Journal of Agricultural Science and Technology ›› 2023, Vol. 25 ›› Issue (5): 131-138.DOI: 10.13304/j.nykjdb.2023.0021
• ANIMAL AND PLANT HEALTH • Previous Articles
Xueying FENG(), Lukuan WANG, Yucui HUANG, Chunping YANG, Haiyun XU(
)
Received:
2023-01-06
Accepted:
2023-03-07
Online:
2023-05-20
Published:
2023-07-13
Contact:
Haiyun XU
通讯作者:
徐海云
作者简介:
冯雪莹 E-mail:fxy970110@163.com;
基金资助:
CLC Number:
Xueying FENG, Lukuan WANG, Yucui HUANG, Chunping YANG, Haiyun XU. Effects of High Temperature on Fitness and Synchrony of Bemisia tabaci and Its Dominate Parasitoid[J]. Journal of Agricultural Science and Technology, 2023, 25(5): 131-138.
冯雪莹, 王路宽, 黄玉翠, 杨春萍, 徐海云. 发育高温对烟粉虱及其优势寄生蜂适合度和同步性的影响[J]. 中国农业科技导报, 2023, 25(5): 131-138.
时间 Time | 恒定适温 Constant optimum temperature/℃ | 高/适温交替 Alternating high/optimum temperature/℃ | ||
---|---|---|---|---|
26 | 30/26 | 34/26 | 38/26 | |
0:00—10:00 | 26 | 26 | 26 | 26 |
10:00—15:00 | 26 | 30 | 34 | 38 |
15:00—24:00 | 26 | 26 | 26 | 26 |
Table 1 Daily temperature setting
时间 Time | 恒定适温 Constant optimum temperature/℃ | 高/适温交替 Alternating high/optimum temperature/℃ | ||
---|---|---|---|---|
26 | 30/26 | 34/26 | 38/26 | |
0:00—10:00 | 26 | 26 | 26 | 26 |
10:00—15:00 | 26 | 30 | 34 | 38 |
15:00—24:00 | 26 | 26 | 26 | 26 |
温度 Temperature/℃ | 发育历期 Development period/d | ||||
---|---|---|---|---|---|
卵-1龄 Egg-1st instar | 2龄 2nd instar | 3龄 3rd instar | 4龄 4th instar | 卵-成虫 Egg-adult | |
26 | 8.9±0.1 a | 3.0±0.1 a | 3.5±0.1 a | 2.6±0.1 a | 18.0±0.2 a |
30/26 | 8.4±0.1 a | 2.8±0.1 ab | 2.9±0.3 ab | 2.3±0.2 a | 16.4±0.6 ab |
34/26 | 8.2±0.2 a | 2.6±0.1 b | 2.8±0.2 ab | 2.4±0.1 a | 16.1±0.3 bc |
38/26 | 6.2±0.2 b | 2.5±0.1 b | 2.5±0.2 b | 2.4±0.1 a | 13.6±0.5 c |
Table 2 Development duration of each stage of Bemisia tabaci pre-adult under different temperatures
温度 Temperature/℃ | 发育历期 Development period/d | ||||
---|---|---|---|---|---|
卵-1龄 Egg-1st instar | 2龄 2nd instar | 3龄 3rd instar | 4龄 4th instar | 卵-成虫 Egg-adult | |
26 | 8.9±0.1 a | 3.0±0.1 a | 3.5±0.1 a | 2.6±0.1 a | 18.0±0.2 a |
30/26 | 8.4±0.1 a | 2.8±0.1 ab | 2.9±0.3 ab | 2.3±0.2 a | 16.4±0.6 ab |
34/26 | 8.2±0.2 a | 2.6±0.1 b | 2.8±0.2 ab | 2.4±0.1 a | 16.1±0.3 bc |
38/26 | 6.2±0.2 b | 2.5±0.1 b | 2.5±0.2 b | 2.4±0.1 a | 13.6±0.5 c |
温度 Temperature/℃ | 存活率 Survival rate/% | 累计存活率 Cumulative survival rate/% | ||
---|---|---|---|---|
1龄 1st instar | 2龄 2nd instar | 3龄 3rd instar | ||
26 | 84.22±3.61 a | 95.36±1.01 a | 97.66±1.18 a | 78.22±2.64 a |
