C | ||
1 | -1 | -1 | -1 | 20.2 |
2 | 1 | -1 | -1 | 11.2 |
3 | -1 | 1 | -1 | 8.5 |
4 | 1 | 1 | -1 | 20.6 |
5 | -1 | -1 | 1 | 15.2 |
6 | 1 | -1 | 1 | 13.7 |
7 | -1 | 1 | 1 | 5.5 |
8 | 1 | 1 | 1 | 18.3 |
9 | -1.682 | 0 | 0 | 9.9 |
10 | 1.682 | 0 | 0 | 15.3 |
11 | 0 | -1.682 | 0 | 26.0 |
12 | 0 | 1.682 | 0 | 24.3 |
13 | 0 | 0 | -1.682 | 3.6 |
14 | 0 | 0 | 1.682 | 0.6 |
15 | 0 | 0 | 0 | 2.6 |
16 | 0 | 0 | 0 | 3.0 |
17 | 0 | 0 | 0 | 2.5 |
18 | 0 | 0 | 0 | 3.6 |
19 | 0 | 0 | 0 | 2.5 |
Table 4 Experimental design and results of quadratic orthogonal rotation combination
序号Number | 试验因素Test factor | Y/% | ||
---|---|---|---|---|
A | B | C | ||
1 | -1 | -1 | -1 | 20.2 |
2 | 1 | -1 | -1 | 11.2 |
3 | -1 | 1 | -1 | 8.5 |
4 | 1 | 1 | -1 | 20.6 |
5 | -1 | -1 | 1 | 15.2 |
6 | 1 | -1 | 1 | 13.7 |
7 | -1 | 1 | 1 | 5.5 |
8 | 1 | 1 | 1 | 18.3 |
9 | -1.682 | 0 | 0 | 9.9 |
10 | 1.682 | 0 | 0 | 15.3 |
11 | 0 | -1.682 | 0 | 26.0 |
12 | 0 | 1.682 | 0 | 24.3 |
13 | 0 | 0 | -1.682 | 3.6 |
14 | 0 | 0 | 1.682 | 0.6 |
15 | 0 | 0 | 0 | 2.6 |
16 | 0 | 0 | 0 | 3.0 |
17 | 0 | 0 | 0 | 2.5 |
18 | 0 | 0 | 0 | 3.6 |
19 | 0 | 0 | 0 | 2.5 |
方差来源 Soruce of variation | 平方和 Mean square | 自由度 Freedom | F值 F value | P值 P value |
---|---|---|---|---|
R2 =0.995 3 | RAdj2=0.990 7 | Predicted R2 =0.964 3 | CV=7.28% | Adep precision=38.901 0 |
模型Model | 1226.53 | 9 | 213.39 | <0.000 1** |
A | 45.33 | 1 | 70.98 | <0.000 1** |
B | 5.75 | 1 | 9.00 | 0.015 0* |
C | 9.59 | 1 | 15.02 | 0.003 8* |
AB | 169.28 | 1 | 265.07 | <0.000 1** |
AC | 11.52 | 1 | 18.04 | 0.002 2** |
BC | 0.245 0 | 1 | 0.383 6 | 0.551 0 |
A2 | 170.84 | 1 | 267.51 | <0.000 1** |
B2 | 868.12 | 1 | 1 359.34 | <0.000 1** |
C2 | 0.4161 | 1 | 0.651 6 | 0.440 4 |
残差Residual | 5.75 | 9 | ||
失拟项Lack of fit | 4.86 | 5 | 4.35 | 0.089 5 |
纯误差Pure error | 0.892 0 | 4 | ||
总和Sum | 1 232.28 | 18 |
Table 5 ANOVA of quadratic regression model
方差来源 Soruce of variation | 平方和 Mean square | 自由度 Freedom | F值 F value | P值 P value |
---|---|---|---|---|
R2 =0.995 3 | RAdj2=0.990 7 | Predicted R2 =0.964 3 | CV=7.28% | Adep precision=38.901 0 |
模型Model | 1226.53 | 9 | 213.39 | <0.000 1** |
A | 45.33 | 1 | 70.98 | <0.000 1** |
B | 5.75 | 1 | 9.00 | 0.015 0* |
C | 9.59 | 1 | 15.02 | 0.003 8* |
AB | 169.28 | 1 | 265.07 | <0.000 1** |
AC | 11.52 | 1 | 18.04 | 0.002 2** |
BC | 0.245 0 | 1 | 0.383 6 | 0.551 0 |
A2 | 170.84 | 1 | 267.51 | <0.000 1** |
B2 | 868.12 | 1 | 1 359.34 | <0.000 1** |
C2 | 0.4161 | 1 | 0.651 6 | 0.440 4 |
残差Residual | 5.75 | 9 | ||
失拟项Lack of fit | 4.86 | 5 | 4.35 | 0.089 5 |
纯误差Pure error | 0.892 0 | 4 | ||
总和Sum | 1 232.28 | 18 |
方差来源 Soruce of variation | 平方和 Mean square | 自由度 Freedom | F值 F value | P值 P value |
---|---|---|---|---|
R2 =0.998 8 | RAdj2=0.997 6 | Predicted R2 =0.985 3 | CV=8.38% | Adep precision =42.844 5 |
模型Model | 1 200.53 | 7 | 205.72 | <0.000 1** |
A | 40.37 | 1 | 48.43 | <0.000 1** |
B | 7.71 | 1 | 9.24 | 0.011 2* |
C | 12.08 | 1 | 14.49 | 0.002 9** |
