Journal of Agricultural Science and Technology ›› 2023, Vol. 25 ›› Issue (9): 34-42.DOI: 10.13304/j.nykjdb.2023.0237
• BIOTECHNOLOGY & LIFE SCIENCE • Previous Articles Next Articles
Ying ZHOU(), Jingyong LI, Linxiu DAI, Dicai AO, Ziyi LI, Fan YANG, Junwei GU, Qiang XU(), Zhi DOU, Hui GAO
Received:
2023-03-28
Accepted:
2023-06-09
Online:
2023-09-15
Published:
2023-09-28
Contact:
Qiang XU
周影(), 李京咏, 戴林秀, 敖弟彩, 李梓逸, 杨帆, 顾军伟, 徐强(), 窦志, 高辉
通讯作者:
徐强
作者简介:
周影 E-mail: 18262873545@163.com;
基金资助:
CLC Number:
Ying ZHOU, Jingyong LI, Linxiu DAI, Dicai AO, Ziyi LI, Fan YANG, Junwei GU, Qiang XU, Zhi DOU, Hui GAO. Effect of Melatonin Spraying on Rice Yield Formation and Lodging Resistance Under Rice-Crayfish Coculture Mode[J]. Journal of Agricultural Science and Technology, 2023, 25(9): 34-42.
周影, 李京咏, 戴林秀, 敖弟彩, 李梓逸, 杨帆, 顾军伟, 徐强, 窦志, 高辉. 稻虾共作模式下喷施褪黑素对水稻产量形成和抗倒伏特性的影响[J]. 中国农业科技导报, 2023, 25(9): 34-42.
指标Indicates | CK | MT | t值t value |
---|---|---|---|
有效穗数Panicles number/(104·hm-2) | 329.22±7.41 | 299.29±7.41 | 4.95** |
穗粒数Spikelets per panicle | 134.34±3.06 | 147.79±3.61 | -4.92** |
结实率Seed setting rate/% | 94.57±1.00 | 92.79±0.39 | 2.87* |
千粒重1 000-grain weight/g | 30.12±0.48 | 30.83±0.21 | -2.35 |
产量Yield/(kg·hm-2) | 9 838±455 | 9 261±287 | 2.76 |
Table 1 Yield and yield factors under different treatments
指标Indicates | CK | MT | t值t value |
---|---|---|---|
有效穗数Panicles number/(104·hm-2) | 329.22±7.41 | 299.29±7.41 | 4.95** |
穗粒数Spikelets per panicle | 134.34±3.06 | 147.79±3.61 | -4.92** |
结实率Seed setting rate/% | 94.57±1.00 | 92.79±0.39 | 2.87* |
千粒重1 000-grain weight/g | 30.12±0.48 | 30.83±0.21 | -2.35 |
产量Yield/(kg·hm-2) | 9 838±455 | 9 261±287 | 2.76 |
指标Index | CK | MT | t值t value |
---|---|---|---|
株高Plant height/cm | 98.80±3.50 | 85.92±2.48 | -6.00** |
鲜重Fresh weight/g | 21.95±2.16 | 21.40±1.34 | -0.43 |
单穗重Panicle weight/g | 4.24±0.51 | 3.59±0.44 | -1.90 |
穗颈高度Panicle length/cm | 81.58±4.10 | 69.42±2.75 | -4.92** |
重心高Gravity center height/cm | 46.35±3.04 | 35.72±2.02 | -5.82** |
茎粗Culm diameter/mm | 5.16±0.39 | 4.89±0.30 | -1.09 |
壁厚Culm wall thickness/mm | 0.80±0.29 | 0.69±0.05 | -0.82 |
茎重比Culm density/(mg·cm-1) | 51.03±2.27 | 72.99±1.82 | -7.56** |
叶鞘重比Leaf sheath density/(mg·cm-1) | 27.23±2.05 | 32.98±2.31 | -1.86 |
Table 2 Morphological traits of rice plants under different treatments
指标Index | CK | MT | t值t value |
---|---|---|---|
株高Plant height/cm | 98.80±3.50 | 85.92±2.48 | -6.00** |
鲜重Fresh weight/g | 21.95±2.16 | 21.40±1.34 | -0.43 |
单穗重Panicle weight/g | 4.24±0.51 | 3.59±0.44 | -1.90 |
穗颈高度Panicle length/cm | 81.58±4.10 | 69.42±2.75 | -4.92** |
重心高Gravity center height/cm | 46.35±3.04 | 35.72±2.02 | -5.82** |
