Journal of Agricultural Science and Technology ›› 2023, Vol. 25 ›› Issue (4): 23-31.DOI: 10.13304/j.nykjdb.2022.1020
• BIOTECHNOLOGY & LIFE SCIENCE • Previous Articles Next Articles
Qing LIU1,2(), Bo LIU2, Xinxin XU2, Hongbing ZHANG1(
), Yuhong ZHANG2(
), Wei ZHANG2
Received:
2022-11-22
Accepted:
2023-02-07
Online:
2023-04-01
Published:
2023-06-26
Contact:
Hongbing ZHANG,Yuhong ZHANG
刘青1,2(), 刘波2, 徐欣欣2, 张红兵1(
), 张宇宏2(
), 张伟2
通讯作者:
张红兵,张宇宏
作者简介:
刘青 E-mail:1027855267@qq.com
基金资助:
CLC Number:
Qing LIU, Bo LIU, Xinxin XU, Hongbing ZHANG, Yuhong ZHANG, Wei ZHANG. Research Progress in Regulation and Efficient Production of Microbial Surfactin Synthesis[J]. Journal of Agricultural Science and Technology, 2023, 25(4): 23-31.
刘青, 刘波, 徐欣欣, 张红兵, 张宇宏, 张伟. 微生物表面活性素合成调控和高效生产研究进展[J]. 中国农业科技导报, 2023, 25(4): 23-31.
原始菌株 Original strain | 策略 Strategy | 原始产量 Original production/(g·L-1) | 终产量 Final production/(g·L-1) | 参考文献 Reference |
---|---|---|---|---|
B. subtilis fmbR | PsrfA→Pspac | 0.38 | 3.86 | [ |
B. subtilis THY-7 | PsrfA→Pg3 | 0.55 | 9.74 | [ |
B. subtilis TS1726 | 过表达脂肪酸合成限速酶基因yngH和脂肪酸合成途径所有基因并进行发酵条件优化 Rate-limiting enzyme gene yngH and all genes in fatty acid systhesis pathway were overexprassed, and the fermentation condition were optimized | 9.74 | 34.00 | [ |
B.subtilis TS1726 | 敲除产孢基因spoIVB,过表达leuABCD- ilvK基因并补加Leu Sporulation gen spoIVB was knocked ont, the leuABCD-ilvK gene was over expressed, and Leu was supplemented | 8.30 | 16.70 | [ |
KM1016 | 敲除spo0A、延伸abrB Gene spoOA was knocked, and abrB was extended | 1.30 | 18.27 | [ |
B. subtilis 168 | 一系列代谢途径工程改造 A series of metabolic pathways were reconstruced | 0.40 | 12.80 | [ |
Table 1 Surfactant production under different rational design strategies of gene
原始菌株 Original strain | 策略 Strategy | 原始产量 Original production/(g·L-1) | 终产量 Final production/(g·L-1) | 参考文献 Reference |
---|---|---|---|---|
B. subtilis fmbR | PsrfA→Pspac | 0.38 | 3.86 | [ |
B. subtilis THY-7 | PsrfA→Pg3 | 0.55 | 9.74 | [ |
B. subtilis TS1726 | 过表达脂肪酸合成限速酶基因yngH和脂肪酸合成途径所有基因并进行发酵条件优化 Rate-limiting enzyme gene yngH and all genes in fatty acid systhesis pathway were overexprassed, and the fermentation condition were optimized | 9.74 | 34.00 | [ |
B.subtilis TS1726 | 敲除产孢基因spoIVB,过表达leuABCD- ilvK基因并补加Leu Sporulation gen spoIVB was knocked ont, the leuABCD-ilvK gene was over expressed, and Leu was supplemented | 8.30 | 16.70 | [ |
KM1016 | 敲除spo0A、延伸abrB Gene spoOA was knocked, and abrB was extended | 1.30 | 18.27 | [ |
B. subtilis 168 | 一系列代谢途径工程改造 A series of metabolic pathways were reconstruced | 0.40 | 12.80 | [ |
1 | PEYPOUX F, BONMATIN J M, WALLACH J. Recent trends in the biochemistry of surfactin [J]. Appl. Microbiol. Biotechnol., 1999, 51(5):553-563. |
2 | BONMATIN J M, LAPRÉVOTE O, PEYPOUX F. Diversity among microbial cyclic lipopeptides: iturins and surfactins activity-structure relationships to design new bioactive agents [J]. Comb. Chem. High Throughput Screen, 2003, 6(6):541-556. |
