Journal of Agricultural Science and Technology ›› 2023, Vol. 25 ›› Issue (10): 12-21.DOI: 10.13304/j.nykjdb.2023.0280
• AGRICULTURAL INNOVATION FORUM • Previous Articles Next Articles
Received:
2023-04-10
Accepted:
2023-07-05
Online:
2023-10-15
Published:
2023-10-27
Contact:
Jing HE
通讯作者:
何静
作者简介:
赵薇 E-mail:1309330670@qq.com;
基金资助:
CLC Number:
Wei ZHAO, Jing HE. Study on Risk Assessment of China’s Pelagic Fisheries Industry Under Global Climate Change[J]. Journal of Agricultural Science and Technology, 2023, 25(10): 12-21.
赵薇, 何静. 全球气候变化下我国远洋渔业产业风险评估研究[J]. 中国农业科技导报, 2023, 25(10): 12-21.
目标层 Target layer | 准则层A Criterion layer A | 准则层B Criterion layer B | 指标层 Indicator layer | 指标含义或算法 Indicator meaning or algorithm | 正(逆) Positive (inverse) | 文献 Literature |
---|---|---|---|---|---|---|
远洋渔业产业风险 Pelagic fishing industry risks | P:压力 Pressure | D1:海洋气候变化 Ocean climate change | P1:海表面平均温度变动 Mean sea surface temperature variation | 全球海表面平均温度距平值 Global mean sea surface temperature distance level /°C | + | [ |
P2:全球平均海平面上升 Global mean sea level rise | 剔除季节性因素的全球平均海平面增量 Global mean sea level increment excluding seasonality /mm | + | [ | |||
D2:海洋极端灾害 Marine extreme hazards | P3:厄尔尼诺与拉尼娜现象 El Niño and La Niña | 固定纬度连续3个月平均海面温度异常超过±0.5 ℃的次数 Number of consecutive three-month average sea surface temperature anomalies exceeding ± 0.5 ℃ at fixed latitude | + | [ | ||
P4:风暴潮致灾次数 Number of disaster caused by storm surge | 我国风暴潮造成灾害次数 Number of disasters caused by storm surges in China | + | [ | |||
S:状态 State | D3:远洋渔业依赖度 Dependence on pelagic fisheries | S1:经济产值依赖度 Economic output dependence | 远洋渔业产值/渔业总产值 Pelagic fishery output value/total fishery output value/% | + | [ | |
D4:远洋渔业加工能力 Processing capacity of pelagic fisheries | S2:水产品加工能力 Fish processing capacity | 水产品加工能力 Aquatic products processing capacity/(t·a-1) | + | [ | ||
D5:远洋渔业基础设施 Pelagic fishing infrastructure | S3:远洋渔船拥有量 Number of pelagic fishing vessels owned | 远洋渔船年末拥有量 Number of pelagic fishing vessels owned at the end of the year | + | [ | ||
R:响应 Response | D6:远洋渔业经济发展 Economic development of pelagic fisheries | R1:产值状况 Production value state | 远洋渔业产值增长率 Growth rate of pelagic fishery output value/% | + | [ | |
R2:捕捞效率 Fishing efficiency | 远洋渔业总产量/远洋渔船总数 Total pelagic fishery production/total number of pelagic vessels (t·v-1) | + | [ | |||
D7:远洋渔业科技投入 Scientific and technological input in pelagic fisheries | R3:水产技术推广机构经费 Aquatic technology extension agency funding | 水产技术推广机构经费 Aquatic technology extension agency funding /(104 yuan) | + | [ | ||
R4:渔业科研活动人员投入 Fishery research activities personnel input | 渔业科研机构科技活动人员/渔业从业人员总数 Fishery institutions scientific and technical activities of personnel / total number of fishery employees /% | + | [ | |||
D8:远洋渔业管理水平 Management level of pelagic fisheries | R5:渔政管理机构 Fishery management agencies | 渔政管理机构数量 Number of fisheries management agencies | + | [ |
Table 1 Risk assessment index system for China’s pelagic fishery industry under global climate change
目标层 Target layer | 准则层A Criterion layer A | 准则层B Criterion layer B | 指标层 Indicator layer | 指标含义或算法 Indicator meaning or algorithm | 正(逆) Positive (inverse) | 文献 Literature |
---|---|---|---|---|---|---|
远洋渔业产业风险 Pelagic fishing industry risks | P:压力 Pressure | D1:海洋气候变化 Ocean climate change | P1:海表面平均温度变动 Mean sea surface temperature variation | 全球海表面平均温度距平值 Global mean sea surface temperature distance level /°C | + | [ |
