Journal of Agricultural Science and Technology ›› 2023, Vol. 25 ›› Issue (9): 166-177.DOI: 10.13304/j.nykjdb.2022.0148
• BIO-MANUFACTURING & RESOURCE AND ECOLOGY • Previous Articles Next Articles
Shegang SHAO1(), Ting LI2(), Yong LIU2, Lanwen LIN2, Dong ZHANG1, Dong NI1, Junjie LI2, Li’an ZHU2()
Received:
2022-03-01
Accepted:
2022-04-17
Online:
2023-09-15
Published:
2023-09-28
Contact:
Li’an ZHU
邵社刚1(), 李婷2(), 柳勇2, 林兰稳2, 张东1, 倪栋1, 李俊杰2, 朱立安2()
通讯作者:
朱立安
作者简介:
邵社刚 E-mail: sg.shao@rioh.cn基金资助:
CLC Number:
Shegang SHAO, Ting LI, Yong LIU, Lanwen LIN, Dong ZHANG, Dong NI, Junjie LI, Li’an ZHU. Effects of Exogenous Promoting Bacteria Agent on Decomposition Characteristics and Microbial Community Structure of Rice Straw[J]. Journal of Agricultural Science and Technology, 2023, 25(9): 166-177.
邵社刚, 李婷, 柳勇, 林兰稳, 张东, 倪栋, 李俊杰, 朱立安. 外源菌剂对稻秆腐解及微生物群落结构的影响[J]. 中国农业科技导报, 2023, 25(9): 166-177.
Fig. 2 Changes of decomposition rate and pH during the decomposing processNote: Different English letters indicate significant differences at P<0.05 level among different decomposing times under same treatment, different Greek letters indicate significant differences at P<0.05 level among different treatments under same decomposing time.
时间 Time/d | 处理 Treatment | 有机碳 Total organic C /% | 全氮 Total N /% | 全磷 Total P/% | 碳氮比 C/N | 碳磷比 C/P |
---|---|---|---|---|---|---|
0 | CK | 39.8±0.2 aα | 1.55±0.04 cα | 0.33±0.00 cα | 25.6±0.0 aα | 120.5±0.5 aα |
JF | 41.1±0.5 aα | 1.64±0.01 bcα | 0.34±0.01 dα | 25.0±0.2 aα | 120.4±1.1 aα | |
3 | CK | 40.1±0.6 aα | 1.63±0.02 cα | 0.34±0.01 cβ | 24.7±0.6 aα | 118.4±4.3 abα |
JF | 39.1±0.3 bα | 1.55±0.05 cα | 0.39±0.01 cα | 25.2±1.0 aα | 100.5±2.6 bβ | |
8 | CK | 39.6±0.3 aα | 2.19±0.01 bα | 0.44±0.00 bα | 18.1±0.2 bα | 89.1±0.6 bβ |
JF | 38.4±0.2 bcβ | 2.15±0.07 abα | 0.41±0.00 cβ | 18.0±0.7 bα | 94.1±1.3 bα | |
14 | CK | 36.5±0.3 bα | 2.29±0.03 bα | 0.46±0.02 bβ | 16.0±0.3 cα | 79.7±0.8 cα |
JF | 37.2±0.1 cα | 2.30±0.01 aα | 0.59±0.01 bα | 16.2±0.1 bα | 62.9±1.1 cβ | |
28 | CK | 34.4±0.2 cα | 2.42±0.02 aα | 0.59±0.01 aβ | 14.2±0.1 cα | 58.2±0.9 dα |
JF | 33.9±0.2 dα | 2.44±0.02 aα | 0.64±0.01 aα | 13.9±0.1 cα | 52.9±1.3 dβ |
Table 1 Changes of total organic C, total N, total P, C/N and C/P during the decomposing process
时间 Time/d | 处理 Treatment | 有机碳 Total organic C /% | 全氮 Total N /% | 全磷 Total P/% | 碳氮比 C/N | 碳磷比 C/P |
---|---|---|---|---|---|---|
0 | CK | 39.8±0.2 aα | 1.55±0.04 cα | 0.33±0.00 cα | 25.6±0.0 aα | 120.5±0.5 aα |
JF | 41.1±0.5 aα | 1.64±0.01 bcα | 0.34±0.01 dα | 25.0±0.2 aα | 120.4±1.1 aα | |
3 | CK | 40.1±0.6 aα | 1.63±0.02 cα | 0.34±0.01 cβ | 24.7±0.6 aα | 118.4±4.3 abα |
JF | 39.1±0.3 bα | 1.55±0.05 cα | 0.39±0.01 cα | 25.2±1.0 aα | 100.5±2.6 bβ | |
8 | CK | 39.6±0.3 aα | 2.19±0.01 bα | 0.44±0.00 bα | 18.1±0.2 bα | 89.1±0.6 bβ |
JF | 38.4±0.2 bcβ | 2.15±0.07 abα | 0.41±0.00 cβ | 18.0±0.7 bα | 94.1±1.3 bα | |