AB | 156.65 | 1 | 187.90 | <0.000 1** |
AC | 8.40 | 1 | 10.08 | 0.008 8** |
A2 | 173.99 | 1 | 208.71 | <0.000 1** |
B2 | 885.88 | 1 | 1 062.64 | <0.000 1** |
残差Residual | 9.17 | 11 | ||
失拟项Lack of fit | 8.28 | 7 | 5.30 | 0.063 1 |
纯误差Pure error | 0.892 0 | 4 | ||
总和Sum | 1 209.70 | 18 |
Table 6 ANOVA of regression model after second optimization
方差来源 Soruce of variation | 平方和 Mean square | 自由度 Freedom | F值 F value | P值 P value |
---|---|---|---|---|
R2 =0.998 8 | RAdj2=0.997 6 | Predicted R2 =0.985 3 | CV=8.38% | Adep precision =42.844 5 |
模型Model | 1 200.53 | 7 | 205.72 | <0.000 1** |
A | 40.37 | 1 | 48.43 | <0.000 1** |
B | 7.71 | 1 | 9.24 | 0.011 2* |
C | 12.08 | 1 | 14.49 | 0.002 9** |
AB | 156.65 | 1 | 187.90 | <0.000 1** |
AC | 8.40 | 1 | 10.08 | 0.008 8** |
A2 | 173.99 | 1 | 208.71 | <0.000 1** |
B2 | 885.88 | 1 | 1 062.64 | <0.000 1** |
残差Residual | 9.17 | 11 | ||
失拟项Lack of fit | 8.28 | 7 | 5.30 | 0.063 1 |
纯误差Pure error | 0.892 0 | 4 | ||
总和Sum | 1 209.70 | 18 |
1 | 赵志浩,邓媛元,魏振承,等.大米适度加工和副产物综合利用现状及展望[J].广东农业科学,2020,47(11):144-152. |
ZHAO Z H, DENG Y Y, WEI Z C, et al.. Current status and prospect of appropriate processing of rice and comprehensive utilization of by-products [J]. Guangdong Agric. Sci., 2020,47(11):144-152. | |
2 | 邹昱成,鞠兴荣,何荣,等.食品配料米糠的研究进展[J].中国粮油学报,2018,33(7):123-129. |
ZOU Y C, JU X R, HE R, et al.. Research progress for rice bran as a food ingredient [J]. J. Chin. Cereals Oils Assoc., 2018, 33(7):123-129. | |
3 | 李永祥,李阳,王明旭,等.基于EDEM的大产量原粮振动清理筛筛分效果分析[J].中国油脂,2018,43(5):157-160. |
LI Y X, LI Y, WANG M X, et al.. Screening effect of large production raw grain vibration cleaning sieve based on EDEM [J]. China Oils Fats, 2018, 43(5):157-160. | |
4 | 党贺,赵宝生,马学东,等.CFD-DEM耦合的旋风式谷物清选装置的模拟研究[J].中国农机化学报,2020,41(4):86-91. |
DANG H, ZHAO B S, MA X D, et al.. Simulating research on cyclone grain cleaning device based on CFD-DEM coupling [J]. J. Chin. Agric. Mechan., 2020, 41(4):86-91. | |
5 | 王立宗,余南辉,范吉军,等.上吸风碾米机环形风道内颗粒运动特性[J].包装与食品机械,2022,40(2):25-30. |
WANG L Z, YU N H, FAN J J, et al.. Motion characteristics of particles in annular duct of top-suction rice mill [J]. Packag. Food Mach., 2022, 40(2):25-30. | |
6 | HU M J, et al.. Measurement and calibration of the discrete element parameters of coated delinted cotton seeds [J]. Agriculture, 2022, 12(2) :286-286. |
7 | LI H, ZENG R, NIU Z, et al.. A calibration method for contact parameters of maize kernels based on the discrete element method [J/OL]. Agriculture, 2022, 12(5): 664 [2023-10-26]. . |
8 | 刘羽平,张拓,刘妤.稻谷颗粒模型离散元接触参数标定与试验[J].中国农业科技导报,2019,21(11):70-76. |
LIU Y P, ZHANG T, LIU Y. Calibration and experiment of contact parameters of rice grain based on discrete element method [J]. J. Agric. Sci. Technol., 2019,21(11):70-76. | |
9 | 闫建伟,魏松,胡冬军,等.白萝卜种子颗粒模型离散元接触参数标定与试验[J].中国农业科技导报,2022,24(5):119-128. |
YAN J W, WEI S, HU D J, et al.. Parameter calibration of radish seeds with different filling particle radius by DEM [J]. J. Agric. Sci. Technol., 2022,24(5):119-128. | |
