Journal of Agricultural Science and Technology ›› 2022, Vol. 24 ›› Issue (5): 209-217.DOI: 10.13304/j.nykjdb.2021.0015
• BIO-MANUFACTURING & RESOURCE AND ECOLOGY • Previous Articles
Yanchen WEI1(), Jixiang CHEN1(
), Yonggang WANG2, Tongtong MENG3, Yalong HAN1, Mei LI1
Received:
2021-01-07
Accepted:
2021-06-01
Online:
2022-05-15
Published:
2022-06-06
Contact:
Jixiang CHEN
魏艳晨1(), 陈吉祥1(
), 王永刚2, 孟彤彤3, 韩亚龙1, 李美1
通讯作者:
陈吉祥
作者简介:
魏艳晨 E-mail:2542893966@qq.com;
基金资助:
CLC Number:
Yanchen WEI, Jixiang CHEN, Yonggang WANG, Tongtong MENG, Yalong HAN, Mei LI. Analysis of Bacterial Diversity in the Rhizosphere Soil of Salsolapasserina and Its Correlation with the Soil Physical and Chemical Properties[J]. Journal of Agricultural Science and Technology, 2022, 24(5): 209-217.
魏艳晨, 陈吉祥, 王永刚, 孟彤彤, 韩亚龙, 李美. 荒漠植物珍珠猪毛菜根际土壤细菌多样性与土壤理化性质相关性分析[J]. 中国农业科技导报, 2022, 24(5): 209-217.
理化因子 Physical and chemical factor | 根际土壤 RS | 非根际土壤 NR |
---|---|---|
全氮TN/(g·kg-1) | 0.15±0.012 1 a | 0.09±0.024 1 b |
全磷TP/(g·kg-1) | 0.20±0.001 7 a | 0.20±0.000 1 a |
全钾TK/(g·kg-1) | 19.96±4.320 2 a | 16.87±0.157 5 b |
速效氮AN/(mg·kg-1) | 14.61±0.565 6 a | 9.93±0.280 0 b |
速效磷AP/(mg·kg-1) | 0.12±0.001 8 a | 0.10±0.002 2 b |
速效钾AK/(mg·kg-1) | 0.28±0.004 3 a | 0.15±0.016 0 b |
pH | 8.26±0.264 6 b | 8.87±0.052 9 a |
含水量WC/% | 6.33±0.413 7 b | 7.65±0.307 6 a |
Table 1 Physicochemical properties of RS and NR
理化因子 Physical and chemical factor | 根际土壤 RS | 非根际土壤 NR |
---|---|---|
全氮TN/(g·kg-1) | 0.15±0.012 1 a | 0.09±0.024 1 b |
全磷TP/(g·kg-1) | 0.20±0.001 7 a | 0.20±0.000 1 a |
全钾TK/(g·kg-1) | 19.96±4.320 2 a | 16.87±0.157 5 b |
速效氮AN/(mg·kg-1) | 14.61±0.565 6 a | 9.93±0.280 0 b |
速效磷AP/(mg·kg-1) | 0.12±0.001 8 a | 0.10±0.002 2 b |
速效钾AK/(mg·kg-1) | 0.28±0.004 3 a | 0.15±0.016 0 b |
pH | 8.26±0.264 6 b | 8.87±0.052 9 a |
含水量WC/% | 6.33±0.413 7 b | 7.65±0.307 6 a |
样品 Sample | Chao1指数 Chao1 index | Shannon 指数 Shannon index |
---|---|---|
根际土壤RS | 6 461.13±584.37 a | 10.35±0.10 b |
非根际土壤NR | 5 524.19±297.09 a | 9.72±0.12 a |
Table 2 Diversity indices of soil bacteria
样品 Sample | Chao1指数 Chao1 index | Shannon 指数 Shannon index |
---|---|---|
根际土壤RS | 6 461.13±584.37 a | 10.35±0.10 b |
非根际土壤NR | 5 524.19±297.09 a | 9.72±0.12 a |
理化因子 Physical and chemical factor | 可培养细菌数量 Culturable bacteria count | 细菌总数 Total bacterial count |
---|---|---|
全氮 TN | 0.565 | 0.670 |
全磷 TP | 0.800 | 0.578 |
全钾 TK | 0.718 | 0.672 |
速效氮 AN | 0.396 | 0.738 |
速效磷 AP | 0.537 | 0.726 |
速效钾 AK | 0.413 | 0.745 |
pH | -0.950** | -0.022 |
含水率 WC | -0.309 | -0.115 |
Table 3 Correlation between the number of bacteria and soil physical and chemical properties
理化因子 Physical and chemical factor | 可培养细菌数量 Culturable bacteria count | 细菌总数 Total bacterial count |
---|---|---|
全氮 TN | 0.565 | 0.670 |
全磷 TP | 0.800 | 0.578 |
全钾 TK | 0.718 | 0.672 |
速效氮 AN | 0.396 | 0.738 |
速效磷 AP | 0.537 | 0.726 |
速效钾 AK | 0.413 | 0.745 |
pH | -0.950** | -0.022 |
含水率 WC | -0.309 | -0.115 |