3 | MARCHANT R, BANAT I M. Biosurfactants: a sustainable replacement for chemical surfactants? [J]. Biotechnol. Lett., 2012, 34(9):1597-1605. |
4 | PEREIRA J F B, GUDIÑA E J, COSTA R, et al.. Optimization and characterization of biosurfactant production by Bacillus subtilis isolates towards microbial enhanced oil recovery applications [J]. Fuel, 2013, 111(9):259-268. |
5 | 汪水呈,曾维伟,陆兆新.Surfactin抑菌稳定性及其在米饭和面包中的应用[J].食品工业科技,2016,37(13):257-261. |
WANG S C, ZENG W W, LU Z X. Study on antimicrobial stability and application of surfactin in food [J]. Food Ind. Technol., 2016, 37(13):257-261. | |
6 | HADIA N J, OTTENHEIM C, LI S D, et al.. Experimental investigation of biosurfactant mixtures of surfactin produced by Bacillus subtilis for EOR application [J]. Fuel, 2019, 251(9):789-799. |
7 | YANG Z Y, ZU Y Q, ZHU J S, et al.. Application of biosurfactant surfactin as a pH-switchable biodemulsifier for efficient oil recovery from waste crude oil [J/OL]. Chemosphere, 2020, 240:124946 [2022-10-08]. . |
8 | MUNUSAMY S, CONDE R, BERTRAND B, et al.. Biophysical approaches for exploring lipopeptide-lipid interactions [J]. Biochimie, 2020, 170(C):173-202. |
9 | HUSSAIN T, KHAN A A. Bacillus subtilis HussainT-AMU and its Antifungal activity against potato black scurf caused by Rhizoctonia solani on seed tubers [J/OL]. Biocatalysis Agric. Biotechnol., 2020, 23:101443 [2022-10-08]. . |
10 | FEI D, ZHOU G W, YU Z Q, et al.. Low-toxic and nonirritant biosurfactant surfactin and its performances in detergent formulations [J]. J. Surfactants Detergents, 2020, 23(1):109-118. |
11 | AHIRE J J, ROBERTSON D D, VAN REENEN A J, et al.. Surfactin-loaded polyvinyl alcohol (PVA) nanofibers alters adhesion of Listeria monocytogenes to polystyrene [J]. Mater. Sci. Eng. C. Mater. Biol. Appl., 2017, 77(8):27-33. |
12 | CERESA C, RINALDI M, CHIONO V, et al.. Lipopeptides from Bacillus subtilis AC7 inhibit adhesion and biofilm formation of Candida albicans on silicone [J]. Antonie. Van. Leeuwenhoek., 2016, 109(10):1375-1388. |
13 | WILLENBACHER J, MOHR T, HENKEL M, et al.. Substitution of the native srfA promoter by constitutive Pveg in two B. subtilis strains and evaluation of the effect on surfactin production [J]. J. Biotechnol., 2016, 224:14-17. |
14 | ARIMA K, KAKINUMA A, Surfactin TAMURA G., a crystalline peptidelipid surfactant produced by Bacillus subtilis : isolation, characterization and its inhibition of fibrin clot formation [J]. Biochem. Biophys. Res. Comm., 1968, 31(3):488-494. |
15 | SANTOS V S V, SILVEIRA E, PEREIRA B B. Toxicity and applications of surfactin for health and environmental biotechnology [J]. J. Toxicol. Environ. Health B Crit. Rev., 2018, 21(6-8):382-399. |
16 | KNOBLICH A, MATSUMOTO M, ISHIGURO R, et al.. Electron cryo-microscopic studies on micellar shape and size of surfactin, an anionic lipopeptide [J]. Colloids Surfaces B: Biointerfaces, 1995, 5(1):43-48. |