30/26 | 90.78±1.74 a | 93.79±2.45 a | 97.17±1.77 a | 82.57±0.70 a |
34/26 | 92.86±3.28 a | 98.57±1.42 a | 92.23±3.05 a | 84.17±2.86 a |
38/26 | 85.68±2.89 a | 94.09±1.85 a | 95.22±2.33 a | 76.51±1.36 a |
Table 3 Survival rates of Bemisia tabaci 1st to 3rd nymph under different temperature
温度 Temperature/℃ | 存活率 Survival rate/% | 累计存活率 Cumulative survival rate/% | ||
---|---|---|---|---|
1龄 1st instar | 2龄 2nd instar | 3龄 3rd instar | ||
26 | 84.22±3.61 a | 95.36±1.01 a | 97.66±1.18 a | 78.22±2.64 a |
30/26 | 90.78±1.74 a | 93.79±2.45 a | 97.17±1.77 a | 82.57±0.70 a |
34/26 | 92.86±3.28 a | 98.57±1.42 a | 92.23±3.05 a | 84.17±2.86 a |
38/26 | 85.68±2.89 a | 94.09±1.85 a | 95.22±2.33 a | 76.51±1.36 a |
Fig. 1 Hind tibia length of Bemisia tabaci female under different development temperaturesNote: Different lowercase letters indicate significant differences at P<0.05 level.
温度 Temperature/℃ | 发育历期 Development period/d | ||
---|---|---|---|
卵-幼虫 Egg-larva | 蛹 Pupa | 卵-成虫 Egg-adult | |
26 | 8.1±0.1 a | 7.7±0.1 a | 15.8±0.1 a |
30/26 | 7.2±0.1 bc | 6.4±0.1 b | 13.6±0.1 b |
34/26 | 7.4±0.1 b | 6.4±0.1 b | 13.8±0.1 b |
38/26 | 7.0±0.2 c | 5.8±0.1 c | 12.8±0.1 c |
Table 4 Development duration of each stage of Encarsia formosa pre-adult under different temperatures
温度 Temperature/℃ | 发育历期 Development period/d | ||
---|---|---|---|
卵-幼虫 Egg-larva | 蛹 Pupa | 卵-成虫 Egg-adult | |
26 | 8.1±0.1 a | 7.7±0.1 a | 15.8±0.1 a |
30/26 | 7.2±0.1 bc | 6.4±0.1 b | 13.6±0.1 b |
34/26 | 7.4±0.1 b | 6.4±0.1 b | 13.8±0.1 b |
38/26 | 7.0±0.2 c | 5.8±0.1 c | 12.8±0.1 c |
温度 Temperature /ºC | 幼虫总数 No. of larvae | 化蛹总数 No. of pupae | 平均化蛹率 Average pupation rate/% |
---|---|---|---|
26 | 195 | 172 | 84.4±5.3 a |
30/26 | 253 | 211 | 84.6±3.6 a |
34/26 | 184 | 163 | 90.1±2.7 a |
38/26 | 65 | 60 | 95.2±3.5 a |
Table 5 Average pupation rate of Encarsia formosa under different temperatures
温度 Temperature /ºC | 幼虫总数 No. of larvae | 化蛹总数 No. of pupae | 平均化蛹率 Average pupation rate/% |
---|---|---|---|
26 | 195 | 172 | 84.4±5.3 a |
30/26 | 253 | 211 | 84.6±3.6 a |
34/26 | 184 | 163 | 90.1±2.7 a |
38/26 | 65 | 60 | 95.2±3.5 a |
Fig. 2 Hind tibia length of Encarsia formosa under different development temperaturesNote: Different lowercase letters indicate significant differences at P<0.05 level.
Fig. 3 Egg load of Encarsia formosa under different development temperaturesNote: Different lowercase letters indicate significant differences at P<0.05 level.
