Journal of Agricultural Science and Technology ›› 2023, Vol. 25 ›› Issue (11): 103-113.DOI: 10.13304/j.nykjdb.2022.1047
• INTELLIGENT AGRICULTURE & AGRICULTURAL MACHINERY • Previous Articles
Zitao MA1(), Zhihao ZHAO1, Wei QUAN2(
), Fanggang SHI1, Chen GAO1, Mingliang WU1
Received:
2022-11-30
Accepted:
2023-06-21
Online:
2023-11-15
Published:
2023-11-20
Contact:
Wei QUAN
马紫涛1(), 赵智豪1, 全伟2(
), 石方刚1, 高晨1, 吴明亮1
通讯作者:
全伟
作者简介:
马紫涛 E-mail:987885042@qq.com;
基金资助:
CLC Number:
Zitao MA, Zhihao ZHAO, Wei QUAN, Fanggang SHI, Chen GAO, Mingliang WU. Calibration of Discrete Element Parameter of Rice Stubble Straw Based on EDEM[J]. Journal of Agricultural Science and Technology, 2023, 25(11): 103-113.
马紫涛, 赵智豪, 全伟, 石方刚, 高晨, 吴明亮. 基于EDEM的水稻残茬秸秆离散元仿真参数标定[J]. 中国农业科技导报, 2023, 25(11): 103-113.
材料 Material | 参数 Parameter | 数值 Value |
---|---|---|
水稻秸秆 Rice straw | 泊松比 Poisson ratio | 0.4 |
剪切模量Modulus of shear /MPa | 1 | |
密度 Density/(kg·m-3) | 126.4 | |
钢 Steel | 泊松比 Poisson ratio | 0.3 |
剪切模量 Modulus of shear/MPa | 79 000 | |
密度 Density/(kg·m-3) | 7 800 |
Table 1 Material of parameter setting of discrete element simulation
材料 Material | 参数 Parameter | 数值 Value |
---|---|---|
水稻秸秆 Rice straw | 泊松比 Poisson ratio | 0.4 |
剪切模量Modulus of shear /MPa | 1 | |
密度 Density/(kg·m-3) | 126.4 | |
钢 Steel | 泊松比 Poisson ratio | 0.3 |
剪切模量 Modulus of shear/MPa | 79 000 | |
密度 Density/(kg·m-3) | 7 800 |
序号 No. | 法向临界应力 Normal critical stress/(1010 Pa) | 切向临界应力 Tangential critical stress/(106 Pa) | 粘结半径 Stalk bonding radius/mm | 抗剪力 Shear resistance/N | 相对误差 Relative error/% |
---|---|---|---|---|---|
1 | 7 | 7 | 0.50 | 14.3 | 39.9 |
2 | 6 | 6 | 0.75 | 20.4 | 14.2 |
3 | 5 | 5 | 1.00 | 26.2 | 10.1 |
4 | 4 | 4 | 1.25 | 21.3 | 10.5 |
5 | 3 | 3 | 1.50 | 13.7 | 42.4 |
Table 2 Design and results of steepest climbing test
序号 No. | 法向临界应力 Normal critical stress/(1010 Pa) | 切向临界应力 Tangential critical stress/(106 Pa) | 粘结半径 Stalk bonding radius/mm | 抗剪力 Shear resistance/N | 相对误差 Relative error/% |
---|---|---|---|---|---|
1 | 7 | 7 | 0.50 | 14.3 | 39.9 |
2 | 6 | 6 | 0.75 | 20.4 | 14.2 |
3 | 5 | 5 | 1.00 | 26.2 | 10.1 |
4 | 4 | 4 | 1.25 | 21.3 | 10.5 |
5 | 3 | 3 | 1.50 | 13.7 | 42.4 |
试验因素Test factor | 低水平Low level (-1) | 中水平Middle level (0) | 高水平High level (1) |
---|---|---|---|
x1:粘结半径 Stalk bonding radius/mm | 0.75 | 1.00 | 1.25 |
x2:法向临界应力Normal critical stress/(1010 Pa) | 4 | 5 | 6 |
x3:切向临界应力Tangential critical stress/(106 Pa) | 4 | 5 | 6 |
A:碰撞恢复系数 Collision restitution coefficient | 0.21 | 0.31 | 0.41 |