10 | 李飞翔,王鹏,王云飞,等.基于堆积试验的玉米包衣种子离散元参数标定[J].中国农业科技导报,2022,24(7):97-107. |
LI F X, WANG P, WANG Y F, et al.. Calibration of discrete element parameters of corn coated seeds based on stacking test [J]. J. Agric. Sci. Technol., 2022,24(7):97-107. | |
11 | 田剑锋,石林榕,杨小平,等.党参种子的离散元仿真参数标定与试验验证[J].干旱地区农业研究,2022,40(2):240-249. |
TIAN J F, SHI L R, YANG X P, et al.. Calibration and experimental validation of discrete element simulation parameters for Codonopsis pilosula seed [J]. Agric. Res. Arid Areas, 2022, 40(2):240-249. | |
12 | 张春,杜文亮,陈震,等.荞麦米筛分物料接触参数测量与离散元仿真标定[J].农机化研究,2019,41(1):46-51. |
ZHANG C, DU W L, CHEN Z, et al.. The measurement of contact parameters of buckwheat rice screening material and discrete element simulation calibration [J]. J. Agric. Mechan. Res., 2019, 41(1):46-51. | |
13 | 刘凡一,张舰,李博,等.基于堆积试验的小麦离散元参数分析及标定[J].农业工程学报,2016,32(12):247-253. |
LIU F Y, ZHANG J, LI B, et al.. Calibration of parameters of wheat required in discrete element method simulation based on repose angle of particle heap [J]. Trans. Chin. Soc. Agric. Eng., 2016, 32(12):247-253. | |
14 | 朱康,惠延波,周颖,等.基于X射线断层扫描的小麦籽粒模型构建及离散元参数标定[J].中国粮油学报,2022,37(9):218-223. |
ZHU K, HUI Y B, ZHOU Y, et al.. Gonstruction of wheat grain model and calibration of discrete element parameters based on X-ray tomography [J]. J. Chin. Cereals Oils Assoc., 2022,37(9):218-223. | |
15 | Balevičius R, Sielamowicz I, Mróz Z, et al.. Investigation of wall stress and outflow rate in a flat-bottomed bin: a comparison of the DEM model results with the experimental measurements [J]. Powder Technol., 2011, 214(3): 322-336. |
16 | 于庆旭,刘燕,陈小兵,等.基于离散元的三七种子仿真参数标定与试验[J].农业机械学报,2020,51(2):123-132. |
YU Q X, LIU Y, CHEN X B, et al.. Calibration and experiment of simulation parameters for Panax notoginseng seeds based on DEM [J]. Trans. Chin. Soc. Agric. Mach., 2020, 51(2):123-132. | |
17 | 吴孟宸,丛锦玲,闫琴,等.花生种子颗粒离散元仿真参数标定与试验[J].农业工程学报,2020,36(23):30-38. |
WU M C, CONG J L, YAN Q, et al.. Calibration andexperiments for discrete element simulation parameters ofpeanut seed particles [J]. Trans. Chin. Soc. Agric. Eng., 2020, 36(23):30-38. | |
18 | 王立宗.上吸风环形风道碾米机的设计与实验研究[D].武汉:武汉轻工大学,2021. |
WANG L Z. Design and experimental study of up-suction rice mill with annular air duct [D]. Wuhan: Wuhan Polytechnic University, 2021. | |
19 | 王立军,刘天华,冯鑫,等.农业和食品领域中颗粒碰撞恢复系数的研究进展[J].农业工程学报,2021,37(20):313-322. |
WANG L J, LIU T H, FENG X, et al.. Research progress of the restitution coefficients of collision of particles in agricultural and food fields [J]. Trans. Chin. Soc. Agric. Eng., 2021,37(20):313-322. | |
20 | 王成军,李耀明,马履中,等.小麦籽粒碰撞模型中恢复系数的测定[J].农业工程学报,2012,28(11):274-278. |
WANG C J, LI Y M, MA L Z, et al.. Experimental study on measurement of restitution coefficient of wheat seeds in collision models [J]. Trans. Chin. Soc. Agric. Eng., 2012, 28(11): 274-278. | |