P2:全球平均海平面上升 Global mean sea level rise | 剔除季节性因素的全球平均海平面增量 Global mean sea level increment excluding seasonality /mm | + | [ | |||
D2:海洋极端灾害 Marine extreme hazards | P3:厄尔尼诺与拉尼娜现象 El Niño and La Niña | 固定纬度连续3个月平均海面温度异常超过±0.5 ℃的次数 Number of consecutive three-month average sea surface temperature anomalies exceeding ± 0.5 ℃ at fixed latitude | + | [ | ||
P4:风暴潮致灾次数 Number of disaster caused by storm surge | 我国风暴潮造成灾害次数 Number of disasters caused by storm surges in China | + | [ | |||
S:状态 State | D3:远洋渔业依赖度 Dependence on pelagic fisheries | S1:经济产值依赖度 Economic output dependence | 远洋渔业产值/渔业总产值 Pelagic fishery output value/total fishery output value/% | + | [ | |
D4:远洋渔业加工能力 Processing capacity of pelagic fisheries | S2:水产品加工能力 Fish processing capacity | 水产品加工能力 Aquatic products processing capacity/(t·a-1) | + | [ | ||
D5:远洋渔业基础设施 Pelagic fishing infrastructure | S3:远洋渔船拥有量 Number of pelagic fishing vessels owned | 远洋渔船年末拥有量 Number of pelagic fishing vessels owned at the end of the year | + | [ | ||
R:响应 Response | D6:远洋渔业经济发展 Economic development of pelagic fisheries | R1:产值状况 Production value state | 远洋渔业产值增长率 Growth rate of pelagic fishery output value/% | + | [ | |
R2:捕捞效率 Fishing efficiency | 远洋渔业总产量/远洋渔船总数 Total pelagic fishery production/total number of pelagic vessels (t·v-1) | + | [ | |||
D7:远洋渔业科技投入 Scientific and technological input in pelagic fisheries | R3:水产技术推广机构经费 Aquatic technology extension agency funding | 水产技术推广机构经费 Aquatic technology extension agency funding /(104 yuan) | + | [ | ||
R4:渔业科研活动人员投入 Fishery research activities personnel input | 渔业科研机构科技活动人员/渔业从业人员总数 Fishery institutions scientific and technical activities of personnel / total number of fishery employees /% | + | [ | |||
D8:远洋渔业管理水平 Management level of pelagic fisheries | R5:渔政管理机构 Fishery management agencies | 渔政管理机构数量 Number of fisheries management agencies | + | [ |
目标层 Target layer | 准则层A Criterion layer A | 准则层B Criterion layer B | 指标层 Indicator layer | 熵值法权重 Entropy method weight | 变异系数法权重 Coefficient of variation method weight | 综合权重 Combined weight |
---|---|---|---|---|---|---|
远洋渔业产业风险 Pelagic fishing industry risks | P=0.336 2 | D1=0.112 7 | P1 | 0.060 9 | 0.071 4 | 0.050 0 |
P2 | 0.067 6 | 0.080 7 | 0.062 7 | |||
D2=0.223 5 | P3 | 0.137 6 | 0.101 9 | 0.161 1 | ||
P4 | 0.067 3 | 0.080 6 | 0.062 4 | |||
S=0.167 2 | D3=0.077 9 | S1 | 0.081 3 | 0.083 4 | 0.077 9 | |
D4=0.029 1 | S2 | 0.044 7 | 0.056 6 | 0.029 1 | ||
D5=0.060 2 | S3 | 0.071 4 | 0.073 3 | 0.060 2 | ||
R=0.496 6 | D6=0.175 0 | R1 | 0.106 4 | 0.100 3 | 0.122 7 | |
R2 | 0.063 4 | 0.071 8 | 0.052 3 | |||
D7=0.210 1 | R3 | 0.093 6 | 0.089 6 | 0.096 5 | ||
R4 | 0.102 3 | 0.096 7 | 0.113 7 | |||
D8=0.111 4 | R5 | 0.103 4 | 0.093 7 | 0.111 4 |
Table 2 Index weights at all levels of China’s pelagic fishery industry risk under global climate change
目标层 Target layer | 准则层A Criterion layer A | 准则层B Criterion layer B | 指标层 Indicator layer | 熵值法权重 Entropy method weight | 变异系数法权重 Coefficient of variation method weight | 综合权重 Combined weight |
---|---|---|---|---|---|---|
远洋渔业产业风险 Pelagic fishing industry risks | P=0.336 2 | D1=0.112 7 | P1 | 0.060 9 | 0.071 4 | 0.050 0 |
P2 | 0.067 6 | 0.080 7 | 0.062 7 | |||
D2=0.223 5 | P3 | 0.137 6 | 0.101 9 | 0.161 1 | ||
P4 | 0.067 3 | 0.080 6 | 0.062 4 | |||
S=0.167 2 | D3=0.077 9 | S1 | 0.081 3 | 0.083 4 | 0.077 9 | |
D4=0.029 1 | S2 | 0.044 7 | 0.056 6 | 0.029 1 | ||