B:静摩擦系数 Static friction coefficient | 0.13 | 0.23 | 0.33 |
C:动摩擦系数 Rolling friction coefficient | 0.05 | 0.15 | 0.25 |
Table 3 Factors and levels of simulation test
试验因素Test factor | 低水平Low level (-1) | 中水平Middle level (0) | 高水平High level (1) |
---|---|---|---|
x1:粘结半径 Stalk bonding radius/mm | 0.75 | 1.00 | 1.25 |
x2:法向临界应力Normal critical stress/(1010 Pa) | 4 | 5 | 6 |
x3:切向临界应力Tangential critical stress/(106 Pa) | 4 | 5 | 6 |
A:碰撞恢复系数 Collision restitution coefficient | 0.21 | 0.31 | 0.41 |
B:静摩擦系数 Static friction coefficient | 0.13 | 0.23 | 0.33 |
C:动摩擦系数 Rolling friction coefficient | 0.05 | 0.15 | 0.25 |
指标 Index | 静摩擦系数 Static friction coefficient | 滚动摩擦系数 Rolling friction coefficient | 碰撞恢复系数 Collision restitution coefficient |
---|---|---|---|
秸秆 | 秸秆 | 秸秆 | |
钢 steel | 0.29 | 0.17 | 0.22 |
秸秆 straw | 0.23 | 0.15 | 0.31 |
Table 4 Results of straw contact mechanical parameters
指标 Index | 静摩擦系数 Static friction coefficient | 滚动摩擦系数 Rolling friction coefficient | 碰撞恢复系数 Collision restitution coefficient |
---|---|---|---|
秸秆 | 秸秆 | 秸秆 | |
钢 steel | 0.29 | 0.17 | 0.22 |
秸秆 straw | 0.23 | 0.15 | 0.31 |
序号 No. | 因素水平 Factor level | 响应指标 Response index | ||
---|---|---|---|---|
x1 | x2 | x3 | F:抗剪力 Shear resistance/N | |
1 | 1 | 1 | 0 | 21.3 |
2 | -1 | 1 | 0 | 16.9 |
3 | 1 | 0 | -1 | 13.9 |
4 | 0 | -1 | 1 | 24.0 |
5 | 0 | 1 | 1 | 23.9 |
6 | -1 | -1 | 0 | 13.9 |
7 | 0 | 0 | 0 | 27.1 |
8 | 1 | 0 | 1 | 16.5 |
9 | 1 | -1 | 0 | 14.1 |
10 | 0 | 0 | 0 | 25.2 |
11 | 0 | 0 | 0 | 26.2 |
12 | -1 | 0 | -1 | 15.7 |
13 | -1 | 0 | 1 | 16.8 |
14 | 0 | 0 | 0 | 24.2 |
15 | 0 | 1 | -1 | 24.1 |
16 | 0 | 0 | 0 | 25.8 |
17 | 0 | -1 | -1 | 16.1 |
Table 5 Experimental design and results
序号 No. | 因素水平 Factor level | 响应指标 Response index | ||
---|---|---|---|---|
x1 | x2 | x3 | F:抗剪力 Shear resistance/N | |
1 | 1 | 1 | 0 | 21.3 |
2 | -1 | 1 | 0 | 16.9 |
3 | 1 | 0 | -1 | 13.9 |
4 | 0 | -1 | 1 | 24.0 |
5 | 0 | 1 | 1 | 23.9 |
6 | -1 | -1 | 0 | 13.9 |
7 | 0 | 0 | 0 | 27.1 |
8 | 1 | 0 | 1 | 16.5 |
9 | 1 | -1 | 0 | 14.1 |
10 | 0 | 0 | 0 | 25.2 |
11 | 0 | 0 | 0 | 26.2 |
12 | -1 | 0 | -1 | 15.7 |
13 | -1 | 0 | 1 | 16.8 |
14 | 0 | 0 | 0 | 24.2 |
15 | 0 | 1 | -1 | 24.1 |
16 | 0 | 0 | 0 | 25.8 |
17 | 0 | -1 | -1 | 16.1 |
方差来源 Source of variance | 平方和 Sum of squares | 自由度 Degree of freedom | 均方 Mean square | F 值 F value | P 值 P value |
---|---|---|---|---|---|
模型 Model | 377.01 | 9 | 41.89 | 22.57 | 0.000 2** |
x1 | 0.78 | 1 | 0.78 | 0.42 | 0.537 2 |
x2 | 40.95 | 1 | 40.95 | 22.06 | 0.002 2** |
x3 | 16.24 | 1 | 16.24 | 8.75 | 0.021 2 * |