14 | CK | 36.5±0.3 bα | 2.29±0.03 bα | 0.46±0.02 bβ | 16.0±0.3 cα | 79.7±0.8 cα |
JF | 37.2±0.1 cα | 2.30±0.01 aα | 0.59±0.01 bα | 16.2±0.1 bα | 62.9±1.1 cβ | |
28 | CK | 34.4±0.2 cα | 2.42±0.02 aα | 0.59±0.01 aβ | 14.2±0.1 cα | 58.2±0.9 dα |
JF | 33.9±0.2 dα | 2.44±0.02 aα | 0.64±0.01 aα | 13.9±0.1 cα | 52.9±1.3 dβ |
时间 Time/d | 处理 Treatment | 硝态氮 NO | 铵态氮 NH | 有效磷 Olsen-P/(mg·kg-1) | 特征紫外吸光度 SUVA254 |
---|---|---|---|---|---|
0 | CK | 19.9±1.8 bα | 164.0±3.6 cα | 150.8±1.9 aα | 2.87±0.06 bβ |
JF | 16.0±0.5 cβ | 94.8±4.1 cβ | 148.5±1.1 aα | 3.15±0.05 bα | |
3 | CK | 19.9±1.8 bα | 4 669.4±70.0 aα | 120.7±1.9 bα | 1.87±0.04 dβ |
JF | 17.9±0.9 cα | 4 708.4±213.0 aα | 113.3±2.2 bα | 2.20±0.05 dα | |
8 | CK | 32.3±4.9 aα | 795.2±40.8 bβ | 85.0±2.2 cα | 2.61±0.04 cα |
JF | 24.8±1.6 aα | 975.2±19.8 bα | 86.4±1.3 cα | 2.20±0.00 dβ | |
14 | CK | 19.3±4.1 bα | 39.5±6.2 dβ | 31.7±0.6 dβ | 2.65±0.02 cα |
JF | 18.7±0.8 bcα | 98.1±3.2 cα | 34.5±0.3 dα | 2.72±0.06 cα | |
28 | CK | 31.9±4.1 aα | 43.6±1.5 dβ | 25.8±0.9 dα | 3.36±0.08 aα |
JF | 22.1±2.6 abβ | 87.3±8.8 cα | 26.2±0.2 dα | 3.45±0.00 aα |
Table 2 Changes of NO3--N, NH4+-N, Olsen-Pand SUVA254 during the decomposing process
时间 Time/d | 处理 Treatment | 硝态氮 NO | 铵态氮 NH | 有效磷 Olsen-P/(mg·kg-1) | 特征紫外吸光度 SUVA254 |
---|---|---|---|---|---|
0 | CK | 19.9±1.8 bα | 164.0±3.6 cα | 150.8±1.9 aα | 2.87±0.06 bβ |
JF | 16.0±0.5 cβ | 94.8±4.1 cβ | 148.5±1.1 aα | 3.15±0.05 bα | |
3 | CK | 19.9±1.8 bα | 4 669.4±70.0 aα | 120.7±1.9 bα | 1.87±0.04 dβ |
JF | 17.9±0.9 cα | 4 708.4±213.0 aα | 113.3±2.2 bα | 2.20±0.05 dα | |
8 | CK | 32.3±4.9 aα | 795.2±40.8 bβ | 85.0±2.2 cα | 2.61±0.04 cα |
JF | 24.8±1.6 aα | 975.2±19.8 bα | 86.4±1.3 cα | 2.20±0.00 dβ | |
14 | CK | 19.3±4.1 bα | 39.5±6.2 dβ | 31.7±0.6 dβ | 2.65±0.02 cα |
JF | 18.7±0.8 bcα | 98.1±3.2 cα | 34.5±0.3 dα | 2.72±0.06 cα | |
28 | CK | 31.9±4.1 aα | 43.6±1.5 dβ | 25.8±0.9 dα | 3.36±0.08 aα |
JF | 22.1±2.6 abβ | 87.3±8.8 cα | 26.2±0.2 dα | 3.45±0.00 aα |
时间 Time/d | 处理 Treatment | Chao1指数Chao1 index | Shannon指数Shannon index | 覆盖率Coverage/% | |||
---|---|---|---|---|---|---|---|
细菌Bacterium | 真菌Fungus | 细菌Bacterium | 真菌Fungus | 细菌Bacterium | 真菌Fungus | ||
0 | CK | 752.7±3.9 cα | 149.0±3.3 bβ | 5.63±0.10 bcα | 2.65±0.29 abα | 99.7±0.0 | 99.9±0.0 |
JF | 774.9±18.2 cα | 189.1±13.1 abα | 5.50±0.06 cα | 3.00±0.06 abα | 99.7±0.0 | 99.9±0.0 | |
3 | CK | 1 585.6±42.0 aα | 192.7±15.6 aα | 6.89±0.13 aα | 4.15±0.18 aα | 99.2±0.0 | 99.9±0.0 |
JF | 1 676.9±28.4 aα | 236.7±18.8 aα | 6.79±0.05 aα | 4.15±0.15 aα | 99.1±0.0 | 99.9±0.0 | |
8 | CK | 1 632.9±52.7 aα | 195.2±5.4 aα | 5.51±0.05 cα | 3.62±0.55 abα | 99.1±0.0 | 99.9±0.0 |
JF | 1 218.6±28.1 bβ | 112.0±27.5 bcα | 5.36±0.10 cα | 1.96±0.78 bα | 99.4±0.0 | 100.0±0.0 | |
14 | CK | 1 103.6±13.5 bα | 49.6±5.1 dα | 6.06±0.14 bα | 0.06±0.01 cα | 99.5±0.0 | 100.0±0.0 |