21 | 冯斌,孙伟,石林榕,等.收获期马铃薯块茎碰撞恢复系数测定与影响因素分析[J].农业工程学报,2017,33(13):50-57. |
FENG B, SUN W, SHI L R, et al.. Determination of restitution coefficient of potato tubers collision in harvest and analysis of its influence factors [J]. Trans. Chin. Soc. Agric. Eng., 2017, 33(13): 50-57. | |
22 | 张胜伟,张瑞雨,陈天佑,等.绿豆种子离散元仿真参数标定与排种试验[J].农业机械学报,2022,53(03):71-79. |
ZHANG S W, ZHANG R Y, CHEN T Y, et al.. Discretc element simulation paramcter caliraion and seelingverification test of mung bean seeds [J]. Trans. Chin. Soc. Agric. Eng., 2022,53(3):71 -79. | |
23 | JÓZEF H, MICHAŁ B, RAFAŁ M, et al.. Determination of the restitution coefficient of seeds and coefficients of visco-elastic Hertz contact models for DEM simulations [J]. Biosys. Eng., 2017, 161:106-119. |
24 | FANG W Q, WANG X Z, et al.. Review of material parameter calibration method [J/OL]. Agriculture, 2022, 12(5): 706 [2023-10-26]. . |
25 | 韩燕龙,贾富国,唐玉荣,等.颗粒滚动摩擦系数对堆积特性的影响[J].物理学报,2014,63(17):173-179. |
HAN Y L, JIA F G, TANG Y R, et al.. Influence of granular coefficient of rolling friction on accumulation characteristics [J]. Acta Physiol. Sin., 2014,63(17):173-179. | |
26 | 贾富国,韩燕龙,刘扬,等.稻谷颗粒物料堆积角模拟预测方法[J].农业工程学报,2014,(11) :254-260. |
JIA F G, HAN Y L, LIU Y, et al.. Simulation predictionmethod of repose angle for rice particle materials [J]. Trans. Chin. Soc. Agric. Eng., 2014(11):254-260. | |
27 | GUO Z, CHEN X, LIU H, et al.. Theoretical and experimental investigation on angle of repose of biomass-coalblends [J]. Fuel, 2014, 116(15):131-139. |
28 | 吴爱祥,孙业志,刘湘平.散体动力学理论及其应用[M].北京:冶金工业出版社, 2002:1-364. |
29 | WANG J, XU C, XU Y, et al.. InfluencingFactors analysis and simulation calibration of restitution coefficient of rice grain [J/OL]. Appl. Sci., 2021, 11(13):5884 [2023-10-26]. . |
[1] | Zitao MA, Zhihao ZHAO, Wei QUAN, Fanggang SHI, Chen GAO, Mingliang WU. Calibration of Discrete Element Parameter of Rice Stubble Straw Based on EDEM [J]. Journal of Agricultural Science and Technology, 2023, 25(11): 103-113. |
[2] | Feixiang LI, Peng WANG, Yunfei WANG, Yuefeng GE, Kaiyi TANG, Dezhi LI. Calibration of Discrete Element Parameters of Corn Coated Seeds Based on Stacking Test [J]. Journal of Agricultural Science and Technology, 2022, 24(7): 97-107. |
[3] | Jianwei YAN, Song WEI, Dongjun HU, Qihe LIU, Fuigui ZHANG. Parameter Calibration of Radish Seeds with Different Filling Particle Radius by DEM [J]. Journal of Agricultural Science and Technology, 2022, 24(5): 119-128. |
[4] | QUAN Wei, WU Mingliang, GUAN Chunyun, LUO Haifeng. Experimental Study on the Shape Optimization of Soil Opener for Rapeseed Pot Seedling Transplanter [J]. Journal of Agricultural Science and Technology, 2021, 23(10): 97-106. |
[5] | LIU Yuping, ZHANG Tuo, LIU Yu*. Calibration and Experiment of Contact Parameters of Rice Grain Based on Discrete Element Method [J]. Journal of Agricultural Science and Technology, 2019, 21(11): 70-76. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||