x1x2 | 4.41 | 1 | 4.41 | 2.38 | 0.167 1 |
x1x3 | 0.56 | 1 | 0.56 | 0.30 | 0.599 1 |
x2x3 | 16.40 | 1 | 16.40 | 8.84 | 0.020 7 * |
x12 | 251.27 | 1 | 251.27 | 135.38 | <0.000 1 ** |
x22 | 8.55 | 1 | 8.55 | 4.61 | 0.069 0 |
x32 | 21.32 | 1 | 21.32 | 11.48 | 0.011 6 * |
残差 Residual error | 12.99 | 7 | 1.86 | ||
失拟项 Lack of fit | 14.20 | 3 | 2.76 | 2.34 | 0.215 1 |
纯误差 Pure error | 4.72 | 4 | 1.18 | ||
总和 Total | 390.00 | 16 |
Table 6 Variance analysis of shearing resistance
方差来源 Source of variance | 平方和 Sum of squares | 自由度 Degree of freedom | 均方 Mean square | F 值 F value | P 值 P value |
---|---|---|---|---|---|
模型 Model | 377.01 | 9 | 41.89 | 22.57 | 0.000 2** |
x1 | 0.78 | 1 | 0.78 | 0.42 | 0.537 2 |
x2 | 40.95 | 1 | 40.95 | 22.06 | 0.002 2** |
x3 | 16.24 | 1 | 16.24 | 8.75 | 0.021 2 * |
x1x2 | 4.41 | 1 | 4.41 | 2.38 | 0.167 1 |
x1x3 | 0.56 | 1 | 0.56 | 0.30 | 0.599 1 |
x2x3 | 16.40 | 1 | 16.40 | 8.84 | 0.020 7 * |
x12 | 251.27 | 1 | 251.27 | 135.38 | <0.000 1 ** |
x22 | 8.55 | 1 | 8.55 | 4.61 | 0.069 0 |
x32 | 21.32 | 1 | 21.32 | 11.48 | 0.011 6 * |
残差 Residual error | 12.99 | 7 | 1.86 | ||
失拟项 Lack of fit | 14.20 | 3 | 2.76 | 2.34 | 0.215 1 |
纯误差 Pure error | 4.72 | 4 | 1.18 | ||
总和 Total | 390.00 | 16 |
序号 No. | 因素水平 Factor level | 响应指标 Response index | ||
---|---|---|---|---|
A | B | C | θ:堆积角 Stacking angle/(°) | |
1 | 0 | 0 | 0 | 24.1 |
2 | 0 | -1 | -1 | 20.1 |
3 | 0 | 0 | 0 | 23.8 |
4 | 0 | 0 | 0 | 24.8 |
5 | 0 | 0 | 0 | 23.9 |
6 | -1 | 1 | 0 | 24.2 |
7 | -1 | 0 | -1 | 21.8 |
8 | 0 | 0 | 0 | 24.1 |
9 | 1 | 0 | -1 | 22.8 |
10 | 1 | -1 | 0 | 23.4 |
11 | 0 | 1 | 1 | 25.5 |
12 | 0 | -1 | 1 | 22.8 |
13 | -1 | -1 | 0 | 20.6 |
14 | 1 | 1 | 0 | 25.5 |
15 | 1 | 0 | 1 | 24.2 |
16 | 0 | 1 | -1 | 26.6 |
17 | -1 | 0 | 1 | 23.1 |
Table 7 Experimental design and results
序号 No. | 因素水平 Factor level | 响应指标 Response index | ||
---|---|---|---|---|
A | B | C | θ:堆积角 Stacking angle/(°) | |
1 | 0 | 0 | 0 | 24.1 |
2 | 0 | -1 | -1 | 20.1 |
3 | 0 | 0 | 0 | 23.8 |
4 | 0 | 0 | 0 | 24.8 |
5 | 0 | 0 | 0 | 23.9 |
6 | -1 | 1 | 0 | 24.2 |
7 | -1 | 0 | -1 | 21.8 |
8 | 0 | 0 | 0 | 24.1 |
9 | 1 | 0 | -1 | 22.8 |
10 | 1 | -1 | 0 | 23.4 |
11 | 0 | 1 | 1 | 25.5 |
12 | 0 | -1 | 1 | 22.8 |
13 | -1 | -1 | 0 | 20.6 |
14 | 1 | 1 | 0 | 25.5 |
15 | 1 | 0 | 1 | 24.2 |
16 | 0 | 1 | -1 | 26.6 |
17 | -1 | 0 | 1 | 23.1 |
方差来源 Source of variance | 平方和 Sum of squares | 自由度 Degree of freedom | 均方 Mean square | F 值 F value | P 值 P value |
---|---|---|---|---|---|
模型 Model | 42.27 | 9 | 4.70 | 11.77 | 0.001 9** |
A | 4.81 | 1 | 4.81 | 12.04 | 0.010 4* |