17 | ZOU A, LIU J, GARAMUS V M, et al.. Micellization activity of the natural lipopeptide [Glu1, Asp5] surfactin-C15 in aqueous solution [J]. J. Phys. Chem. B, 2010, 114(8):2712-2718. |
18 | DELEU M, LORENT J, LINS L, et al.. Effects of surfactin on membrane models displaying lipid phase separation [J]. Biochim. Biophys. Acta, 2013, 1828(2):801-815. |
19 | JUNG M, LEE S, KIM H. Recent studies on natural products as anti-HIV agents [J]. Curr. Med. Chem., 2000, 7(6):649-661. |
20 | VAN HAMME J D, SINGH A, WARD O P. Physiological aspects. part 1 in a series of papers devoted to surfactants in microbiology and biotechnology [J]. Biotechnol. Adv., 2006, 24(6):604-620. |
21 | TENDULKAR S R, SAIKUMARI Y K, PATEL V, et al.. Isolation, purification and characterization of an antifungal molecule produced by Bacillus licheniformis BC98, and its effect on phytopathogen Magnaporthe grisea [J]. J. Appl. Microbiol., 2007, 103(6):2331-2339. |
22 | 索雅丽,李术娜,李红亚,等.番茄灰霉病菌颉颃菌株的筛选及功能基因的分析[J].中国植保导刊,2010,30(8):7-10. |
SUO Y L, LI S N, LI H Y, et al.. Screening of antagonistic strain against Botrytis cinerea and analysis of its functional gene [J]. China Plant Prot., 2010, 30(8):7-10. | |
23 | 刘邮洲,陈夕军,尹小乐,等.23株芽胞杆菌及其脂肽类化合物抑菌活性比较[J].江苏农业学报,2017,33(3):533-542. |
24 | 陶永梅,潘洪吉,黄健,等.新型生防微生物因子贝莱斯芽孢杆菌(Bacillus velezensis)的研究与应用[J].中国植保导刊,2019,39(9):26-33. |
TAO Y M, PAN H J, HUANG J, et al.. Research and application of a novel bio-control microbial factor Bacillus velezensis [J]. China Plant Prot., 2019, 39(9):26-33. | |
25 | WU Q, ZHI Y, XU Y. Systematically engineering the biosynthesis of a green biosurfactant surfactin by Bacillus subtilis 168 [J]. Metabolic Eng., 2019, 52:87-97. |
26 | JUNG J, YU K O, RAMZI A B, et al.. Improvement of surfactin production in Bacillus subtilis using synthetic wastewater by overexpression of specific extracellular signaling peptides, comX and phrC [J]. Biotechnol. Bioeng., 2012, 109(9):2349-2356. |
27 | JIAO S, LI X, YU H, et al.. In situ enhancement of surfactin biosynthesis in Bacillus subtilis using novel artificial inducible promoters [J]. Biotechnol. Bioeng., 2017, 114(4):832-842. |
28 | LIU X, REN B, GAO H, et al.. Optimization for the production of surfactin with a new synergistic antifungal activity [J/OL]. PLoS ONE, 2012, 7(5):e34430 [2022-10-08]. . |
29 | YI G, LIU Q, LIN J, et al.. Repeated batch fermentation for surfactin production with immobilized Bacillus subtilis BS-37: two-stage pH control and foam fractionation [J]. J. Chem. Technol. Biotechnol., 2017, 92(3):530-535. |
30 | LI X, YANG H, ZHANG D, et al.. Overexpression of specific proton motive force-dependent transporters facilitate the export of surfactin in Bacillus subtilis [J]. J. Ind. Microbiol. Biotechnol., 2015, 42(1):93-103. |