JF | 1 111.5±53.0 bα | 44.9±9.7 cα | 5.98±0.03 bα | 0.21±0.18 cα | 99.4±0.0 | 100.0±0.0 | |
28 | CK | 1 266.7±38.2 bα | 100.7±3.4 cα | 6.61±0.03 aα | 2.26±0.32 bα | 99.4±0.0 | 99.9±0.0 |
JF | 1 183.3±12.7 bα | 103.4±4.1 cα | 6.17±0.11 bβ | 2.42±0.04 bα | 99.5±0.0 | 99.9±0.0 |
Table 3 Changes of bacterial and fungal community diversity and richness indices during the decomposing process
时间 Time/d | 处理 Treatment | Chao1指数Chao1 index | Shannon指数Shannon index | 覆盖率Coverage/% | |||
---|---|---|---|---|---|---|---|
细菌Bacterium | 真菌Fungus | 细菌Bacterium | 真菌Fungus | 细菌Bacterium | 真菌Fungus | ||
0 | CK | 752.7±3.9 cα | 149.0±3.3 bβ | 5.63±0.10 bcα | 2.65±0.29 abα | 99.7±0.0 | 99.9±0.0 |
JF | 774.9±18.2 cα | 189.1±13.1 abα | 5.50±0.06 cα | 3.00±0.06 abα | 99.7±0.0 | 99.9±0.0 | |
3 | CK | 1 585.6±42.0 aα | 192.7±15.6 aα | 6.89±0.13 aα | 4.15±0.18 aα | 99.2±0.0 | 99.9±0.0 |
JF | 1 676.9±28.4 aα | 236.7±18.8 aα | 6.79±0.05 aα | 4.15±0.15 aα | 99.1±0.0 | 99.9±0.0 | |
8 | CK | 1 632.9±52.7 aα | 195.2±5.4 aα | 5.51±0.05 cα | 3.62±0.55 abα | 99.1±0.0 | 99.9±0.0 |
JF | 1 218.6±28.1 bβ | 112.0±27.5 bcα | 5.36±0.10 cα | 1.96±0.78 bα | 99.4±0.0 | 100.0±0.0 | |
14 | CK | 1 103.6±13.5 bα | 49.6±5.1 dα | 6.06±0.14 bα | 0.06±0.01 cα | 99.5±0.0 | 100.0±0.0 |
JF | 1 111.5±53.0 bα | 44.9±9.7 cα | 5.98±0.03 bα | 0.21±0.18 cα | 99.4±0.0 | 100.0±0.0 | |
28 | CK | 1 266.7±38.2 bα | 100.7±3.4 cα | 6.61±0.03 aα | 2.26±0.32 bα | 99.4±0.0 | 99.9±0.0 |
JF | 1 183.3±12.7 bα | 103.4±4.1 cα | 6.17±0.11 bβ | 2.42±0.04 bα | 99.5±0.0 | 99.9±0.0 |
Fig. 3 Analysis of distribution characteristics of bacterial and fungal communities at phylum and genus levelA: Distribution characteristics of bacterial communities at phylum level; B: Distribution characteristics of bacterial communities at genus level; C: Distribution characteristics of fungal communities at phylum level; D: Distribution characteristics of fungal communities at genus level
Fig. 4 Analysis of RDA of microbial community structure and physical and chemical properties at genus levelNote: d0, d3, d8, d14, d28 indicate the 0, 8th, 14th, 20th and 28th day of the composting process. A—NH4+-N; TP—Total phosphorus; TN—Total nitrogen; P—Olsen-P; S—SUVA254; T—Temperature; TOC—Total organic C; C/N—C/N ratio; C/P—C/P ratio; X—NH3--N. Non.—Nonomuraea; Act.—Actinomadura; Par.—Parapedobacter; Bac.—Bacillus; Pae.—Paenibacillus; The.—Thermobacillus; Pus.—Pusillimonas; Cel.—Cellvibrio; Cro.—Cronobacter; Ent.—Enterobacter; E-S—Escherichia-Shigella; Kle.—Klebsiella; Lut.—Luteimonas; Pse.—Pseudoxanthomonas. Cla.—Cladosporium; Asp.—Aspergillus; Xer.—Xeromyces; The.—Thermomyces; Lec.—Lecanicillium; Sim.—Simplicillium; Sar.—Sarocladium; Sce.—Scedosporium; Mel.—Melanocarpus; Ova.—Ovatospora; Rem.—Remersonia; Cop.—Coprinopsis; Mal.—Malassezia; Dio.—Dioszegia; Wal.—Wallemia.
1 | 李廷亮, 王宇峰, 王嘉豪, 等. 我国主要粮食作物秸秆还田养分资源量及其对小麦化肥减施的启示[J]. 中国农业科学,2020, 53(23): 4835-4854. |