B | 27.75 | 1 | 27.75 | 69.51 | <0.000 1** |
C | 2.31 | 1 | 2.31 | 5.79 | 0.047 0* |
AB | 0.56 | 1 | 0.56 | 1.41 | 0.273 9 |
AC | 0.025 | 1 | 0.025 | 0.063 | 0.939 1 |
BC | 3.61 | 1 | 3.61 | 9.04 | 0.019 7* |
A2 | 2.34 | 1 | 2.34 | 5.85 | 0.046 1* |
B2 | 0.038 | 1 | 0.038 | 0.095 | 0.925 1 |
C2 | 0.74 | 1 | 0.74 | 1.86 | 0.214 8 |
残差 Residual error | 2.79 | 7 | 0.40 | ||
失拟项 Lack of fit | 2.18 | 3 | 0.73 | 4.75 | 0.083 1 |
纯误差 Pure error | 0.61 | 4 | 0.15 | ||
总和 Total | 45.07 | 16 |
Table 8 Variance analysis of stacking angle
方差来源 Source of variance | 平方和 Sum of squares | 自由度 Degree of freedom | 均方 Mean square | F 值 F value | P 值 P value |
---|---|---|---|---|---|
模型 Model | 42.27 | 9 | 4.70 | 11.77 | 0.001 9** |
A | 4.81 | 1 | 4.81 | 12.04 | 0.010 4* |
B | 27.75 | 1 | 27.75 | 69.51 | <0.000 1** |
C | 2.31 | 1 | 2.31 | 5.79 | 0.047 0* |
AB | 0.56 | 1 | 0.56 | 1.41 | 0.273 9 |
AC | 0.025 | 1 | 0.025 | 0.063 | 0.939 1 |
BC | 3.61 | 1 | 3.61 | 9.04 | 0.019 7* |
A2 | 2.34 | 1 | 2.34 | 5.85 | 0.046 1* |
B2 | 0.038 | 1 | 0.038 | 0.095 | 0.925 1 |
C2 | 0.74 | 1 | 0.74 | 1.86 | 0.214 8 |
残差 Residual error | 2.79 | 7 | 0.40 | ||
失拟项 Lack of fit | 2.18 | 3 | 0.73 | 4.75 | 0.083 1 |
纯误差 Pure error | 0.61 | 4 | 0.15 | ||
总和 Total | 45.07 | 16 |
1 | 刘淑军, 李冬初, 黄晶, 等. 1988—2018年中国水稻秸秆资源时空分布特征及还田替代化肥潜力[J]. 农业工程学报, 2021,37(11):151-161. |
LIU S J, LI D C, HUANG J,et al.. Temporal and spatial distribution characteristics of rice stalk resources and its potential of synthetic fertilizers substitution returning to farmland in China from 1988 to 2018 [J]. Trans. Chin. Soc. Agric. Eng., 2021,37(11):151-161. | |
2 | 侯杰, 谢方平, 王修善, 等. 水稻茎秆接触物理参数测定与离散元仿真标定[J]. 江西农业大学学报, 2022,44(3):747-758. |
HOU J, XIE F P, WANG X S, et al.. Measurement of contact physical parameters of flexible rice straw and discrete element simulation calibration [J]. Acta Agric. Univ. Jiangxiensis, 2022,44(3):747-758. | |
3 | 邱进, 吴明亮, 方友祥, 等. 水稻秸秆利用研究现状与发展趋势[J]. 当代农机, 2015(4):72-75. |
QIU J, WU M L, FANG Y X,et al.. Research status and development trend of rice straw scales [J].Contemporary Farm Mach., 2015(4):72-75. | |
4 | 逯克鑫, 屈佳伟, 于晓芳, 等. 沙壤土条件下秸秆还田减施氮肥对不同玉米品种氮效率的影响[J]. 内蒙古农业大学学报(自然科学版), 2022, 43(5): 37-45. |
LU K X, QU J W, YU X F,et al.. Effect of straw returning and nitrogen fertilizer reduction on nitrogen efficiency of different maize varieties in sandy ioam soils [J]. J. Inner Mongolia Agric.Univ. (Nat. Sci. ), 2022, 43(5): 37-45. | |
5 | 张博睿, 蔡影, 刘文雯, 等. 水稻秸秆还田对小麦季农田径流氮磷及COD的影响[J]. 安徽科技学院学报, 2022,36(1):18-24. |
