Journal of Agricultural Science and Technology ›› 2022, Vol. 24 ›› Issue (12): 90-100.DOI: 10.13304/j.nykjdb.2022.1031
• INNOVATIVE TECHNOLOGY • Previous Articles Next Articles
Weijun GUO(), Dongwei LI(
), Shang XIE(
), Liwen YANG, Cong LI, Jian TIAN, Li PU, Xiaofeng GU(
)
Received:
2022-11-15
Accepted:
2022-12-02
Online:
2022-12-15
Published:
2023-02-06
Contact:
Xiaofeng GU
郭位军(), 李东维(
), 谢上(
), 杨立文, 李聪, 田健, 普莉, 谷晓峰(
)
通讯作者:
谷晓峰
作者简介:
郭位军、郭位军E-mail:guoweijun01@163.com基金资助:
CLC Number:
Weijun GUO, Dongwei LI, Shang XIE, Liwen YANG, Cong LI, Jian TIAN, Li PU, Xiaofeng GU. Artificial Intelligence Accelerates Epigenetics and Plant Breeding[J]. Journal of Agricultural Science and Technology, 2022, 24(12): 90-100.
郭位军, 李东维, 谢上, 杨立文, 李聪, 田健, 普莉, 谷晓峰. 人工智能加速作物表观遗传设计育种[J]. 中国农业科技导报, 2022, 24(12): 90-100.
Fig. 2 Technologies relevant to epigenomeBS-seq:Bisulfite sequencing; MeDIP-seq: Methylated DNA immunoprecipitation sequencing; MeRIP-seq: Methylated RNA immunoprecipitation sequencing; ChIP-seq: Chromatin immunoprecipitation sequencing; SMRT-seq: Single-molecule real-time sequencing;Nanopore-seq: Nanopore sequencing; ATAC-seq: Assay for transposase-accessible chromatin with high-throughput sequencing (HTS); HiC: High-throughput chromosome conformation capture technology
1 | HOLLIDAY R. Epigenetics: a historical overview [J]. Epigenetics, 2006,1(2):76-80. |
2 | LIANG Z, RIAZ A, CHACHAR S, et al.. Epigenetic modifications of mRNA and DNA in plants [J]. Mol. Plant, 2020, 13(1):14-30. |
3 | BAYLIN S B, OHM J E. Epigenetic gene silencing in cancer - a mechanism for early oncogenic pathway addiction? [J]. Nat. Rev. Cancer, 2006, 6(2):107-116. |
4 | KOUZARIDES T, Chromatin modifications and their function [J]. Cell, 2007, 128(4):693-705. |
5 | EGGER G, LIANG G, APARICIO A, et al.. Epigenetics in human disease and prospects for epigenetic therapy [J]. Nature, 2004, 429(6990):457-463. |
6 | ZHANG Q, LIANG Z, CUI X, et al.. N 6-methyladenine DNA methylation in Japonica and Indica rice genomes and its association with gene expression, plant development, and stress responses [J]. Mol. Plant, 2018, 11(12):1492-1508. |
7 | LIANG Z, GENG Y, GU X, et al.. Adenine methylation: new epigenetic marker of DNA and mRNA [J]. Mol. Plant, 2018, 11(10):1219-1221. |
8 | FROMMER M, MCDONALD L E, MILLAR D S, et al.. A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands [J]. Proc. Natl. Acad. Sci. USA, 1992, 89(5):1827-1831. |
9 | MELNIKOV A A, GARTENHAUS R B, LEVENSON A S, et al.. MSRE-PCR for analysis of gene-specific DNA methylation [J/OL]. Nucleic Acids Res., 2005, 33(10): e93 [2022-11-30].. |
10 | BANNISTER A J, KOUZARIDES T. Regulation of chromatin by histone modifications [J]. Cell Res., 2011, 21(3):381-395. |
11 | GADE P, KALVAKOLANU D V. Chromatin immunoprecipitation assay as a tool for analyzing transcription factor activity [J]. Methods Mol. Biol., 2012, 809:85-104. |
12 | DAVIES J O, OUDELAAR A M, HIGGS D R, et al.. How best to identify chromosomal interactions: a comparison of approaches [J]. Nat. Methods, 2017, 14(2):125-134. |
13 | DI PIERRO M, CHENG R R, AIDEN L E, et al.. De novo prediction of human chromosome structures: epigenetic marking patterns encode genome architecture [J]. Proc. Natl. Acad. Sci. USA, 2017, 114(46):12126-12131. |
14 | YE G, ZHANG H, CHEN B, et al.. De novo genome assembly of the stress tolerant forest species Casuarina equisetifolia provides insight into secondary growth [J]. Plant J., 2019, 97(4):779-794. |