茎粗Culm diameter/mm | 5.16±0.39 | 4.89±0.30 | -1.09 |
壁厚Culm wall thickness/mm | 0.80±0.29 | 0.69±0.05 | -0.82 |
茎重比Culm density/(mg·cm-1) | 51.03±2.27 | 72.99±1.82 | -7.56** |
叶鞘重比Leaf sheath density/(mg·cm-1) | 27.23±2.05 | 32.98±2.31 | -1.86 |
Fig. 2 Morphological traits of rice plants under different treatmentsNote: a1—Outer diameters of minor axis; a2—Inner diameters of minor axis; b1—Outer diameters of major axis; b2—Inner diameters of major axis; N1~N7 indicate 1st~7th internode; * indicates significant difference (P<0.05), and ns indicates no significant difference (P>0.05).
指标Index | CK | MT | t值t value |
---|---|---|---|
抗折力Flexural resistance/N | 15.01±0.97 | 18.37±0.31 | 5.82** |
折断弯矩Breaking strength/(g·cm) | 3 003±195 | 3 674±62 | 5.82** |
断面系数Section modulus/mm | 9.98±3.60 | 7.94±1.31 | -1.11 |
弯曲应力Bending stress/(g·mm-2) | 3 359±1 385 | 4 702±823 | 1.71 |
弯曲力矩Bending moment by whole plant/(g·cm) | 2 043±240 | 1 622±78 | -2.94** |
折断部位至穗顶的鲜重FW/g | 20.61±1.99 | 19.79±0.67 | -0.68 |
折断部位至穗顶的距离SL/cm | 94.13±3.70 | 81.85±1.89 | -5.04** |
倒伏指数Lodging index/% | 68.02±6.77 | 44.19±2.37 | -5.76** |
Table 3 Mechanical traits of internode N2 of rice stem under different treatments
指标Index | CK | MT | t值t value |
---|---|---|---|
抗折力Flexural resistance/N | 15.01±0.97 | 18.37±0.31 | 5.82** |
折断弯矩Breaking strength/(g·cm) | 3 003±195 | 3 674±62 | 5.82** |
断面系数Section modulus/mm | 9.98±3.60 | 7.94±1.31 | -1.11 |
弯曲应力Bending stress/(g·mm-2) | 3 359±1 385 | 4 702±823 | 1.71 |
弯曲力矩Bending moment by whole plant/(g·cm) | 2 043±240 | 1 622±78 | -2.94** |
折断部位至穗顶的鲜重FW/g | 20.61±1.99 | 19.79±0.67 | -0.68 |
折断部位至穗顶的距离SL/cm | 94.13±3.70 | 81.85±1.89 | -5.04** |
倒伏指数Lodging index/% | 68.02±6.77 | 44.19±2.37 | -5.76** |
指标Index | CK | MT | t值t value | |
---|---|---|---|---|
可溶性糖Soluble sugar/(mg·g-1) | 茎Culm | 68.21±3.28 | 83.01±12.25 | -2.02 |
鞘Leaf sheath | 58.87±7.84 | 70.34±7.06 | -1.88 | |
淀粉Starch/(mg·g-1) | 茎Culm | 95.45±0.21 | 105.92±0.48 | -1.99 |
鞘Leaf sheath | 27.91±0.05 | 56.51±0.06 | -37.14** | |
木质素Lignin/% | 茎Culm | 15.21±0.31 | 24.43±0.20 | 25.07** |
鞘Leaf sheath | 13.56±0.26 | 22.61±0.09 | 33.42** | |
纤维素Cellulose/% | 茎Culm | 15.69±1.20 | 25.66±2.31 | 3.90* |
鞘Leaf sheath | 24.79±1.30 | 32.80±0.54 | 5.72** |
Table 4 Chemical composition of Internode N2 of rice stem under different treatments
指标Index | CK | MT | t值t value | |
---|---|---|---|---|
可溶性糖Soluble sugar/(mg·g-1) | 茎Culm | 68.21±3.28 | 83.01±12.25 | -2.02 |
鞘Leaf sheath | 58.87±7.84 | 70.34±7.06 | -1.88 | |
淀粉Starch/(mg·g-1) | 茎Culm | 95.45±0.21 | 105.92±0.48 | -1.99 |
鞘Leaf sheath | 27.91±0.05 | 56.51±0.06 | -37.14** | |