ZHANG B R, CAI Y, LIU W W,et al.. Rice straw return measures on nitrogen, phosphorus and COD of wheat season in farm runoff [J]. J. Anhui Sci. Technol. Univ., 2022,36(1):18-24. | |
6 | 崔思远, 朱新开, 张莀茜, 等. 水稻秸秆还田年限对稻麦轮作田土壤碳氮固存的影响[J]. 农业工程学报, 2019,35(7):115-121. |
CUI S Y, ZHU X K, ZHANG C Q,et al.. Effects of years of rice straw retention on soil carbon and nitrogen sequestration in rice-wheat system [J].Trans. Chin. Soc. Agric. Eng., 2019,35(7):115-121. | |
7 | 曹阳, 陈新兵, 沙之敏, 等. 水稻秸秆还田量对土壤重金属及小麦产量的影响[J]. 上海交通大学学报(农业科学版), 2019,37(4):6-11. |
CAO Y, CHEN X B, SHA Z M,et al.. Effect of rice straw returning on accumulation of heavy metals in soil and yield of wheat [J]. J. Shanghai Jiaotong Univ. (Agric. Sci.), 2019,37(4):6-11. | |
8 | 曹若梅. 水稻秸秆还田对土壤含水量的影响[J]. 安徽农业科学, 2019,47(18):85-87. |
CAO R M. Effects of returning rice straw to field on soil moisture content [J]. J. Anhui Agric. Sci., 2019,47(18):85-87. | |
9 | 邱进, 吴明亮, 官春云, 等. 动定刀同轴水稻秸秆切碎还田装置结构设计与试验[J]. 农业工程学报, 2015,31(10):11-19. |
QIU J, WU M L, GUAN C Y, et al.. Design and experiment of chopping device with dynamic fixed knife coaxial for rice straw [J].Trans. Chin. Soc. Agric. Eng., 2015,31(10):11-19. | |
10 | 薛惠岚,薛少平,杨青,等. 秸秆粉碎覆盖与施肥播种联合作业的实现及机具设计[J]. 农业工程学报, 2003, 19(3):104-107. |
XUE H L, XUE S P, YANG Q, et al.. Implementation of combined work of straw crushed for mulching and seeding with fertilizer and design of the machine [J].Trans. Chin. Soc. Agric. Eng., 2003, 19(3):104-107. | |
11 | 贾洪雷, 赵佳乐, 姜鑫铭, 等. 行间免耕播种机防堵装置设计与试验[J]. 农业工程学报, 2013,29(18):16-25. |
JIA H L, ZHAO J L, JIANG X M, et al.. Design and experiment of anti-blocking mechanism for inter-row no-tillage seeder [J]. Trans. Chin. Soc. Agric. Eng., 2013, 29(18): 16-25. | |
12 | 陈晓光, 武涛, 张增学, 等. 基于EDEM甘蔗切割器入土切割仿真试验分析[J]. 农机化研究, 2021,43(11):7-13. |
CHEN X G, WU T, ZHANG Z X, et al.. Simulation test analysis of cutting into the soil based on EDEM sugarcane cutter [J]. J. Agric. Mech. Res., 2021,43(11):7-13. | |
13 | 周里群, 许欣, 关汗青, 等. 基于离散元法的沥青混凝土振动切削过程的数值模拟[J]. 机械工程学报, 2017,53(22):166-175. |
ZHOU L Q, XU X, GUAN H Q,et al.. Numerical simulation of vibration cutting for asphalt concrete paving based on discrete element method [J]. J. Mech. Eng.,2017,53(22):166-175. | |
14 | 赵淑红, 高连龙, 袁溢文, 等. 基于离散元法的深松作业玉米秸秆运动规律[J]. 农业工程学报, 2021,37(20):53-62. |
ZHAO S H, GAO L L, YUAN Y W, et al.. Maize straw motion law in subsoiling operation using discrete element method [J].Trans. Chin. Soc. Agric. Eng.,2021,37(20):53-62. | |
15 | 耿端阳, 孙延成, 牟孝栋, 等. 基于差速辊的青贮玉米籽粒破碎仿真试验及优化[J]. 吉林大学学报(工学版), 2022,52(3):693-702. |