Fig. 4 Egg length of Encarsia formosa females under different development temperaturesNote: Different lowercase letters indicate significant differences at P<0.05 level.
1 | 李慧, 郝德君, 徐天, 等. 高温胁迫对植食性昆虫影响研究进展[J]. 南京林业大学学报(自然科学版), 2022, 46(6): 215-224. |
LI H, HAO D J, XU T, et al.. The effects of heat stress on herbivorous insects: an overview and future directions [J]. J. Nanjing For. Univ. (Nat. Sci.), 2022, 46(6): 215-224. | |
2 | ABARCA M, SPAHN R. Direct and indirect effects of altered temperature regimes and phenological mismatches on insect populations [J]. Curr. Opin. Insect Sci., 2021, 47: 67-74. |
3 | 余文远, 张世泽. 天敌昆虫对温度胁迫的响应[J]. 陕西农业科学, 2022, 68(10): 90-96. |
YU W Y, ZHANG S Z. Response of natural enemy insects to temperature stress [J]. Shaanxi Agric. Sci., 2022, 68(10): 90-96. | |
4 | HODKINSON I, BIRD J. Flexible responses of insect to changing environmental temperature-early season development of Craspedolepta species on fireweed [J]. Glob. Change Biol., 2006, 12(7): 1308-1314. |
5 | GAO G Z, FENG L K, PERKINS L E, et al.. Effect of the frequency and magnitude of extreme temperature on the life history traits of the large cotton aphid, Acyrthosiphon gossypii (Hemiptera: Aphididae): implications for their population dynamics under global warming [J]. Entomol. Gen., 2018, 37(2): 110-113. |
6 | ZHANG Y B, ZHANG G F, LIU W X, et al.. Continuous heat waves change the life history of a host-feeding parasitoid [J]. Biol. Control, 2019, 135:57-65. |
7 | GIBBS A G. Lipid melting and cuticular permeability: new insights into an old problem [J]. J. Insect Physiol., 2002, 48(4): 391-400. |
8 | WALTER M F, PETERSEN N S, BIESSMANN H. Heat shock causes the collapse of the intermediate filament cytoskeleton in Drosophila embryos [J]. Dev. Genetics, 1990, 11(4): 270-279. |
9 | LEITH N T, JOCSON D I, FOWLER-FINN K D. Temperature-related breakdowns in the coordination of mating in Enchenopa binotata treehoppers (Hemiptera: Membracidae) [J]. Ethology, 2020, 126(9): 870-882. |
10 | ZHANG Y B, YANG A P, ZHANG G F, et al.. Effects of simulated heat waves on life history traits of a host feeding parasitoid [J/OL]. Insects, 2019, 10(12): 419 [2022-12-06]. . |
11 | ZHAO M T, WANG Y, AHOU Z S, et al.. Effects of periodically repeated heat events on reproduction and ovary development of Agasicles hygrophila (Coleoptera: Chrysomelidae) [J]. J. Econ. Entomol., 2016, 109(4): 1586-1594. |
12 | HARVEY J A, HEINEN R, GOLS R, et al.. Climate change-mediated temperature extremes and insects: from outbreaks to breakdowns [J]. Glob. Change Biol., 2020, 26(12): 6685-6701. |
13 | MA C S, MA G, PINCEBOURDE S. Survive a warming climate: Insect responses to extreme high temperatures [J]. Annu. Rev. Entomol., 2021, 66: 163-184. |
14 | COLINET H, SINCLAIR B J, VERNON P, et al.. Insects in fluctuating thermal environments [J]. Annu. Rev. Entomol., 2015, 60: 123-140. |
15 | HANCE T, VAN BAAREN J, VERNON P, et al.. Impact of extreme temperatures on parasitoids in a climate change perspective [J]. Annu. Rev. Entomol., 2006, 52: 107-126. |