木质素Lignin/% | 茎Culm | 15.21±0.31 | 24.43±0.20 | 25.07** |
鞘Leaf sheath | 13.56±0.26 | 22.61±0.09 | 33.42** | |
纤维素Cellulose/% | 茎Culm | 15.69±1.20 | 25.66±2.31 | 3.90* |
鞘Leaf sheath | 24.79±1.30 | 32.80±0.54 | 5.72** |
Fig. 4 Correlation analysis between culm and lodging characteristics of rice under melatonin treatmentNote: PH—Plant height; PL—Panicle length; GCH—Gravity center high; CD—Culm diameter; TCW—Culm wall thickness; F—Flexural resistance; M—Breaking strength; Z—Section modulus; BS—Bending stress; WP—Bending moment by whole plant; FW—Fresh weight from breaking point to panicle top; SL—Length from breaking point to panicle top; LI—Lodging index; MWL—Lignin; CEL—Cellulose; SS—Soluble sugars; S—Starch, * and ** indicate significant correlations at P<0.05 and P<0.01 levels, respectively.
1 | XU Q, PENG X, GUO H, et al.. Rice-crayfish coculture delivers more nutrition at a lower environmental cost [J]. Sust. Prod. Cons., 2021, 29(1):14-24. |
2 | 蒋榕,徐强,李京咏,等.稻虾共作模式碳足迹评价的敏感性和不确定性分析[J].中国生态农业学报,2022,30(10):1577-1587. |
JIANG R, XU Q, LI J Y, et al.. Sensitivity and uncertainty analysis of carbon footprint evaluation: a case study of rice-crayfish coculture in china [J]. Chin. J. Eco-Agric., 2022, 30(10):1577-1587. | |
3 | 于秀娟,郝向举,党子乔,等.中国小龙虾产业发展报告(2022)[J].中国水产,2022(6):47-54. |
4 | 陈林荣,李阳阳,郭哈伦,等.深水灌溉对稻渔共生水稻抗倒伏性的影响研究进展[J].中国稻米,2021,27(5):102-104. |
CHEN L R, LI Y Y, GUO H L, et al.. Research progress on the effects of deep-water irrigation on rice lodging resistance in rice-fishing symbiosis [J]. China Rice, 2021, 27(5):102-104. | |
5 | GAO H, DOU Z, CHEN L R, et al.. Effects of semi-deep water irrigation on hybrid indica rice lodging resistance [J/OL]. Front. Plant Sci., 2022,13:1038129 [2023-02-20]. . |
6 | 徐强,李京咏,戴林秀,等.氮肥管理对稻虾共作模式水稻产量和抗倒伏特性的影响[J].中国稻米,2022,28(6):30-36. |
XU Q, LI J Y, DAI L X, et al.. Effects of nitrogen management on yield and lodging resistance of rice under rice-cray fish coculture [J]. China Rice, 2022, 28(6):30-36. | |
7 | 鞠晓晨,胡杰,高冠军,等.水稻茎秆抗倒伏相关QTL定位与分析[J].分子植物育种,2016,14(2):475-481. |
JU X C, HU J, GAO G J, et al.. Relevant QTL mapping and analysis of lodging resistance in rice [J]. Mol. Plant Breeding, 2016, 14(2):475-481. | |
8 | 邢志鹏,吴培,朱明,等.机械化种植方式对不同品种水稻株型及抗倒伏能力的影响[J].农业工程学报,2017,33(1):52-62. |
XING Z P, WU P, ZHU M, et al.. Effect of mechanized planting methods on plant type and lodging resistance of different rice varieties [J]. Trans. Chin. Soc. Agric. Eng., 2017, 33(1):52-62. | |
9 | 何振嘉,范王涛,杜宜春,等.基于土体有机重构的水肥耦合对土壤理化性质和水稻产量的影响[J].中国农业科技导报,2022,24(3):176-185. |
HE Z J, FAN W T, DU Y C, et al.. Effects of water and fertilizer coupling on the physical and chemical properties of rice soil and yield based on soil organic reconstruction [J]. J. Agric. Sci. Technol., 2022, 24(3):176-185. | |