LI T L, WANG Y F, WANG J H, et al.. Nutrient resource quantity from main grain crop straw incorporation and its enlightenment on chemical fertilizer reduction in wheat production in China [J]. Sci. Agric. Sin., 2020, 53(23): 4835-4854. | |
2 | 霍丽丽, 赵立欣, 孟海波, 等. 中国农作物秸秆综合利用潜力研究[J]. 农业工程学报, 2019, 35(13): 218-224. |
HUO L L, ZHAO L X, MENG H B, et al.. Study on straw multi-use potential in China [J]. Trans. Chin. Soc. Agric. Eng., 2019, 35(13): 218-224. | |
3 | IBRAHIM M, MAHMOUD E, IBRAHIM D. Assessing the impact of water treatment residuals and rice straw compost on soil physical properties and wheat yield in saline sodic soil [J]. Commun. Soil Sci. Plant Anal., 2020, 51(18): 2388-2397. |
4 | WANG J, SUN N, XU M G, et al.. The influence of long-term animal manure and crop residue application on abiotic and biotic N immobilization in an acidified agricultural soil [J]. Geoderma, 2019, 337: 710-717. |
5 | CHEN Z M, WANG H Y, LIU X W, et al.. Changes in soil microbial community and organic carbon fractions under short-term straw return in a rice-wheat cropping system [J]. Soil Tillage Res., 2017, 165: 121-127. |
6 | YIN H J, ZHAO W Q, LI T, et al.. Balancing straw returning and chemical fertilizers in China: role of straw nutrient resources [J]. Renew. Sustain. Energy Rev., 2018, 81: 2695-2702. |
7 | CHAKMA S, RANJAN A, CHOUDHURY H A, et al.. Bioenergy from rice crop residues: role in developing economies [J]. Clean Technol. Environ. Policy, 2016, 18(2): 373-394. |
8 | 朱雅琪, 王珊, 柳勇, 等. 腐秆剂用量、含水量及初始碳氮比对水稻秸秆腐解性能的影响初探[J]. 生态环境学报, 2019, 28(3): 601-611. |
ZHU Y Q, WANG S, LIU Y, et al.. Effect of decomposition agent dosage, moisture content, and initial C/N ratio on decomposition of rice straw [J]. Ecol. Environ. Sci., 2019, 28(3): 601-611. | |
9 | ZHAO S C, QIU S J, XU X P, et al.. Change in straw decomposition rate and soil microbial community composition after straw addition in different long-term fertilization soils [J]. Appl. Soil Ecol., 2019, 138: 123-133. |
10 | 劳德坤, 张陇利, 李永斌, 等. 不同接种量的微生物秸秆腐熟剂对蔬菜副产物堆肥效果的影响[J]. 环境工程学报, 2015, 9(6): 2979-2985. |
LAO D K, ZHANG L L, LI Y B, et al.. Effect of different inoculation amounts of microbial straw decomposition agents on vegetable byproducts composting [J]. Chin. J. Environ. Eng., 2015, 9(6): 2979-2985. | |
11 | YEE V F, JIŘĺ J K, CHEW T L, et al.. Efficiency of microbial inoculation for a cleaner composting technology [J]. Clean Technol. Environ. Policy, 2018, 20: 517-527. |
12 | 陈帅, 刘峙嵘, 曾凯. 腐秆剂对水稻秸秆腐解性能的影响[J]. 环境工程学报, 2016, 10(2): 839-844. |
CHEN S, LIU Z R, ZENG K. Effect of straw-decomposing inoculant on decomposition of rice straw [J]. Chin. J. Environ. Eng., 2016, 10(2): 839-844. | |
13 | FAN Y V, LEE C T, HO C S, et al.. Evaluation of microbial inoculation technology for composting [J]. Chem. Eng. Trans., 2017, 56: 433-438. |