15 | YUAN D H, XING J F, LUAN M W, et al.. DNA N 6-methyladenine modification in wild and cultivated soybeans reveals different patterns in nucleus and cytoplasm [J/OL]. Front. Genet., 2020, 11:736 [2022-11-30]. . |
16 | ZHOU C, WANG C, LIU H, et al.. Identification and analysis of adenine N 6-methylation sites in the rice genome [J]. Nat. Plants, 2018, 4(8):554-563. |
17 | LIANG Z, ZHANG Q, JI C, et al.. Reorganization of the 3D chromatin architecture of rice genomes during heat stress [J/OL]. BMC Biol., 2021, 19(1):53 [2022-11-30]. . |
18 | ROUNDTREE I A, EVANS M E, PAN T, et al.. Dynamic RNA modifications in gene expression regulation [J]. Cell, 2017,169(7):1187-1200. |
19 | SHEN H, ONTIVEROS R J, OWENS M C, et al.. TET-mediated 5-methylcytosine oxidation in tRNA promotes translation [J/OL]. J. Biol. Chem., 2021,296:100087 [2022-11-30]. . |
20 | HOU Y, SUN J, WU B, et al.. CPSF30-L-mediated recognition of mRNA m6A modification controls alternative polyadenylation of nitrate signaling-related gene transcripts in Arabidopsis [J]. Mol. Plant, 2021, 14(4):688-699. |
21 | SHAO Y, WONG C E, SHEN L, et al.. N 6-methyladenosine modification underlies messenger RNA metabolism and plant development [J/OL]. Curr. Opin. Plant Biol., 2021, 63:102047 [2022-11-30]. . |
22 | SONG P, YANG J, WANG C, et al.. Arabidopsis N 6-methyladenosine reader CPSF30-L recognizes FUE signals to control polyadenylation site choice in liquid-like nuclear bodies [J]. Mol. Plant, 2021, 14(4):571-587. |
23 | XU T, WU X, WONG C E, et al.. FIONA1-mediated m6A modification regulates the floral transition in Arabidopsis [J/OL]. Adv. Sci., 2022, 9(6):e2103628 [2022-11-30]. . |
24 | JIA G, FU Y, ZHAO X, et al.. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO [J]. Nat. Chem. Biol., 2011, 7(12):885-887. |
25 | DUAN H C, WEI L H, ZHANG C, et al.. ALKBH10B is an RNA N 6-methyladenosine demethylase affecting Arabidopsis floral transition [J]. Plant Cell, 2017, 29(12):2995-3011. |
26 | MARTÍNEZ-PÉREZ M, APARICIO F, LÓPEZ-GRESA M P, et al.. Arabidopsis m6A demethylase activity modulates viral infection of a plant virus and the m6A abundance in its genomic RNAs [J]. Proc. Natl. Acad. Sci. USA, 2017, 114(40):10755-10760. |
27 | ZHENG G, DAHL J A, NIU Y, et al.. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility [J]. Mol. Cell, 2013,49(1):18-29. |
28 | SHEN L, LIANG Z, GU X, et al.. N 6-methyladenosine RNA modification regulates shoot stem cell fate in Arabidopsis [J]. Dev. Cell, 2016, 38(2):186-200. |
29 | ZHANG F, ZHANG Y C, LIAO J Y, et al.. The subunit of RNA N6-methyladenosine methyltransferase OsFIP regulates early degeneration of microspores in rice [J/OL]. PLoS Genet., 2019, 15(5):e1008120 [2022-11-30]. . |
30 | ARRIBAS-HERNáNDEZ L, BRESSENDORFF S, HANSEN M H, et al.. An m6A-YTH module controls developmental timing and morphogenesis in Arabidopsis [J]. Plant Cell, 2018, 30(5):952-967. |
31 | WEI L H, SONG P, WANG Y, et al.. The m6A reader ECT2 controls trichome morphology by affecting mRNA stability in Arabidopsis [J]. Plant Cell, 2018, 30(5):968-985. |
32 | CHENG P, BAO S, LI C, et al.. RNA N 6-methyladenosine modification promotes auxin biosynthesis required for male meiosis in rice [J]. Dev. Cell, 2022, 57(2):246-259. |
33 | WANG C, YANG J, SONG P, et al.. FIONA1 is an RNA N 6-methyladenosine methyltransferase affecting Arabidopsis photomorphogenesis and flowering [J]. Genome Biol., 2022, 23(1):40 [2022-11-30]. . |
34 | HU J, CAI J, PARK S J, et al.. N 6-methyladenosine mRNA methylation is important for salt stress tolerance in Arabidopsis [J]. Plant J., 2021, 106(6):1759-1775. |