10 | 文廷刚,王伟中,杨文飞,等.水稻茎秆形态特征与抗倒伏能力对外源植物生长调节剂的响应差异[J].南方农业学报,2020,51(1):48-55. |
WEN T G, WANG W Z, YANG W F, et al.. Morphological characteristics and lodging resistance of rice stems and its response to exogenous plant growth regulators [J]. J. Southern Agric., 2020, 51(1):48-55. | |
11 | ZHANG W J, YAO X, DUAN X J, et al.. Foliar application uniconazole enhanced lodging resistance of hybrid indica rice by altering basal stem quality under poor light stress [J]. Agron. J., 2021, 114(1): 524-544. |
12 | 鱼冰星,王宏富,王振华,等.多效唑对谷子茎秆特征及抗倒性的影响[J].中国农业科技导报,2021,23(8):37-44. |
YU B X, WANG H F, WANG Z H, et al.. Effects of paclobutrazol on stalk characteristics and lodging resistance of foxtail milet [J]. J. Agric. Sci. Technol., 2021, 23(8):37-44. | |
13 | FERRARI S, POLYCARPO G, VARGAS P F, et al.. Mix of trinexapac-ethyl and nitrogen application to reduce upland rice plant height and increase yield [J]. Plant Growth Regul., 2022, 96(1):209-219. |
14 | NA C, HAMAYUN M, KHAN A L, et al.. Influence of prohexadione-calcium, trinexapac-ethyl and hexaconazole on lodging characteristic and gibberellin biosynthesis of rice (Oryza sativa L.) [J]. Afr. J. Biotechnol., 2011, 10(61):13097-13106. |
15 | CHEN Y L, LI R K, GE J F, et al.. Exogenous melatonin confers enhanced salinity tolerance in rice by blocking the ROS burst and improving Na+/K+ homeostasis [J/OL]. Environ. Exp. Bot., 2021,189:104530 [2023-02-20]. . |
16 | NAWAZ K, CHAUDHARY R, SARWAR A, et al.. Melatonin as master regulator in plant growth, development and stress alleviator for sustainable agricultural production: current status and future perspectives [J/OL]. Sustainability, 2020, 13(1):294 [2023-02-20]. . |
17 | YE J, YANG W J, LI Y L, et al.. Seed pre-soaking with melatonin improves wheat yield by delaying leaf senescence and promoting root development [J/OL]. Agronomy, 2020, 10(1):84 [2023-02-20]. |
18 | PARK S, BACK K. Melatonin promotes seminal root elongation and root growth in transgenic rice after germination [J]. J. Pineal Res., 2012, 53(4):385-389. |
19 | HAN Q, HUANG B, DING C, et al.. Effects of melatonin on anti-oxidative systems and photosystem II in cold-stressed rice seedlings [J/OL]. Front. Plant Sci., 2017, 8:785 [2023-02-20]. . |
20 | AGATHOKLEOUS E, ZHOU B, XU J, et al.. Exogenous application of melatonin to plants, algae, and harvested products to sustain agricultural productivity and enhance nutritional and nutraceutical value: a meta-analysis [J/OL]. Environ. Res., 2021, 200:111746 [2023-02-20]. . |