GENG D Y, SUN Y C, MOU X D, et al.. Simulation test and optimization of grain breakage of silage maize based on differential roller [J]. J. Jilin Univ. (Eng. Technol.) 2022,52(3):693-702. | |
16 | 张锋伟, 宋学锋, 张雪坤, 等. 玉米秸秆揉丝破碎过程力学特性仿真与试验[J]. 农业工程学报, 2019,35(9):58-65. |
ZHANG F W, SONG X F, ZHANG X K, et al.. Simulation and experiment on mechanical characteristics of kneading and crushing process of corn straw [J]. Trans. Chin. Soc. Agric. Eng., 2019,35(9):58-65. | |
17 | TEKESTE M Z, BALVANZ L R, HATFIELD J L, et al.. Discrete element modeling of cultivator sweep-to-soil interaction: worn and hardened edges effects on soil-tool forces and soil flow [J/OL]. J. Terramechanics, 2019, 82:1-11 [2022-10-30]. . |
18 | ABDIEL R L B, ULRICH H, THAI S D, et al.. Hypoplastic particle finite element model for cutting tool-soil interaction simulations: numerical analysis and experimental validation [J]. Underg. Space, 2018,3(1):61-71. |
19 | 马彦华, 宋春东, 宣传忠, 等. 苜蓿秸秆压缩仿真离散元模型参数标定[J]. 农业工程学报, 2020,36(11):22-30. |
MA Y H, SONG C D, XUAN C Z, et al.. Parameters calibration of discrete element model for alfalfa straw compression simulation [J]. Trans. Chin. Soc. Agric. Eng., 2020,36(11):22-30. | |
20 | 张涛, 刘飞, 赵满全, 等. 玉米秸秆接触物理参数测定与离散元仿真标定[J]. 中国农业大学学报, 2018,23(4):120-127. |
ZHANG T, LIU F, ZHAO M Q, et al..Determination of corn stalk contact parameters and calibration of discrete element method simulation [J]. J. China Agric. Univ., 2018,23(4):120-127. | |
21 | 王万章, 刘婉茹, 袁玲合, 等. 基于EDEM的收获期小麦植株离散元参数标定[J]. 河南农业大学学报, 2021,55(1):64-72. |
WANG W Z, LIU W R, YUAN L H, et al..Calibration of discrete element parameters of wheat plants at harvest period based on EDEM [J]. J. Henan Agric. Univ., 2021,55(1):64-72. | |
22 | ANNOUSSAMY M, RICHARD G, RECOUS S, et al.. Change in mechanical properties of wheat straw due to decomposition abd moisture [J]. Appl. Eng. Agric., 2000,16(6):657-664. |
23 | 刘凡一. 清选装置中小麦颗粒和短茎秆离散元建模研究[D]. 杨凌:西北农林科技大学, 2018. |
LIU F Y. Discrete element modelling of the wheat particles and short straw in cleaning devices [D]. Yangling: Northwest A&F Universit, 2018. | |
24 | JIA H L, DENG J Y, DENG Y L, et al.. Contact parameter analysis and calibration in discrete element simulation of rice straw [J]. Int. J. Agric. Biol. Eng, 2021,14(3):72-81. |
25 | MAK J, CHEN Y, SADEK M A. Determining parameters of a discrete element model for soil-tool interaction [J]. Soil Till. Res., 2012,118:117-122. |
26 | 丁启朔, 任骏, BELAL Eisa Adam, 等. 湿粘水稻土深松过程离散元分析[J]. 农业机械学报, 2017,48(3):38-48. |