35 | ZHANG T Q, CHEN Y, LIU Y, et al.. Single-cell transcriptome atlas and chromatin accessibility landscape reveal differentiation trajectories in the rice root [J/OL]. Nat. Commun., 2021, 12(1):2053 [2022-11-30]. . |
36 | CUI X, LIANG Z, SHEN L, et al.. 5-methylcytosine RNA methylation in Arabidopsis thaliana [J]. Mol. Plant, 2017, 10(11):1387-1399. |
37 | DAVID R, BURGESS A, PARKER B, et al.. Transcriptome-wide mapping of RNA 5-methylcytosine in Arabidopsis mRNAs and noncoding RNAs [J]. Plant Cell, 2017, 29(3):445-460. |
38 | TANG Y, GAO C C, GAO Y, et al.. OsNSUN2-mediated 5-methylcytosine mRNA modification enhances rice adaptation to high temperature [J]. Dev. Cell, 2020, 53(3):272-286. |
39 | PU L, SUNG Z R. PcG and trxG in plants-friends or foes [J]. Trends Genet., 2015, 31(5):252-262. |
40 | KOLASINSKA-ZWIERZ P, DOWN T, LATORRE I, et al.. Differential chromatin marking of introns and expressed exons by H3K36me3 [J]. Nat. Genet., 2009, 41(3):376-381. |
41 | PIEN S, FLEURY D, MYLNE J S, et al.. ARABIDOPSIS TRITHORAX1 dynamically regulates FLOWERING LOCUS C activation via histone 3 lysine 4 trimethylation [J]. Plant Cell, 2008, 20(3):580-588. |
42 | LIU C, LU F, CUI X, et al.. Histone methylation in higher plants [J]. Annu. Rev. Plant Biol., 2010, 61:395-420. |
43 | ZHANG X, CLARENZ O, COKUS S, et al.. Whole-genome analysis of histone H3 lysine 27 trimethylation in Arabidopsis [J/OL]. PLoS Biol., 2007, 5(5):e129 [2022-11-30]. . |
44 | PARK M, PATEL N, KEUNG A J, et al.. Engineering epigenetic regulation using synthetic read-write modules [J]. Cell, 2019, 176(1-2):227-238. |
45 | LIU X M, ZHOU J, MAO Y, et al.. Programmable RNA N 6-methyladenosine editing by CRISPR-Cas9 conjugates [J]. Nat. Chem. Biol., 2019, 15(9):865-871. |
46 | NUÑEZ J K, CHEN J, POMMIER G C, et al.. Genome-wide programmable transcriptional memory by CRISPR-based epigenome editing [J]. Cell, 2021, 184(9):2503-2519. |
47 | JOHNSON L M, DU J, HALE C J, et al.. SRA- and SET-domain-containing proteins link RNA polymerase V occupancy to DNA methylation [J]. Nature, 2014, 507(7490):124-128. |
48 | PAPIKIAN A, LIU W, GALLEGO-BARTOLOMÉ J, et al.. Site-specific manipulation of Arabidopsis loci using CRISPR-Cas9 SunTag systems [J/OL]. Nat. Commun., 2019, 10(1):729 [2022-11-30]. . |
49 | GALLEGO-BARTOLOMé J, GARDINER J, LIU W, et al.. Targeted DNA demethylation of the Arabidopsis genome using the human TET1 catalytic domain [J]. Proc. Natl. Acad. Sci. USA, 2018, 115(9):E2125-e2134. |
50 | WANG H, CIMEN E, SINGH N, et al.. Deep learning for plant genomics and crop improvement [J]. Curr. Opin. Plant Biol., 2020,54:34-41. |
51 | PADOVANI DE SOUZA K, SETUBAL J C, PONCE DE LEON F D C A C, et al.. Machine learning meets genome assembly [J]. Brief Bioinform., 2019. 20(6):2116-2129. |
52 | CHAMPIGNY M J, UNDA F, SKYBA O, et al.. Learning from methylomes: epigenomic correlates of Populus balsamifera traits based on deep learning models of natural DNA methylation [J]. Plant Biotechnol. J., 2020, 18(6):1361-1375. |
53 | CHEN W, LV H, NIE F, et al.. i6mA-Pred: identifying DNA N6-methyladenine sites in the rice genome [J]. Bioinformatics, 2019, 35(16):2796-2800. |
54 | LV H, DAO F Y, GUAN Z X, et al.. iDNA6mA-rice: a computational tool for fetecting N6-methyladenine sites in rice [J/OL]. Front. Genet., 2019, 10:793 [2022-11-30]. . |
55 | PIAN C, ZHANG G, LI F, et al.. MM-6mAPred: identifying DNA N6-methyladenine sites based on Markov model [J]. Bioinformatics, 2020. 36(2):388-392. |