14 | 宋志伟, 陈露露, 潘宇, 等. 3种菌剂对水稻秸秆降解性能的影响[J]. 生态环境学报, 2018, 27(11): 2134-2141. |
SONG Z W, CHEN L L, PAN Y, et al.. Influence of three microbial agents on the degradation performance of rice straw [J]. Ecol. Environ. Sci., 2018, 27(11): 2134-2141. | |
15 | WU D, WEI Z M, GAO X Z, et al.. Reconstruction of core microbes based on producing lignocellulolytic enzymes causing by bacterial inoculation during rice straw composting [J/OL]. Bioresour. Technol., 2020, 315:123849 [2022-02-08]. . |
16 | 姚云柯, 周卫, 孙建光, 等. 田间条件下不同促腐菌对水稻秸秆腐解及胞外酶活性的影响[J]. 植物营养与肥料学报, 2020, 26(11): 2070-2080. |
YAO Y K, ZHOU W, SUN J G, et al.. Effects of different straw-decomposition inoculants on increasing the activities of extracellular enzymes and decomposition of rice straw buried into soil [J]. J. Plant Nutr. Fert., 2020, 26(11): 2070-2080. | |
17 | 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 1999: 1-638. |
18 | 国家林业局. 森林土壤全氮的测定: [S]. 北京: 中国标准出版社, 1999. |
The State Forestry Administration of the People's Republic of China. Determination of total nitrogen in forest soil: [S]. Beijing: China Standard Press, 1999. | |
19 | GUO R, LI G, JIANG T, et al.. Effect of aeration rate, C/N ratio and moisture content on the stability and maturity of compost [J]. Bioresour. Technol., 2012, 112: 171-178. |
20 | ABDEL-RAHMAN M A, EL-DIN M N, REFAAT B M, et al.. Biotechnological application of thermotolerant cellulose-decomposing bacteria in composting of rice straw [J]. Ann. Agric. Sci., 2016, 61(1) : 135-143. |
21 | 李荣华, 涂志能, Ali Amjad, 等. 生物炭复合菌剂促进堆肥腐熟及氮磷保留[J]. 中国环境科学, 2020, 40(8): 3449-3457. |
LI R H, TU Z N, AMJAD A, et al.. Biochar carried microbial solution promotes compost maturity and nitrogen, phosphorus conservation [J]. China Environ. Sci., 2020, 40(8): 3449-3457. | |
22 | WEI Y Q, ZHAO Y, FAN Y Y, et al.. Impact of phosphate-solubilizing bacteria inoculation methods on phosphorus transformation and long-term utilization in composting [J]. Bioresour. Technol., 2017, 241: 134-141. |
23 | WANG M H, LIU Y, WANG S Q, et al.. Development of a compound microbial agent beneficial to the composting of Chinese medicinal herbal residues [J/OL]. Bioresour. Technol., 2021, 330:124948 [2022-02-08]. . |
24 | CHIN Y P, AIKEN G R, O'LOUGHLIN E. Molecular weight, polydispersity and spectroscopic properties of aquatic humic substances [J]. Environ. Sci. Technol., 1994, 28: 1853-1858. |
25 | 唐朱睿, 席北斗, 何小松, 等. 猪粪堆肥过程中水溶性有机物结构演变特征[J].光谱学与光谱分析, 2018, 38(5): 1526-1532. |
TANG Z R, XI B D, HE X S, et al.. Structural characteristics of dissolved organic compounds during swine manure composting [J]. Spectros. Spectr. Anal., 2018, 38(5): 1526-1532. | |
26 | NISHIJIMAN W, GERALD E, SPEITLE J. Fate of biodegradable dissolved organic carbon produced by ozonation on biological activated carbon [J]. Chemosphere, 2004, 56(2): 113-119. |