DING Q S, REN J, BELAL E A, et al.. DEM analysis of subsoiling process in wet clayey paddy soil [J] Trans. Chin. Soc. Agric. Eng, 2017,48(3):38-48. | |
27 | 沈成, 李显旺, 张彬, 等. 苎麻茎秆台架切割试验与分析[J]. 农业工程学报, 2016,32(1):68-76. |
SHEN C, LI X W, ZHANG B, et al..Bench experiment and analysis on ramie stalk cutting [J] Trans. Chin. Soc. Agric. Eng., 2016,32(1):68-76. | |
28 | 王洪波,樊志鹏,乌兰图雅,等.揉碎玉米秸秆螺旋输送仿真离散元模型参数标定[J].中国农业科技导报,2023,25(3):96-106. |
WANG H B, FAN Z P, Wulantuya, et al..Parameter calibration of discrete element model for simulation of crushed corn stalk screw conveying [J]. J. Agric. Sci. Technol. China,2023,25(3): 96-106. | |
29 | 陈声显. 玉米秸秆力学模型及压缩成型设备研究[D].长春:吉林大学, 2011. |
CHEN S X. Research on mechanical model and compression molding equipment of corn straw [D]. Changchun: Jilin University, 2011. | |
30 | 赵吉坤,宋武斌,李晶晶.基于EDEM的水稻秸秆建模及力学性能分析[J].土壤通报,2020,51(5):1086-1093. |
ZHAO J K, SONG W B, LI J J.Modeling and mechanical analysis of rice straw based on discrete element mechanical model [J]. Chin. J. Soil Sci., 2020,51(5):1086-1093. |
[1] | Zheng QIAN, Sunzhe YANG, Guoqing ZHANG, Ziwei GUO, Linpeng ZHANG, Jiaxing WAN, Hongyun YANG. Rice Nitrogen Nutrition Diagnosis Based on Convolutional Neural Network [J]. Journal of Agricultural Science and Technology, 2023, 25(9): 113-121. |
[2] | Daigui GUO, Yulan LIAO, Xihui ZHANG, Chengyu YUAN, Zhongye WU. Parameter Optimization and Experiment of Cassava Planter [J]. Journal of Agricultural Science and Technology, 2023, 25(9): 122-130. |
[3] | Huijun LI, Weijian ZHANG, Weijian WU, Gaoyang LI, Yijie CHEN, Fengcheng HUANG, Yongxiang HUANG, Zhong LIN, Zhen ZHEN. Effects of Sea Rice on Soil Chemical Properties and Microbial Community Structure in Coastal Solonchaks [J]. Journal of Agricultural Science and Technology, 2023, 25(9): 147-156. |
[4] | Jingjuan GAO, Chenyu ZHU, Yuqin KE, Chaoyuan ZHENG, Chunying LI, Wenqing LI. Effects of Organic Fertilizer Application Period on Carbon and Nitrogen Metabolism in Flue-cured Tobacco Under Tobacco-Rice Rotation [J]. Journal of Agricultural Science and Technology, 2023, 25(9): 157-165. |
[5] | Shegang SHAO, Ting LI, Yong LIU, Lanwen LIN, Dong ZHANG, Dong NI, Junjie LI, Li’an ZHU. Effects of Exogenous Promoting Bacteria Agent on Decomposition Characteristics and Microbial Community Structure of Rice Straw [J]. Journal of Agricultural Science and Technology, 2023, 25(9): 166-177. |
[6] | Lili SHAN. Effects of Low Temperature During Booting Stage on Rice Physiology and Alleviating Effect of Exogenous Melatonin [J]. Journal of Agricultural Science and Technology, 2023, 25(9): 23-33. |