56 | YU H, DAI Z. SNNRice6mA: a eeep learning method for predicting DNA N6-methyladenine sites in rice genome [J]. Front. Genet., 2019, 10:107110 [2022-11-30]. . |
57 | ZHANG P, WANG Y, CHACHAR S, et al.. eRice: a refined epigenomic platform for japonica and indica rice [J]. Plant Biotechnol. J., 2020, 18(8):1642-1644. |
58 | WANG Y, ZHANG P, GUO W, et al.. A deep learning approach to automate whole-genome prediction of diverse epigenomic modifications in plants [J]. New Phytol., 2021, 232(2):880-897. |
59 | MA C, XIN M, FELDMANN K A, et al.. Machine learning-based differential network analysis: a study of stress-responsive transcriptomes in Arabidopsis [J]. Plant Cell, 2014, 26(2):520-537. |
60 | YE W, LIAN Q, YE C, et al.. A survey on methods for predicting polyadenylation sites from DNA sequences, bulk RNA-seq, and single-cell RNA-seq [J]. Genomics Proteomics Bioinformatics, 2022. |
61 | ZHAI J, SONG J, ZHANG T, et al.. deepEA: a containerized web server for interactive analysis of epitranscriptome sequencing data [J]. Plant Physiol., 2021, 185(1):29-33. |
62 | WU X, FENG H, WU D, et al.. Using high-throughput multiple optical phenotyping to decipher the genetic architecture of maize drought tolerance [J/OL]. Genome Biol., 2021, 22(1):185 [2022-11-30]. . |
63 | GUO W, LIU H, WANG Y, et al.. SMOC: a smart model for open chromatin region prediction in rice genomes [J]. J. Genet. Genomics, 2022, 49(5):514-517. |
64 | OBUDULU O, MäHLER N, SKOTARE T, et al.. A multi-omics approach reveals function of secretory carrier-associated membrane proteins in wood formation of Populus trees [J/OL]. BMC Genomics, 2018, 19(1):11 [2022-11-30]. . |
65 | MESNAGE R, AGAPITO-TENFEN S Z, VILPERTE V, et al.. An integrated multi-omics analysis of the NK603 Roundup-tolerant GM maize reveals metabolism disturbances caused by the transformation process [J/OL]. Sci. Rep., 2016,6:37855 [2022-11-30]. . |
66 | DE ABREU E L F, LI K, WEN W, et al.. Unraveling lipid metabolism in maize with time-resolved multi-omics data [J]. Plant J., 2018, 93(6):1102-1115. |
67 | GAVICHO UARROTA V, FUENTEALBA C, HERNáNDEZ I, et al.. Integration of proteomics and metabolomics data of early and middle season Hass avocados under heat treatment [J]. Food Chem., 2019, 289:512-521. |
68 | ZHOU J, THEESFELD C L, YAO K, et al.. Deep learning sequence-based ab initio prediction of variant effects on expression and disease risk [J]. Nat. Genet., 2018, 50(8):1171-1179. |
69 | AVSEC Ž, AGARWAL V, VISENTIN D, et al.. Effective gene expression prediction from sequence by integrating long-range interactions [J]. Nat. Methods, 2021, 18(10):1196-1203. |
70 | ZHOU J, TROYANSKAYA O G. Predicting effects of noncoding variants with deep learning-based sequence model [J]. Nat. Methods, 2015, 12(10):931-934. |
71 | ALIPANAHI B, DELONG A, WEIRAUCH M T, et al.. Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning [J]. Nat. Biotechnol., 2015, 33(8):831-838. |
72 | AVSEC Ž, WEILERT M, SHRIKUMAR A, et al.. Base-resolution models of transcription-factor binding reveal soft motif syntax [J]. Nat. Genet., 2021, 53(3):354-366. |
73 | MOORE J E, PURCARO M J, PRATT H E, et al.. Expanded encyclopaedias of DNA elements in the human and mouse genomes [J]. Nature, 2020. 583(7818):699-710. |
74 | KELLEY D R, SNOEK J, RINN J L. Basset: learning the regulatory code of the accessible genome with deep convolutional neural networks [J]. Genome Res., 2016, 26(7):990-999. |