27 | FENG J, WANG B, ZHANG D, et al.. Streptomyces griseorubens JSD-1 promotes rice straw composting efficiency in industrial-scale fermenter: evaluation of change in physicochemical properties and microbial community [J]. Bioresour. Technol., 2021, 321: 124465-124475. |
28 | 夏金利, 王岩, 董春玲, 等. 不同促腐菌剂对园林废弃物堆肥理化性质和优势微生物群落的影响[J]. 河南农业大学学报, 2021, 55(3): 551-560. |
XIA J L, WANG Y, DONG C L, et al.. Effects of different microbial inoculants on the physical and chemical properties and dominant microbial communities in the composting process of garden waste [J]. J. Henan Agric. Univ., 2021, 55(3): 551-560. | |
29 | LIU N, HOU T, YIN H J, et al.. Effects of amoxicillin on nitrogen transformation and bacterial community succession during aerobic composting [J]. J. Hazard. Mater., 2019, 362: 258-265. |
30 | CHI P C, CHU S H, WANG B, et al.. Dynamic bacterial assembly driven by Streptomyces griseorubens JSD-1 inoculants correspond to composting performance in swine manure and rice straw co-composting [J/OL]. Bioresour. Technol., 2020, 313:123692 [2022-02-08]. . |
31 | ZHANG M Y, LIANG W, TU Z N, et al.. Succession of bacterial community during composting: dissimilarity between compost mixture and biochar additive [J]. Biochar, 2021, 3(2): 229-237. |
32 | ZHANG L L, ZHANG H Q, WANG Z H, et al.. Dynamic changes of the dominant functioning microbial community in the compost of a 90-m3 aerobic solid state fermentor revealed by integrated meta-omics [J]. Bioresour. Technol., 2016, 203: 1-10. |
33 | WANG X Q, KONG Z J, WANG Y H, et al.. Insights into the functionality of fungal community during the large scale aerobic co-composting process of swine manure and rice straw [J/OL]. J. Environ. Manage., 2020, 270: 110958 [2022-02-08].. |
34 | TIAN X P, YANG T, HE J Z, et al.. Fungal community and cellulose-degrading genes in the composting process of Chinese medicinal herbal residues [J]. Bioresour. Technol., 2017, 241: 374-383. |
35 | MENG Q X, YANG W, MEN M Q, et al.. Microbial community succession and response to environmental variables during cow manure and corn straw composting [J/OL]. Front. Microbiol., 2019, 10:529 [2022-02-08]. . |
36 | LU X L, WU H, SONG S L, et al.. Effects of multi-phase inoculation on the fungal community related with the improvement of medicinal herbal residues composting [J]. Environ. Sci. Pollut. Res., 2021, 28: 27998-28013. |
37 | YUN C X, YAN C R, XUE Y H, et al.. Effects of exogenous microbial agents on soil nutrient and microbial community composition in greenhouse-derived vegetable straw composts [J/OL]. Sustainability, 2021, 13: 2925 [2022-02-08]. . |
38 | 蔡涵冰, 冯雯雯, 董永华, 等. 畜禽粪便和桃树枝工业化堆肥过程中微生物群演替及其与环境因子的关系[J]. 环境科学, 2020, 41(2): 997-1004. |
CAI H B, FENG W W, DONG Y H, et al.. Microbial community succession in industrial composting with livestock manure and peach branches and relations with environmental factors [J]. Environ. Sci., 2020, 41(2): 997-1004. | |