31 | WANG C, CAO Y, WANG Y, et al.. Enhancing surfactin production by using systematic CRISPRi repression to screen amino acid biosynthesis genes in Bacillus subtilis [J/OL]. Microbiol. Cell Fact., 2019, 18(1):90 [2022-10-08]. . |
32 | NAKANO M M, MARAHIEL M A, ZUBER P. Identification of a genetic locus required for biosynthesis of the lipopeptide antibiotic surfactin in Bacillus subtilis [J]. J. Bacteriol., 1988, 170(12):5662-5668. |
33 | SCHWARZER D, FINKING R, MARAHIEL M A. Nonribosomal peptides: from genes to products [J]. Nat. Prod. Rep., 2003, 20(3):275-287. |
34 | SHEN Q T, CHEN X L, SUN C Y, et al.. Dissecting and exploiting nonribosomal peptide synthetases [J]. Acta Biochim. Biophys. Sin., 2004, 36(4):243-249. |
35 | KRAAS F I, HELMETAG V, WITTMANN M, et al.. Functional dissection of surfactin synthetase initiation module reveals insights into the mechanism of lipoinitiation [J]. Chem. Biol., 2010, 17(8):872-880. |
36 | KOGLIN A, LÖHR F, BERNHARD F, et al.. Structural basis for the selectivity of the external thioesterase of the surfactin synthetase [J]. Nature, 2008, 454(7206):907-911. |
37 | REUTER K, MOFID M R, MARAHIEL M A, et al.. Crystal structure of the surfactin synthetase-activating enzyme sfp: a prototype of the 4’-phosphopantetheinyl transferase superfamily [J]. Embo. J., 1999, 18(23):6823-6831. |
38 | OSLIZLO A, STEFANIC P, DOGSA I, et al.. Private link between signal and response in Bacillus subtilis quorum sensing [J]. Proc. Natl. Acad. Sci. USA, 2014, 111(4):1586-1591. |
39 | CAIRNS L S, HOBLEY L, STANLEY-WALL N R. Biofilm formation by Bacillus subtilis: new insights into regulatory strategies and assembly mechanisms [J]. Mol. Microbiol., 2014, 93(4):587-598. |
40 | DHALI D, COUTTE F, ARIAS A A, et al.. Genetic engineering of the branched fatty acid metabolic pathway of Bacillus subtilis for the overproduction of surfactin C(14) isoform [J/OL]. Biotechnol. J., 2017, 12(7):1600574 [2022-10-08]. . |
41 | COUTTE F, NIEHREN J, DHALI D, et al.. Modeling leucine’s metabolic pathway and knockout prediction improving the production of surfactin, a biosurfactant from Bacillus subtilis [J]. Biotechnol. J., 2015, 10(8):1216-1234. |
42 | 章栋梁.Surfactin工业分离纯化工艺及其对肉品的防腐保鲜效果[D].南京:南京农业大学,2013. |
ZHANG D L. Study of the industrial process for the separation and purification of surfactin and its effect on mest presercation [D]. Nanjing: Nanjing Agricultural University, 2013. | |
43 | HUANG X, GAO X, ZHENG L, et al.. Optimization of sterilization of Salmonella enteritidis in meat by surfactin and iturin using a response surface method [J]. Int. J. Peptide Res. Therapeutics, 2009, 15(1):61-67. |
44 | FEI D, ZHOU G W, YU Z Q, et al.. Low-toxic and nonirritant biosurfactant surfactin and its performances in detergent formulations [J]. J. Surfactants Detergents, 2020, 23(1):109-118. |
45 | FERREIRA A, VECINO X, FERREIRA D, et al.. Novel cosmetic formulations containing a biosurfactant from Lactobacillus paracasei [J]. Colloids Surfaces B Biointerfaces, 2017, 155:522-529. |