理化因子 Physical and chemical factor | Shannon指数 Shannon index | Simpson指数 Simpson index | ACE指数 ACE index | Chao1指数 Chao1 index |
---|---|---|---|---|
全氮 TN | 0.798 | 0.863* | 0.532 | 0.522 |
全磷 TP | 0.717 | 0.764 | 0.348 | 0.357 |
全钾 TK | 0.583 | 0.673 | 0.156 | 0.165 |
速效氮 AN | 0.961** | 0.961** | 0.804 | 0.802 |
速效磷 AP | 0.945** | 0.973** | 0.705 | 0.704 |
速效钾 AK | 0.979** | 0.966** | 0.815* | 0.819* |
pH | -0.194 | -0.188 | 0.068 | 0.062 |
含水率 WC | -0.024 | -0.203 | 0.364 | 0.360 |
Table 4 Correlation between physical and chemical properties and diversity index of bacteria
理化因子 Physical and chemical factor | Shannon指数 Shannon index | Simpson指数 Simpson index | ACE指数 ACE index | Chao1指数 Chao1 index |
---|---|---|---|---|
全氮 TN | 0.798 | 0.863* | 0.532 | 0.522 |
全磷 TP | 0.717 | 0.764 | 0.348 | 0.357 |
全钾 TK | 0.583 | 0.673 | 0.156 | 0.165 |
速效氮 AN | 0.961** | 0.961** | 0.804 | 0.802 |
速效磷 AP | 0.945** | 0.973** | 0.705 | 0.704 |
速效钾 AK | 0.979** | 0.966** | 0.815* | 0.819* |
pH | -0.194 | -0.188 | 0.068 | 0.062 |
含水率 WC | -0.024 | -0.203 | 0.364 | 0.360 |
门 Phylum | 全氮 TN | 全磷 TP | 全钾 TK | 速效氮 AN | 速效磷 AP | 速效钾 AK | pH | 含水率 WC |
---|---|---|---|---|---|---|---|---|
放线菌门Actinobacteria | -0.737 | -0.848* | -0.546 | -0.879* | 0.294 | -0.900* | 0.921** | 0.804 |
变形菌门Proteobacteria | 0.079 | -0.493 | 0.193 | 0.139 | 0.595 | -0.044 | 0.092 | 0.088 |
浮霉菌门Planctomycetes | -0.767 | 0.765 | 0.504 | -0.772 | -0.614 | 0.756 | -0.766 | -0.690 |
酸杆菌门Acidobacteria | 0.880* | 0.728 | 0.512 | 0.903* | 0.168 | 0.888* | -0.911* | -0.851* |
绿弯菌门Chloroflexi | 0.876* | 0.867* | 0.599 | 0.943** | -0.375 | 0.955** | -0.966** | -0.888* |
拟杆菌门Bacteroidetes | -0.471 | 0.349 | 0.178 | -0.466 | 0.698 | 0.411 | -0.467 | -0.472 |
Table 5 Correlation of dominant communities of bacteria at the phylum level with soil physical and chemical factors
门 Phylum | 全氮 TN | 全磷 TP | 全钾 TK | 速效氮 AN | 速效磷 AP | 速效钾 AK | pH | 含水率 WC |
---|---|---|---|---|---|---|---|---|
放线菌门Actinobacteria | -0.737 | -0.848* | -0.546 | -0.879* | 0.294 | -0.900* | 0.921** | 0.804 |
变形菌门Proteobacteria | 0.079 | -0.493 | 0.193 | 0.139 | 0.595 | -0.044 | 0.092 | 0.088 |
浮霉菌门Planctomycetes | -0.767 | 0.765 | 0.504 | -0.772 | -0.614 | 0.756 | -0.766 | -0.690 |
酸杆菌门Acidobacteria | 0.880* | 0.728 | 0.512 | 0.903* | 0.168 | 0.888* | -0.911* | -0.851* |
绿弯菌门Chloroflexi | 0.876* | 0.867* | 0.599 | 0.943** | -0.375 | 0.955** | -0.966** | -0.888* |
拟杆菌门Bacteroidetes | -0.471 | 0.349 | 0.178 | -0.466 | 0.698 | 0.411 | -0.467 | -0.472 |
属 Genus | 全氮 TN | 全磷 TP | 全钾 TK | 速效氮 AN | 速效磷 AP | 速效钾 AK | pH | 含水率 WC |
---|---|---|---|---|---|---|---|---|
红色杆菌属Rubrobacter | 0.910* | 0.613 | 0.779 | 0.974** | -0.165 | 0.944** | -0.934** | -0.976** |
RB41 | 0.808 | 0.774 | 0.341 | 0.818* | 0.271 | 0.828* | -0.863* | -0.733 |
类诺卡氏菌属Nocardioides | -0.830* | -0.800 | -0.644 | -0.961** | 0.149 | -0.956** | 0.974** | 0.906* |
链霉菌属Streptomyces | -0.524 | -0.645 | -0.406 | -0.738 | -0.299 | -0.801 | 0.820* | 0.631 |