75 | ZHAO H, LI J, YANG L, et al.. An inferred functional impact map of genetic variants in rice [J]. Mol. Plant, 2021, 14(9):1584-1599. |
76 | KELLEY D R, RESHEF Y A, BILESCHI M, et al.. Sequential regulatory activity prediction across chromosomes with convolutional neural networks [J]. Genome Res., 2018, 28(5):739-750. |
77 | ZHOU J, CHEN Q, BRAUN P R, et al.. Deep learning predicts DNA methylation regulatory variants in the human brain and elucidates the genetics of psychiatric disorders [J/OL]. Proc. Natl. Acad. Sci. USA, 2022, 119(34):e2206069119 [2022-11-30]. . |
78 | FUDENBERG G, KELLEY D R, POLLARD K S. Predicting 3D genome folding from DNA sequence with Akita [J]. Nat. Methods, 2020, 17(11):1111-1117. |
79 | ZHOU J. Sequence-based modeling of three-dimensional genome architecture from kilobase to chromosome scale [J]. Nat. Genet., 2022, 54(5):725-734. |
80 | Meuwissen T H E, Hayes B J, Goddard M E. Prediction of total genetic value using genome-wide dense marker maps [J]. Genetics, 2001, 157: 1819-1829. |
81 | ENDELMAN J B. Ridge regression and other kernels for genomic selection with R package rrBLUP [J]. Plant Genome, 2011, 4(3):250-255. |
82 | PéREZ P, DE LOS CAMPOS G. Genome-wide regression and prediction with the BGLR statistical package [J]. Genetics, 2014, 198(2):483-495. |
83 | YAN J, XU Y, CHENG Q, et al.. LightGBM: accelerated genomically designed crop breeding through ensemble learning [J/OL]. Genome Biol., 2021, 22(1):271 [2022-11-30]. . |
84 | MA W, QIU Z, SONG J, et al.. A deep convolutional neural network approach for predicting phenotypes from genotypes [J]. Planta, 2018,248(5):1307-1318. |
85 | LIU Y, WANG D, HE F, et al.. Phenotype prediction and genome-wide association study using deep convolutional neural network of soybean [J/OL]. Front. Genet., 2019, 10:1091 [2022-11-30]. . |
86 | WANG K, ABID M A, RASHEED A, et al.. DNNGP, a deep neural network-based method for genomic prediction using multi-omics data in plants [J/OL]. Mol. Plant, 2023,16:1-15[2022-11-30]. . |
87 | CHENG Q, JIANG S, XU F, et al.. Genome optimization via virtual simulation to accelerate maize hybrid breeding [J/OL]. Brief. Bioinform., 2022, 23(1):bbab447 [2022-11-30]. . |
88 | JIANG S, CHENG Q, YAN J, et al.. Genome optimization for improvement of maize breeding [J]. Theor. Appl. Genet., 2020, 133(5):1491-1502. |
89 | YANG L, ZHANG P, WANG Y, et al.. Plant synthetic epigenomic engineering for crop improvement [J]. Sci. China Life Sci., 2022,65(11):2191-220. |
90 | RODRíGUEZ-LEAL D, LEMMON Z H, MAN J, et al.. Engineering quantitative trait variation for crop improvement by genome editing [J]. Cell, 2017, 171(2):470-480. |
91 | YU Q, LIU S, YU L, et al.. RNA demethylation increases the yield and biomass of rice and potato plants in field trials [J]. Nat. Biotechnol., 2021, 39(12):1581-1588. |
[1] | Hai WANG, Jinsheng LAI, Haiyang WANG, Xinhai LI. Bipartite Intelligent Design of Crops—Intelligent Combination of Natural Variation and Intelligent Creation of Artificial Variation [J]. Journal of Agricultural Science and Technology, 2022, 24(6): 1-8. |
[2] | YUAN Fang, GUO Pei-yuan, WU Hao, SUN Mei. Study on the Development of Pork Freshness Detection Techniques [J]. , 2009, 11(S1): 72-74. |
[3] | WEI Hua-li, YANG Wen-hua, HAN Su-ying, QI Li-wang. Research Strategy of Epigenetics and its Utilization in Wooden Plants [J]. , 2009, 11(2): 10-16. |
[4] | ZHENG Xiao-mei, WU Ning-feng. Biological Function of DNA Methylation [J]. , 2009, 11(1): 33-39. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||