16 | JEFFS C T, LEWIS O T. Effects of climate warming on host-parasitoid interactions [J]. Ecol. Entomol., 2013, 38(3): 209-218. |
17 | SCHREVEN S J J, FRAGO E, STENS A, et al.. Contrasting effects of heat pulses on different trophic levels, an experiment with a herbivore-parasitoid model system [J/OL]. PLoS One, 2017, 12(4): e0176704 [2022-12-06]. . |
18 | BUCKLEY L B. Temperature-sensitive development shapes insect phenological responses to climate change [J/OL]. Curr. Opin. Insect Sci., 2022, 52: 100897 [2022-12-06]. . |
19 | ZHU L, WANG L, MA C S. Sporadic short temperature events cannot be neglected in predicting impacts of climate change on small insects [J]. J. Insect Physiol., 2018, 112: 48-56. |
20 | TONNANG H E Z, SOKAME B M, ABDEL-RAHMAN E M, et al.. Measuring and modelling crop yield losses due to invasive insect pests under climate change [J/OL]. Curr. Opin. Insect Sci., 2022, 50: 100873 [2022-12-06]. . |
21 | KLAPWIJK M J, CHRIS G B, WARD K, et al.. Influence of experimental warming and shading on host-parasitoid synchrony [J]. Glob. Change Biol., 2010, 16: 102-112. |
22 | THOMSON L, MACFADYEN S, HOFFMANN A A. Predicting the effects of climate change on natural enemies of agricultural pests [J]. Biol. Control, 2010, 52(3): 296-306. |
23 | STIREMAN J, DYER L A, JANZEN D H, et al.. Climatic unpredictability and parasitism of caterpillars: implications of global warming [J]. P. Natl. Acad. Sci. USA, 2005, 102(48): 17384-17387. |
24 | BERG M P, KIERS E T, DRIESSEN G, et al.. Adapt or disperse: understanding species persistence in a changing world [J]. Glob. Change Biol., 2010, 16(2): 587-598. |
25 | 张吉松, 张卓, 张德咏, 等. 烟粉虱MEAM1和MED成虫在辣椒上传播番茄褪绿病毒的特性[J]. 昆虫学报, 2022, 65(11): 1452-1458. |
ZHANG J S, ZHANG Z, ZHANG D Y, et al.. Transmission characteristics of Tomato chlorosis virus on Capsicum annuuum by adult Bemisia tabaci MEAM1 and MED (Hemiptera: Aleyrodidae) [J]. Acta Entomol. Sin., 2022, 65(11): 1452-1458. | |
26 | WEI K K, LI J, DING T B, et al.. Transmission characteristics of Tomato chlorosis virus (ToCV) by Bemisia tabaci MED and its effects on host preference of vector whitefly [J]. J. Integr. Agric., 2019, 18(9): 2107-2114. |
27 | 何笙,吴晓云,郑金竹,等. 丽蚜小蜂防治设施番茄烟粉虱效果研究[J]. 安徽农业科学,2013, 41(14):6244-6245, 6248. |
HE S, WU X Y, ZHENG J Z, et al.. A Study of control effect of Bemisia tabaci (Gennadius) on greenhouse tomatoes using parasitoid Encarsia formosa gahan [J]. J. Anhui Agric. Sci., 2013, 41(14):6244-6245, 6248. | |
28 | 陶笑,张晨阳,付文燕,等. 丽蚜小蜂防治设施番茄烟粉虱的效果研究[J]. 长江蔬菜,2018(6): 78-82. |
TAO X, ZHANG C Y, FU W Y, et al.. Control efficacy of tomato Bemisia tabaci by using Encarsia formosa gahan in greenhouse [J]. J. Changjiang Veg., 2018(6): 78-82. | |
29 | BAYHAN E, ULUSOY M R, BROWN J K. Effects of different cucurbit species and temperature on selected life history traits of the ‘B’ biotype of Bemisia tabaci [J]. Phytoparasitica, 2006, 34: 235-242. |
30 | GUO L, SU M M, LIANG P, et al.. Effects of high temperature on insecticide tolerance in whitefly Bemisia tabaci (Gennadius) Q biotype [J]. Pestic. Biochem. Phys., 2018, 150: 97-104. |