39 | WEI H W, WANG L H, HASSAN M, et al.. Succession of the functional microbial communities and the metabolic functions in maize straw composting process [J]. Bioresour. Technol., 2018, 256: 333-341. |
40 | JIANG X, DENG L T, MENG Q X, et al.. Fungal community succession under influence of biochar in cow manure composting [J]. Environ. Sci. Pollut. Res., 2020, 27(19): 9658-9668. |
[1] | Jiangang JIN, Zaifang TIAN, Minna ZHENG, Jiahui KANG. Effect of Different Fertilization Measures on the Diversity of Soil Bacteria Communities in Fed oats (Avena sativa L.) [J]. Journal of Agricultural Science and Technology, 2023, 25(3): 152-160. |
[2] | Ning YAN, Yu ZHAN, Xinyue MIAO, Ergang WANG, Changbao CHEN, Qiong LI. Effects of Reductive Soil Disinfestation on Soil Bacterial Community Structure and Soil Enzyme Activity in Continuous Cropping of Ginseng [J]. Journal of Agricultural Science and Technology, 2022, 24(6): 133-144. |
[3] | Yanchen WEI, Jixiang CHEN, Yonggang WANG, Tongtong MENG, Yalong HAN, Mei LI. Analysis of Bacterial Diversity in the Rhizosphere Soil of Salsolapasserina and Its Correlation with the Soil Physical and Chemical Properties [J]. Journal of Agricultural Science and Technology, 2022, 24(5): 209-217. |
[4] | SU Yumeng§, ZHANG Xuting§, Terigele, TIAN Min, SHANG Xiaorui, LI Guojing, WANG Ruigang*. Identification of microRNAs in Caragana intermedia Kuang by High Throughput Sequencing Under Drought Stress [J]. Journal of Agricultural Science and Technology, 2021, 23(3): 51-57. |
[5] | FAN Fan1, LI Zhengtao1, LI Shiyu1,2, SHAN Yunhui3, HUANG Jiaxiong4, LYU Yulan4, HE Feifei1, Qin Shiwen1*. Diversity of Red Soil Bacterial Community in Coffee-growing Regions of Tropical Yunnan [J]. Journal of Agricultural Science and Technology, 2020, 22(8): 178-186. |
[6] | ZOU Yuan-yuan, LIU Yang, ZHAO Liang, LIU Lin, SONG Wei*. Research on the Diversity of Indigenous Bacterial Community in #br# the Seeds of Two Rice Varieties with Different Disease-resistance [J]. Journal of Agricultural Science and Technology, 2016, 18(4): 9-16. |
[7] | TU De-yu1,2, LI An-xin1, HE Gui-sheng1. Parameter Optimization of Rice Straw Cold Press Process [J]. , 2015, 17(3): 56-62. |
[8] | WANG Jiao-jiao, LI Dan, SONG Jian, LIU Yan-ping, CHANG Ya-qing*, WANG Yi-nan*. Structural Analysis of Seawater Bacterial Community from Culture Pond of Apostichopus japonicus at Different Periods [J]. , 2015, 17(2): 134-140. |
[9] | GE Yi\|yuan1, WANG Jin\|wu2*, LI Ya\|qin1, WEI Tian\|lu1. Study on Returning Machine of Rice High Straw for Quickly Rotted [J]. , 2014, 16(6): 81-88. |
[10] |
HE Su-xu1, ZHOU Zhi-gang1, YAO Bin1, BAI Dong-qing2.
Effects of Three Different DNA Extraction Methods on the Analysis of Bacteria Community from Different Micro-ecological Environments in a Farming Pond by PCR-DGGE [J]. , 2009, 11(1): 73-79. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||