芽孢杆菌属Bacillus | -0.232 | -0.687 | -0.033 | -0.360 | 0.277 | -0.414 | 0.460 | 0.248 |
土壤红杆菌属Solirubrobacter | 0.550 | 0.124 | 0.791 | 0.681 | 0.043 | 0.541 | -0.541 | -0.762 |
芽单胞菌属Gemmatimonas | 0.555 | 0.163 | 0.609 | 0.660 | 0.484 | 0.579 | -0.582 | -0.688 |
Pelagibius | -0.890* | -0.865* | -0.604 | -0.953** | 0.338 | -0.958** | 0.972** | 0.901* |
Table 6 Correlation of dominant communities of bacteria at the genus level with soil physical and chemical factors
属 Genus | 全氮 TN | 全磷 TP | 全钾 TK | 速效氮 AN | 速效磷 AP | 速效钾 AK | pH | 含水率 WC |
---|---|---|---|---|---|---|---|---|
红色杆菌属Rubrobacter | 0.910* | 0.613 | 0.779 | 0.974** | -0.165 | 0.944** | -0.934** | -0.976** |
RB41 | 0.808 | 0.774 | 0.341 | 0.818* | 0.271 | 0.828* | -0.863* | -0.733 |
类诺卡氏菌属Nocardioides | -0.830* | -0.800 | -0.644 | -0.961** | 0.149 | -0.956** | 0.974** | 0.906* |
链霉菌属Streptomyces | -0.524 | -0.645 | -0.406 | -0.738 | -0.299 | -0.801 | 0.820* | 0.631 |
芽孢杆菌属Bacillus | -0.232 | -0.687 | -0.033 | -0.360 | 0.277 | -0.414 | 0.460 | 0.248 |
土壤红杆菌属Solirubrobacter | 0.550 | 0.124 | 0.791 | 0.681 | 0.043 | 0.541 | -0.541 | -0.762 |
芽单胞菌属Gemmatimonas | 0.555 | 0.163 | 0.609 | 0.660 | 0.484 | 0.579 | -0.582 | -0.688 |
Pelagibius | -0.890* | -0.865* | -0.604 | -0.953** | 0.338 | -0.958** | 0.972** | 0.901* |
1 | 魏桂英,陈少勇,张媛文.腾格里沙漠南缘沙尘暴气候变化特征——以甘肃省景泰县为例[J].干旱区研究,2015,32(6):1133-1139. |
WEI G Y, CHEN S Y, ZHANG Y W. Sandstorms changing characteristics in the south edge of the Tengger Desert—Jingtai County, Gansu Province as a case study [J]. Arid Zone Res., 2015, 32 (6):1133-1139. | |
2 | 康宝天,侯扶江,BOWATTESaman.祁连山高寒草甸和荒漠草原土壤细菌群落的结构特征[J].草业科学,2020,37(1):10-19. |
KANG B T, HOU F J, BOWATTE S. Characterization of soil bacterial communities in alpine and desert grasslands in the Qilian Mountain range [J]. Pratac. Sci., 2020, 37(1):10-19. | |
3 | 黄耀龙. 荒漠区两种典型荒漠植物根际细菌的分布特征及其富集模式[D].兰州:兰州大学,2018. |
HUANG Y L. Distribution and enrichment patterns of rhizosphere bacteria of two typical desert plants in the desert area [D]. Lanzhou: Lanzhou University, 2018. | |
4 | 单立山,苏铭,张正中,等.不同生境下荒漠植物红砂-珍珠猪毛菜混生根系的垂直分布规律[J].植物生态学报,2018,42(4):475-486. |
SHAN L S, SU M, ZHANG L Z, et al.. Vertical distribution pattern of mixed root systems of desert plants Reaumuria soongarica and Salsola passerina under different environmental gradients [J]. Chin. J. Plant Ecol., 2018, 42(4):475-486. | |
5 | 李善家,王辉,苟伟,等.混生荒漠植物叶片功能性状与其根际微生物多样性的关系[J].生态环境学报,2020,29(9):1713-1722. |
LI S J, WANG H, GOU W, et al.. Relationship between leaf functional traits of mixed desert plants and microbial diversity in rhizosphere [J]. Ecol. Environ. Sci., 2020, 29(09):1713-1722. | |
6 | 鲍士旦.土壤农化分析[M].北京:中国农业出版社,2000:1-495. |
BAO S D. Analytical methods of soil agricultural chemistry [M]. Beijing: China Agriculture Press, 2000:1-495. | |
7 | MICHAEL B, FREDERIK H, FRANZISKA B, et al.. Assessment and interpretation of bacterial viability by using the LIVE/DEAD BacLight Kit in combination with flow cytometry [J]. Appl. Environ. Microbiol., 2007, 73(10):3283-3290. |