31 | 陈婷. Q型烟粉虱对高温胁迫的生理和生殖响应机制[D]. 北京: 中国农业科学院, 2011. |
CHEN T. Physiological and reproductive responses of Bemisia tabaci (Gennadius) Q-biotype to high temperature stress [D]. Beijing: Chinese Academy of Agricultural Sciences, 2011. | |
32 | 杨艺炜, 刘晨, 任平, 等. 烟粉虱对高温和低温胁迫响应及生态防控策略[J]. 西北农业学报, 2021, 30(5): 782-788. |
YANG Y W, LIU C, REN P, et al.. Response of Bemisia tabaci to high and low temperature stress and ecological control measures [J]. Acta Agric. Bor-Occid. Sin., 2021, 30(5): 782-788. | |
33 | ZANDI-SOHANI N, SHISHEHBOR P. Temperature effects on the development and fecundity of Encarsia acaudaleyrodis (Hymenoptera: Aphelinidae), a parasitoid of Bemisia tabaci (Homoptera: Aleyrodidae) on cucumber [J]. Biol. Control, 2011, 56: 257-263. |
34 | QIU B L, BARRO P J D, XU R C X. Effect of temperature on the life history of Eretmocerus sp. nr. furuhashii, a parasitoid of Bemisia tabaci [J]. Biol. Control, 2007, 52: 733-746. |
35 | COLINET H, BOIVIN G, HANCE T. Manipulation of parasitoid size using the temperature-size rule: fitness consequences [J]. Oecologia, 2007, 152(3): 425-433. |
36 | 林克剑, 吴孔明, 魏洪义, 等. 温度和湿度对B型烟粉虱发育、存活和生殖的影响[J]. 植物保护学报, 2004, 31(2): 166-172. |
LIN K J, WU K M, WEI H Y, et al.. Effects of temperature and humidity on the development, survival and reproduction of B biotype of Bemisia tabaci (Homoptera: Aleyrodidae) from Beijing [J]. Acta Phytophy. Sin, 2004, 31(2): 166-172. | |
37 | 周淑香, 李玉, 张帆. 高温冲击对沃尔巴克氏体(Wolbachia)诱导孤雌产雌的丽蚜小蜂(Encarsia formosa)生殖和发育的影响[J]. 生态学报, 2009, 29(9): 4732-4737. |
ZHOU S X, LI Y, ZHANG F. Influences of high temperature shock on the reproduction and development of the Wolbachia-induced parthenogenetic parasitoid wasp, Encarsia formosa (Gahan) [J]. Acta Ecol. Sin., 2009, 29(9): 4732-4737. | |
38 | FISCHBEIN D, CORLEY G C. Population ecology and classical biological control of forest insect pests in a changing world [J/OL]. For. Ecol. Manag., 2022, 520: 120400 [2022-12-06]. . |
39 | DUAN J J, LARSON K L. Effects of chilling on diapause development and reproductive fitness of two congeneric species of encyrtid parasitoids (Hymenoptera: Encyrtidae) of the emerald ash borer [J]. Biol. Control, 2019, 134: 163-169. |
40 | ELLERS J, BAX M, VAN ALPHEN J J M. Seasonal changes in female size and its relation to reproduction in the parasitoid Asobara tabida [J]. Oikos, 2001, 92: 309-314. |
41 | SAGARRA L, VINCENT C, STEWART R. Body size as an indicator of parasitoid quality in male and female Anagyrus kamali (Hymenoptera: Encyrtidae) [J]. B. Entomol. Res., 2001, 91(5): 363-367. |
42 | BLANCKENHORN W U, BERGER D, ROHNER P T, et al.. Comprehensive thermal performance curves for yellow dung fly life history traits and the temperature-size-rule [J/OL]. J. Therm. Biol., 2021, 100: 103069 [2022-12-06]. . |
43 | BOCHDANOVITS Z, DE JONG G. Temperature dependent larval resource allocation shaping adult body size in Drosophila melanogaster [J]. J. Evolution. Biol., 2003, 16: 1159-1167. |
44 | LANN C L, WARDZIAK T, VAN BAAREN J, et al.. Thermal plasticity of metabolic rates linked to life-history traits and foraging behavior in a parasitic wasp [J]. Funct. Ecol., 2011, 25(3): 641-651. |