21 | FAN X, ZHAO J, SUN X, et al.. Exogenous melatonin improves the quality performance of rice under high temperature during grain filling [J/OL]. Agronomy, 2022, 12:949 [2023-02-20]. . |
22 | ZHAO D, LUAN Y, SHI W, et al.. Melatonin enhances stem strength by increasing the lignin content and secondary cell wall thickness in herbaceous peony [J]. J. Exp Bot., 2022, 73(17):5974-5991. |
23 | XU Q, DAI L X, SHANGZ Y, et al.. Application of controlled-release urea to maintain rice yield and mitigate greenhouse gas emissions of rice-crayfish coculture field [J/OL]. Agric. Ecosyst. Environ., 2023, 344:108312 [2023-02-20]. . |
24 | OOKAWA T, YASUDA K, KATO H, et al.. Biomass production and lodging resistance in ‘Leaf Star’, a new long-culm rice forage cultivar [J]. Plant Prod. Sci., 2010, 13(1):58-66. |
25 | ZHANG W, WU L, DING Y, et al.. Nitrogen fertilizer application affects lodging resistance by altering secondary cell wall synthesis in japonica rice (Oryza sativa) [J]. J. Plant Res., 2017, 130(5): 859-871. |
26 | JIANG Y, HUANG S, MA L, et al.. Effect of exogenous melatonin application on the grain yield and antioxidant capacity in aromatic rice under combined lead-cadmium stress [J/OL]. Antioxidants, 2022, 11(4):776 [2023-02-20]. . |
27 | 单莉莉.孕穗期低温对水稻叶片生理、产量的影响及外源褪黑素缓解效应[J].中国农业科技导报,2023,25(9):23-33. |
SHAN L L. Effects of low temperature during booting stage on rice physiology and alleviating effect of exogenous melatonin [J]. J. Agric. Sci. Technol., 2023, 25(9):23-33. | |
28 | 刘立军,周沈琪,刘昆,等.水稻大穗形成及其调控的研究进展[J].作物学报,2023,49(3):585-596. |
LIU L J, ZHOU S Q, LIU K, et al.. Research progress on the formation of large panicles in rice and its requlation [J]. Acta Agron. Sin., 2023, 49(3):585-596. | |
29 | 姜龙,曲金玲,孙国宏,等.矮壮素、烯效唑和多效唑对水稻倒伏及产量的影响[J].中国林副特产,2018(2):10-13. |
[1] | Lili SHAN. Effects of Low Temperature During Booting Stage on Rice Physiology and Alleviating Effect of Exogenous Melatonin [J]. Journal of Agricultural Science and Technology, 2023, 25(9): 23-33. |
[2] | YU Bingxing, WANG Hongfu, WANG Zhenhua, ZHANG Peng, CHENG Kai, YU Aili, YAN Haili, YU Bingjie. Effects of Paclobutrazol on Stalk Characteristics and Lodging Resistance of Foxtail Millet [J]. Journal of Agricultural Science and Technology, 2021, 23(8): 37-44. |
[3] | WANG Wenyu, WAN Siyu, ZHANG Xuesong, WANG Xu, LI Jiashuo, ZHENG Guiping*. Effects of Silicon Fertilizer on Lodging Resistance of Kenjing 7 Under Different Tillage Modes [J]. Journal of Agricultural Science and Technology, 2021, 23(4): 145-153. |
[4] | ZHANG Jiawen, LU Shaohao, ZHAO Zhe, ZHAO Mingqin*. Influences of Exogenous Melatonin on Physiological Properties of Tobacco Seedlings Under Low Temperature Stress [J]. Journal of Agricultural Science and Technology, 2020, 22(9): 78-86. |