8 | 张秀霞,张守娟,张涵,等.固定化微生物对石油污染土壤理化性质的调控作用[J].石油学报(石油加工),2014,30(6):1106-1112. |
ZHANG X X, ZHANG S J, ZHANG H, et al.. Control effect of immobilized microorganisms on physical and chemical properties of petroleum-contaminated soil [J]. Acta Petrol. Sin. (Petrol. Proc.), 2014, 30(6):1106-1112. | |
9 | NI J J, LI X J, XU M Y. A novel method to determine the minimum number of sequences required for reliable microbial community analysis [J]. J. Microbiol. Methods, 2017, 137(8):196-201. |
10 | 杨阳,刘秉儒.荒漠草原不同植物根际与非根际土壤养分及微生物量分布特征[J].生态学报,2015,35(22):7562-7570. |
YANG Y, LIU B R. Distribution of soil nutrient and microbial biomass in rhizosphere versus non-rhizosphere area of different plant species in desertified steppe [J]. Acta Ecol. Sin., 2015, 35(22):7562-7570. | |
11 | 李丽娟,李昌晓,陈春桦,等.三峡消落带适生植物根系活动调控土壤养分与细菌群落多样性特征[J].环境科学,2020,41(6):2898-2907. |
LI L J, LI C X, CHEN C H, et al.. Root activities of re-vegetated plant species regulate soil nutrients and bacterial diversity in the Riparian Zone of the Three Gorges Reservoir [J]. Environ. Sci., 2020, 41(6):2898-2907. | |
12 | H F L, M C S, DAVID S. A test of four plant species to reduce total nitrogen and total phosphorus from soil leachate in subsurface wetland microcosms [J]. Bioresour. Technol., 2004, 94(2):185-192. |
13 | C L, LI Y J, LIU X X, et al.. Identification of growth-promoting bacteria from rhizosphere of pastures and their effects on growth of Lotus corniculatus L. [J]. Agric. Biotechnol., 2019, 8(5):106-111. |
14 | L R, D Y Y, S L B. Effect of rhizosphere enzymes on phytoremediation in PAH-contaminated soil using five plant species [J/OL]. PLoS ONE, 2015, 10(3): e0120369 [2020-12-10]. . |
15 | KANRUVELAN M, NAMASIVAYAM V. Intracellular toxicity exerted by PCBs and role of VBNC bacterial strains in biodegradation [J]. Ecotoxicol. Environ. Saf., 2018, 157(8):40-60. |
16 | 范念斯,齐嵘,杨敏.未培养微生物的培养方法进展[J].应用与环境生物学报,2016,22(3):524-530. |
FAN N S, QI R, YANG M. Current technical progresses in the cultivation for uncultured microorganism [J]. Chin. J. Appl. Environ. Biol., 2016, 22(3):524-530. | |
17 | MANUEL A, SETH B, JORGE D. Carnivory does not change the rhizosphere bacterial community of the plant Drosera intermedia [J]. Appl. Soil Ecol., 2015, 92:14-17. |
18 | RU Y, WEI F. Effect of vegetation on soil bacteria and their potential functions for ecological restoration in the Hulun Buir Sandy Land, China [J]. J. Arid Land, 2020, 12(3):473-494. |
19 | 高雪峰,韩国栋,张国刚.短花针茅荒漠草原土壤微生物群落组成及结构[J].生态学报,2017,37(15):5129-5136. |
GAO X F, HAN G D, ZHANG G G. Soil microbial community structure and composition of Stipa Breviflora on the desert steppe [J]. Acta Ecol. Sin., 2017, 37(15):5129-5136. | |
20 | 刘洋,黄懿梅,曾全超.黄土高原不同植被类型下土壤细菌群落特征研究[J].环境科学,2016,37(10):3931-3938. |
LIU Y, HUANG Y M, ZENG Q C. Soil bacterial communities under different vegetation types in the loess plateau [J]. Environ. Sci., 2016, 37(10):3931-3938. | |