45 | WAAGE J K, MING N S. The reproductive strategy of a parasitic wasp. I. Optimal progeny and sex allocation in Trichogramma evanescens [J]. J. Anim. Ecol., 1984, 53: 401-415. |
46 | BAI B, LUCK R F, FORSTER L, et al.. The effect of host size on quality attributes of the egg parasitoid, Trichogramma pretiosum [J]. Entomol. Exp. Appl., 1992, 64: 37-48. |
47 | RENOZ F, PONS I, HANCE T. Evolutionary responses of mutualistic insect-bacterial symbioses in a world of fluctuating temperatures [J]. Curr. Opin. Insect Sci., 2019, 35: 20-26. |
[1] | Hui JIN, Wei WANG, Chendong YAN, Wei WANG, Xiying LI. Isolation, Identification and Adaptability of Trichoderma spp. for Biocontrol of Rice Sheath Blight [J]. Journal of Agricultural Science and Technology, 2022, 24(9): 139-148. |
[2] | Zhijian LIN, Changjiang CHEN, Ting ZHOU, Gang GU, Fangping HU, Chunying LI, Xueqing CAI. Control Effect of Ralstonia Phage RPZH6 Strain on Tobacco Bacterial Wilt and Its Complete Genome Analysis [J]. Journal of Agricultural Science and Technology, 2022, 24(10): 133-142. |
[3] |
ZHAO Xingli1, TAO Gang2,3*, LOU Xuan4, GU Jingang5*.
Colonization Dynamics of Trichoderma hamatum in Pepper Rhizosphere and Its Biological Control Against Pepper Phytophthora Blight
[J]. Journal of Agricultural Science and Technology, 2020, 22(5): 106-114.
|
[4] | ZHOU Hongzi1, ZHOU Fangyuan1, ZHAO Xiaoyan1, WU Cuixia2, ZHANG Guangzhi1, YUAN Weiwei3, WU Xiaoqing1, XIE Xueying1, FAN Susu1, ZHANG Xinjian1*. Screening of Biocontrol Agents Against Wheat Fusarium Head Blight and Its Field Control Experiment [J]. Journal of Agricultural Science and Technology, 2020, 22(1): 67-77. |
[5] | LU Lu1,2, ZHANG Mengli2, DI Yilin2, ZHU Kai1*, SHI Baojun2*. Insecticidal Effects of Thymol Against Caenorhabditis elegans at Different Stages [J]. Journal of Agricultural Science and Technology, 2019, 21(9): 97-103. |
[6] | WU Xiaoqing1, ZHAO Xiaoyan1, XU Yuanzhang2, WANG Jianing1, ZHOU Fangyuan1, ZHOU Hongzi1, ZHANG Guangzhi1, XIE Xueying1, YAN Kun3, ZHANG Xinjian1*. Research Progress on Precision Application Technology of Biological Control [J]. Journal of Agricultural Science and Technology, 2019, 21(3): 13-21. |
[7] | CHENG Liang1,2, GUO Qing\|yun1,2*. Potential Research of Fusarium avenaceum Isolate GD\|2 as a Bioherbicide Agent for Wild Oats(Avena fatua L.) [J]. , 2014, 16(3): 70-80. |
[8] | QIU De-wen. Development Strategy for Bio-pesticide and Biological Control [J]. , 2011, 13(5): 88-92. |
[9] | YAN Pei-Sheng, CAO Li-Xin, WANG Kai, WANG Zhuo. Research Progress on Biological Control of Mycotoxin Contamination [J]. , 2008, 10(6): 89-94. |
[10] | SONG Xiao-yan, SUN Cai-yun, CHEN Xiu-lan, ZHANG Yu-zhong. Research Advances on Mechanism of Trichoderma in Biological Control [J]. , 2006, 8(6): 20-25. |
[11] | JIANG Pei-zeng, LI Hong-yuan, CHEN Tie-bao . Advance in Paecilmyces Lilacinus Research for |Plant Parasitic Nematodes Control [J]. , 2006, 8(6): 38-41. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||