46 | MANDAL S M, BARBOSA A E, FRANCO O L. Lipopeptides in microbial infection control: scope and reality for industry [J]. Biotechnol. Adv., 2013, 31(2):338-345. |
47 | ZOUARI R, MOALLA-REKIK D, SAHNOUN Z, et al.. Evaluation of dermal wound healing and in vitro antioxidant efficiency of Bacillus subtilis SPB1 biosurfactant [J]. Biomed. Pharmacotherapy, 2016, 84:878-891. |
48 | LIU Q, NIU J, YU Y, et al.. Production, characterization and application of biosurfactant produced by Bacillus licheniformis L20 for microbial enhanced oil recovery [J/OL]. J. Cleaner Prod., 2021, 307:127193 [2022-10-08]. . |
49 | ALVAREZ V M, GUIMARãES C R, JURELEVICIUS D, et al.. Microbial enhanced oil recovery potential of surfactin-producing Bacillus subtilis AB2.0 [J/OL]. Fuel, 2020, 272:117730 [2022-10-08]. . |
50 | DATTA P, TIWARI P, PANDEY L M. Experimental investigation on suitability of surfactin for enhanced oil recovery: stability, adsorption equilibrium and kinetics studies [J/OL]. J. Environ. Chem. Eng., 2022, 10(1):107083 [2022-10-08]. . |
51 | SCERBACOVA A, IVANOVA A, GRISHIN P, et al.. Application of alkalis, polyelectrolytes, and nanoparticles for reducing adsorption loss of novel anionic surfactant in carbonate rocks at high salinity and temperature conditions [J/OL]. Colloids Surfaces A Physicochem. Eng. Aspects, 2022, 653:129996 [2022-10-08]. . |
52 | 高毓晗,李世东,郭荣君. sfp基因转化增强了Bacillus subtilis 168的定殖能力和对黄瓜茎内枯萎病菌的抑制作用[J].中国生物防治学报,2016,32(1):76-85. |
GAO Y H, LI S D, GUO R J. Transformation of sfp Gene into Bacillus subtilis 168 promotes its colonization on cucumber roots and suppression of Fusarium oxysporum f. sp. cucumerinum in cucumber stems [J]. Chin. J. Biol. Control, 2016, 32(1):76-85. | |
53 | 何朋杰,崔文艳,何鹏飞,等.表面活性素促进枯草芽胞杆菌XF-1在大白菜叶际定殖能力研究[J].植物保护,2021,47(5):28-34. |
HE P J, CUI W Y, HE P F, et al.. Surfactin promotes the colonization of Bacillus subtilis XF-1 in tha phyllosphere of Chinese cabbage [J]. Plant Prot., 2021, 47(5):28-34. | |
54 | 杨柳,邓杰勇,王青青,等.表面活性素对不结球白菜叶片生长和硼吸收的促进[J].江苏农业学报,2016,32(5):1134-1140. |
YANG L, DENG J Y, WANG Q Q, et al.. Improved uptake of boron and growth in Chinese cabbage leaves by surfactin [J].Jiangsu J. Agric. Sci., 2016, 32(5):1134-1140. | |
55 | COOPER D G, MACDONALD C R, DUFF S J, et al.. Enhanced production of surfactin from Bacillus subtilis by continuous product removal and metal cation additions [J]. Appl. Environ. Microbiol., 1981, 42(3):408-412. |
56 | WILLENBACHER J, RAU J T, ROGALLA J, et al.. Foam-free production of surfactin via anaerobic fermentation of Bacillus subtilis DSM 10(T) [J/OL]. AMB. Express., 2015, 5:21 [2022-10-08]. . |
57 | 陆雅琴.芽孢杆菌高产抗菌脂肽的菌株筛选体系建立及其诱变育种研究[D].广州:华南农业大学,2017. |
LU Y Q. Establishment of screening system and mutation breeding of high-yield antibacterial lipopeptide of Bacillus strains [D]. Guangzhou: South China Agricultural University, 2017. | |