[5] | DUAN Lulu1,2, HUANG Jing1,2*, WANG Kaiyue1,2. Evaluation of Uncertainty in Determination of Plant Growth Regulators in Water-soluble Fertilizers by HPLC [J]. Journal of Agricultural Science and Technology, 2020, 22(9): 169-178. |
[6] | HE Jiahao1, CHEN Jianzhong2, XU Jianqiang3, XIANG Jinyou4, YANG Yide4, ZHANG Xuewei5, NING Shanghui3, WANG Lin6, LIU Yuan7, YANG Yang4, JING Yanqiu1*, CHENG Yuyuan7*. Effects of Exogenous Melatonin on Physiological Mechanism of Drought Resistance of Tobacco Seedlings [J]. Journal of Agricultural Science and Technology, 2020, 22(2): 50-57. |
[7] | WANG Sha, CHENG Dawei, LI Ming, GU Hong, LI Zhengyang, QI Shuai, CHEN Jinyong*. Research Progress on Seedless-Induced Production of ‘Shine Muscat’ Grape [J]. Journal of Agricultural Science and Technology, 2020, 22(2): 58-64. |
[8] | LI Penghui1§, XIANG Jinyou2§, WANG Lin3, XU Jianqiang4, LI Changjun5, LEI Qiang6, YANG Yide2, ZHANG Xuewei7, LI Huaiqi8, ZHANG Qiming9, JING Yanqiu1*, XIONG Bin3*. Effects of Exogenous Melatonin on Physiological Characteristics of Tobacco Seedlings Under Drought Stress [J]. Journal of Agricultural Science and Technology, 2019, 21(5): 41-48. |
[9] | LI Meng, CHEN Dong, LI Xiuni, LI Linlin, WANG Ronghao, SHI Xiangdong*. Influenes of Exogenous Melatonin on Antioxidant and Photosynthetic Characteristics of Tobacco Seedlings Under Salt Stress [J]. Journal of Agricultural Science and Technology, 2019, 21(2): 141-147. |
[10] | FAN Haixia1, GUO Ruoxu1, XIN Guoqi2, LI Fengqin3. Effects of Exogenous Melatonin on Growth and Physiological Characteristics of Reed Seedlings under Salt Stress [J]. Journal of Agricultural Science and Technology, 2019, 21(11): 51-58. |
[11] | DUAN Pengfei1, ZHAO Di2*. Effects of DPC and DTA-6 on Leaf Senescence Physiological Characteristics, Yield and Quality [J]. Journal of Agricultural Science and Technology, 2018, 20(3): 104-114. |
[12] | WU Chao, CUI Ke\|hui*. Progress on Effect of High Temperature on Rice Yield Formation [J]. , 2014, 16(3): 103-111. |
[13] | SUN Su\|yang, WANG Yong\|jun, LI Hai\|jun, LI Li\|li. Yield Formation of Huaimai 25 with High Yield and Wide Adaptability [J]. , 2014, 16(1): 98-103. |
[14] | XIA Xue\|yan1, CHENG Ru\|hong1*, CHEN Yuan1, SHI Zhi\|gang1, ZHANG Ting1, . Effect of Plant Growth Regulator and Foliar Fertilizer on Preventing Premature Aging of Foxtail Millet Hybrid [J]. , 2014, 16(1): 104-110. |
[15] | ZHOU Yu|TONG Zhao-guo|ZHANG Kai-chun, YAN Guo-hua . Application of Gibberellin to Production of Deciduous Fruit Crops [J]. , 2006, 8(2): 27-31. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||