21 | 杨秉珣,刘泉,董廷旭.川西北不同沙化程度草地土壤细菌群落特征[J].水土保持研究,2018,25(6):45-52. |
YANG B X, LIU Q, DONG T X. Soil bacterial communities of grasslands with different desertification degrees in northwest Sichuan [J]. Res. Soil Water Conserv., 2018, 25(6):45-52. | |
22 | ZIEGLER M, ENGEL M, WELZL G. Development of a simple root model to study the effects of single exudates on the development of bacterial community structure [J]. J. Microbiol. Methods, 2013, 94(1):30-36. |
23 | LING N, DENG K Y, SONG Y, et al.. Variation of rhizosphere bacterial community in watermelon continuous mono-cropping soil by long-term application of a noval bioorganic fertilizer [J]. Microbiol. Res., 2014, 169(7-8):570-578. |
24 | YANG H, HU J, LONG X, et al.. Salinity altered root distribution and increased diversity of bacterial communities in the rhizosphere soil of Jerusalem artichoke [J]. Sci. Rep., 2016, 6(1):787-805. |
25 | 赵璇. 中国北方主要草地类型土壤放线菌多样性和群落结构的比较研究[D].长春:东北师范大学,2015:39-42. |
ZHAO X. Comparison of diversity and structure of soil Actinobacteria communities across the main grasslands in Northern China [D]. Changchun: Northeast Normal University, 2015:39-42. | |
26 | 胡杰,何晓红,李大平,等.鞘氨醇单胞菌研究进展[J].应用与环境生物学报,2007:13(3):431-437. |
HU J, HE X H, LI D P, et al.. Progress in research of Sphingomonas [J]. Chin. J. Appl. Environ. Biol., 2007(3):431-437. |
[1] | Hongyan ZHAO, Junwei TAN, Jie ZHANG, Haonan CHEN, Chunxu WANG, Di ZHAO, Haipeng LI, Lixia ZHU, Yiqiang HAN. Community Structure of Stem-based Fungi Infected with Adzuki Bean and Mung Bean [J]. Journal of Agricultural Science and Technology, 2022, 24(5): 129-136. |
[2] | LIU Lu1, MING Xiaodong1, ZHANG Xiaoyan2, HAO Junjie2, FU Liping1, WANG Qiankun1, LYU Xin1, CHEN Wang1, LIU Quanlan1*. Diversity of Endophytic Bacteria in Faba Bean Seeds by High-Throughput Sequencing [J]. Journal of Agricultural Science and Technology, 2021, 23(2): 73-80. |
[3] | HUANG Yanfei, CHEN Junmei, XIN Yaning, WU Qingli. Effects of Gypsum Application on Soil Physical and Chemical Properties of Soda Saline-alkali Soil [J]. Journal of Agricultural Science and Technology, 2021, 23(11): 139-146. |
[4] | YANG Jingjing, ZHANG Qingqing*, Tuerxunnayi·Reyimu, Amanula·Yimingniyazi, Xueretijiang·Maitinuri. Effects of Nomadic Grazing and Settled Grazing on the Diversity of Fungi Community in Seriphidium transiliense Desert Grassland [J]. Journal of Agricultural Science and Technology, 2020, 22(7): 166-173. |
[5] | ZHANG Yijie, SHAO Huifang*, ZHANG Ke, JIA Hongfang, HUANG Wuxing, HAN Dan. Influences of Fertilization on Soil Environment and Microorganism in Continuous Cropping Based on High-Throughput Sequencing [J]. Journal of Agricultural Science and Technology, 2018, 20(5): 16-25. |
[6] | QU Meng-nan1,2§, JIANG Bing-jun2§, LIU Wei2, MA Li-ming2, LIN Kang-xue2, HAN T F. New Approaches to Molecular Breeding of Soybean [J]. , 2014, 16(3): 8-13. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||