58 | KLAUSMANN P, HENNEMANN K, HOFFMANN M, et al.. Bacillus subtilis High cell density fermentation using a sporulation-deficient strain for the production of surfactin [J]. Appl. Microbiol. Biotechnol., 2021, 105(10):4141-4151. |
59 | ZHU Z, ZHANG G, LUO Y, et al.. Production of lipopeptides by Bacillus amyloliquefaciens XZ-173 in solid state fermentation using soybean flour and rice straw as the substrate [J]. Bioresour. Technol., 2012, 112:254-260. |
60 | SLIVINSKI C T, MALLMANN E, DE ARAÚJO J M, et al.. Production of surfactin by Bacillus pumilus UFPEDA 448 in solid-state fermentation using a medium based on okara with sugarcane bagasse as a bulking agent [J]. Process Biochem., 2012, 47(12):1848-1855. |
61 | MOYA RAMÍREZ I, ALTMAJER VAZ D, BANAT I M, et al.. Hydrolysis of olive mill waste to enhance rhamnolipids and surfactin production [J]. Bioresour. Technol., 2016, 205(6):1-6. |
62 | ZHOU D, HU F, LIN J, et al.. Genome and transcriptome analysis of Bacillus velezensis BS-37, an efficient surfactin producer from glycerol, in response to d-/l-leucine [J/OL]. Microbiologyopen, 2019, 8(8):e00794 [2022-10-08]. . |
63 | 郭芳芳,李金良,陆兆新,等.复合诱变选育表面活性素(surfactin)高产菌株[J].食品科学,2011,32(23):270-276. |
GUO F F, LI J L, LU Z X, et al.. Breeding of high-yield surfactin-producing strain by a combined mutagenesis approach [J]. Food Sci., 2011, 32(23):270-276. | |
64 | ZHU L, XU Q, JIANG L, et al.. Polydiacetylene-based high-throughput screen for surfactin producing strains of Bacillus subtilis [J/OL]. PLoS One, 2014, 9(2):e88207 [2022-10-08]. . |
65 | SUN H, BIE X, LU F, et al.. Enhancement of surfactin production of Bacillus subtilis fmbR by replacement of the native promoter with the Pspac promoter [J]. Can. J. Microbiol., 2009, 55(8):1003-1006. |
66 | WANG M, YU H, SHEN Z. Antisense RNA-based strategy for enhancing surfactin production in Bacillus subtilis TS1726 via overexpression of the unconventional biotin carboxylase ii to enhance ACCase activity [J]. ACS Synth. Biol., 2019, 8(2):251-256. |
67 | 王苗苗,于慧敏,何欣,等.高产表面活性素的重组枯草芽孢杆菌构建及培养优化[J].生物工程学报,2020,36(11):2377-2386. |
WANG M M, YU H M, HE X, et al.. Construction and optimization of engineered Bacillus subtilis for surfactin production [J]. Chin. J. Biotech., 2020, 36(11):2377-2386. | |
68 | WANG M, YU H, LI X, et al.. Single-gene regulated non-spore-forming Bacillus subtilis: construction, transcriptome responses, and applications for producing enzymes and surfactin [J]. Metab. Eng., 2020, 62:235-248. |
69 | KLAUSMANN P, LILGE L, ASCHERN M, et al.. Influence of B. subtilis 3NA mutations in spo0A and abrB on surfactin production in B. subtilis 168 [J/OL]. Microb. Cell Fact., 2021, 20(1):188 [2022-10-08]. . |
70 | HOFFMANN M, BRAIG A, FERNANDEZ CANO LUNA D S, et al.. Evaluation of an oxygen-dependent self-inducible surfactin synthesis in B. subtilis by substitution of native promoter P(srfA) by anaerobically active P(narG) and P(nasD) [J]. AMB. Express., 2021, 11(1):57-65. |