[7] | Ying ZHOU, Jingyong LI, Linxiu DAI, Dicai AO, Ziyi LI, Fan YANG, Junwei GU, Qiang XU, Zhi DOU, Hui GAO. Effect of Melatonin Spraying on Rice Yield Formation and Lodging Resistance Under Rice-Crayfish Coculture Mode [J]. Journal of Agricultural Science and Technology, 2023, 25(9): 34-42. |
[8] | Zhigang ZHENG, Li XIANG, Gongyi LIU, Cai XU, Bin QIN, Weiqin WANG, Huabin ZHENG, Qiyuan TANG. Effects of Nitrogen Application Rate and Density on Growth and Yield of Orderly Machine-thrown Early Rice [J]. Journal of Agricultural Science and Technology, 2023, 25(7): 132-143. |
[9] | Dongmeng ZHANG, Dongping YAO, Jun WU, Qiuhong LUO, Wen ZHUANG, Xionglun LIU, Qiyun DENG, Bin BAI. Effect of Natural Low Temperature on Cooking and Eating Quality of Rice During Grain Filling Stage [J]. Journal of Agricultural Science and Technology, 2023, 25(6): 144-153. |
[10] | Zhongxiu RAO, Jimin SUN, Na ZHANG, Longtao LI, Chunhua DONG, Zengping YANG, Fengqiu HUANG. Impacts from Adding Artemisia argyi Straw into Substrates on Growth and Quality of Pleurotus ostreatus [J]. Journal of Agricultural Science and Technology, 2023, 25(6): 208-215. |
[11] | Hongyuan LIU, Zhihua ZHOU, Guangxin ZHAO, Yanjun WANG, Nana WANG. Effects of Modified Cellulose on Germination and Dryland Soil Physicochemical Properties of Upland Rice [J]. Journal of Agricultural Science and Technology, 2023, 25(5): 168-175. |
[12] | Fenfang XIAO, Conghe ZHANG, Hui WANG, Yafeng YE, Daolin ZHANG, Heting WANG, Bo LI, Yuejin WU, Binmei LIU. Simulation and Optimization of Pneumatic Conveying System for Hybrid Rice Pollen Collection Device [J]. Journal of Agricultural Science and Technology, 2023, 25(4): 110-122. |
[13] | Xiaoxia DING, Shengjun MA, Wenfeng CHEN, Aogang ZHANG, Hongchao YU, Yilihanmujiang Jiapaer. Effects of Rhizobia Inoculated On Content of Main Active Ingredients in Licorice and Multivariate Statistical Analysis [J]. Journal of Agricultural Science and Technology, 2023, 25(3): 212-220. |
[14] | Yunzhu ZHENG, Shuchen SUN. Effects of Straw Biochar and Straw on Soil Nutrients and Crop Yield in Wheat-Maize Rotation System [J]. Journal of Agricultural Science and Technology, 2023, 25(2): 152-162. |
[15] | Riping GAO, Xiaoyue LIU, Zuntian PAN, Dongxu ZHANG, Xiangjun SHEN, Yanfang LI, Jie HUANG, Yupeng JING. Effects of Biological Agents on Hydrothermal Status and Enzyme Activity During Composting of Corn Straw [J]. Journal of Agricultural Science and Technology, 2023, 25(2): 174-181. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||