71 | WILLENBACHER J, MOHR T, HENKEL M, et al.. Substitution of the native srfA promoter by constitutive Pveg in two B. subtilis strains and evaluation of the effect on surfactin production [J]. J. Biotechnol., 2016, 224(11):14-17. |
72 | HU F, CAI W, LIN J, et al.. Genetic engineering of the precursor supply pathway for the overproduction of the nC(14)-surfactin isoform with promising MEOR applications [J]. Microb. Cell Fact., 2021, 20(1):96-105. |
73 | WANG X, CHEN Z, FENG H, et al.. Genetic variants of the oppA gene are involved in metabolic regulation of surfactin in Bacillus subtilis [J/OL]. Microb. Cell Fact., 2019, 18(1):141 [2022-10-08]. . |
74 | TSUGE K, OHATA Y, SHODA M. Gene yerP, involved in surfactin self-resistance in Bacillus subtilis [J]. Antimicrob. Agents Chemother., 2001, 45(12):3566-3573. |
[1] | Xiaoqian TIAN, Haiqiang LU, Ningfeng WU, Jian TIAN, Feifei GUAN. Catalytic Properties of the Active Pocket Key Tryptophan on Chitinase Chi304 [J]. Journal of Agricultural Science and Technology, 2023, 25(2): 76-82. |
[2] | WAN Dongpu1,2, YU Zhuo1, WU Yanmin3, DING Mengqi2, LI Jinbo2, ZHOU Meiliang2*. Regulation of Anthocyanin Metabolism on Colored Leaves of Plants [J]. Journal of Agricultural Science and Technology, 2020, 22(2): 30-38. |
[3] | WANG Kaiyue, CHEN Fangquan, HUANG Wuxing*. Research Advance on Drought Stress Response Mechanism in Plants [J]. Journal of Agricultural Science and Technology, 2019, 21(2): 19-25. |
[4] | JIAO Yong1,2, LIU Xiaoqing2, JIANG Haiyang1*, CHEN Rumei2*. Research Advances of Plant Tissue Specific Promoters [J]. Journal of Agricultural Science and Technology, 2019, 21(1): 18-28. |
[5] | ZHANG Meng-ru, GONG Ming, YANG Yu-mei, LUO Zhu, LIU Chang, ZOU Zhu-rong*. Research Progress on Plant Cytosolic APX1 [J]. , 2015, 17(3): 8-18. |
[6] | MA Yi-wen1,2, LI Liang2, WANG Nan2, WANG Zhen-ping3, JIANG Li-yan3, HAO Zhuan-fa. Expressive Characteristics of Drought-related Genes and Their Genetic Engineering Prospects in Crops [J]. , 2015, 17(2): 33-40. |
[7] |
LEI Cai-yan, LI Jing-jing, YAN Feng-ming*.
Research Advances in Plant Saponins Biosynthesis and Its Regulation [J]. , 2014, 16(4): 50-58. |
[8] | LEI Zhi, ZHOU Mei\|liang, WU Yan\|min*. Advances of the Abiotic Stress\|related Genes in Cotton Stress Tolerance [J]. , 2014, 16(2): 35-43. |
[9] | TANG Ke\|xuan, SHEN Qian, FU Xue\|qing, YAN Ting\|xiang. Research Progress on Plant Secondary Metabolite Bioreactor [J]. , 2014, 16(1): 7-15. |
[10] | LIU Ming1,2, SHU Chang-long2, GAO Ji-guo1, ZHANG Jie2. Utilization of Protein Engineering in Improving Cry Toxins in Bacillus thuringiensis [J]. , 2010, 12(4): 24-28. |
[11] | PEI Xin-wu, JIA Shi-rong . Progress in Genetic Engineering of Banana for |Fungal Disease Resistance [J]. , 2006, 8(4): 1-7. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||