D5=0.060 2 | S3 | 0.071 4 | 0.073 3 | 0.060 2 | ||
R=0.496 6 | D6=0.175 0 | R1 | 0.106 4 | 0.100 3 | 0.122 7 | |
R2 | 0.063 4 | 0.071 8 | 0.052 3 | |||
D7=0.210 1 | R3 | 0.093 6 | 0.089 6 | 0.096 5 | ||
R4 | 0.102 3 | 0.096 7 | 0.113 7 | |||
D8=0.111 4 | R5 | 0.103 4 | 0.093 7 | 0.111 4 |
年份 Year | 压力风险指数 Pressure risk index | 状态风险指数 State risk index | 响应风险指数 Response risk index | 总风险指数 Total risk index |
---|---|---|---|---|
2009 | 0.216 5 | 0.017 4 | 0.073 1 | 0.307 0 |
2010 | 0.213 9 | 0.063 0 | 0.220 1 | 0.497 0 |
2011 | 0.114 4 | 0.045 1 | 0.151 2 | 0.310 7 |
2012 | 0.100 5 | 0.041 9 | 0.169 1 | 0.311 5 |
2013 | 0.087 4 | 0.055 7 | 0.194 2 | 0.337 3 |
2014 | 0.068 5 | 0.115 7 | 0.319 9 | 0.504 1 |
2015 | 0.278 4 | 0.131 2 | 0.301 7 | 0.711 3 |
2016 | 0.168 4 | 0.108 4 | 0.190 6 | 0.467 4 |
2017 | 0.084 8 | 0.139 0 | 0.269 1 | 0.493 0 |
2018 | 0.199 6 | 0.163 4 | 0.259 3 | 0.622 3 |
2019 | 0.193 7 | 0.139 1 | 0.194 7 | 0.527 5 |
2020 | 0.135 2 | 0.122 7 | 0.243 8 | 0.501 7 |
2021 | 0.195 3 | 0.086 6 | 0.282 6 | 0.564 6 |
Table 3 China’s pelagic fishing industry risk index score from 2009 to 2021
年份 Year | 压力风险指数 Pressure risk index | 状态风险指数 State risk index | 响应风险指数 Response risk index | 总风险指数 Total risk index |
---|---|---|---|---|
2009 | 0.216 5 | 0.017 4 | 0.073 1 | 0.307 0 |
2010 | 0.213 9 | 0.063 0 | 0.220 1 | 0.497 0 |
2011 | 0.114 4 | 0.045 1 | 0.151 2 | 0.310 7 |
2012 | 0.100 5 | 0.041 9 | 0.169 1 | 0.311 5 |
2013 | 0.087 4 | 0.055 7 | 0.194 2 | 0.337 3 |
2014 | 0.068 5 | 0.115 7 | 0.319 9 | 0.504 1 |
2015 | 0.278 4 | 0.131 2 | 0.301 7 | 0.711 3 |
2016 | 0.168 4 | 0.108 4 | 0.190 6 | 0.467 4 |
2017 | 0.084 8 | 0.139 0 | 0.269 1 | 0.493 0 |
2018 | 0.199 6 | 0.163 4 | 0.259 3 | 0.622 3 |
2019 | 0.193 7 | 0.139 1 | 0.194 7 | 0.527 5 |
2020 | 0.135 2 | 0.122 7 | 0.243 8 | 0.501 7 |
2021 | 0.195 3 | 0.086 6 | 0.282 6 | 0.564 6 |
1 | 中华人民共和国农业农村部. “十三五”全国远洋渔业发展规划[EB/OL]. (2017-12-15) [2023-03-10]. . |
2 | 中华人民共和国农业农村部. 关于促进"十四五"远洋渔业高质量发展的意见[EB/OL]. (2022-02-14)[2023-03-10]. . |
3 | IPCC. Climate Change 2021: The Physical Basis [R]. Cambridge: IPCC, 2021. |
4 | SILVESTRI S, MAYNOU F. Application of a bioeconomic model for supporting the management process of the small pelagic fishery in the Veneto Region, Northern Adriatic Sea, Italy [J]. Sci. Mar., 2009, 73(3): 563-572. |
5 | TORRES P, FIGUERAS D M, DIOGO H, et al.. Risk assessment of coastal fisheries in the Azores (North-Eastern Atlantic) [J/OL]. Fish. Res., 2022, 246: 106156 [2023-03-10]. . |
6 | PÉREZ-JIMÉNEZ J C, NÚÑEZ A, GONZÁLEZ-JARAMILLO M, et al.. Inferring ecosystem impacts of a small-scale snapper fishery through citizen science data, productivity and susceptibility analysis, and ecosystem modelling [J/OL]. Fish. Res., 2022, 250: 106269 [2023-03-10]. . |
7 | KIM H, KANG H, ZHANG C. Ecosystem-based fisheries risk assessment and forecasting considering a spatio-temporal component in Korean Waters [J/OL]. Ocean Coast. Manage., 2022, 230: 106356 [2023-03-10]. . |
8 | ALSOLAMI L S, ABDELATY M, ZHANG C I. An ecosystem-based fisheries assessment approach and management system for the Red Sea [J/OL]. Fish. Res., 2020, 227: 105551[2023-03-10]. . |
9 | MA S, KANG B, LI J, et al.. Climate risks to fishing species and fisheries in the China Seas [J/OL]. Sci. Total Environ., 2023, 857: 159325 [2023-03-10]. . |
10 | 王慧, 刘秋林, 李文善, 等. 气候变化中海洋和冰冻圈的变化、影响及风险[J]. 海洋通报, 2020, 39(2): 143-151. |
WANG H, LIU Q L, LI W S, et al.. The ocean and cryosphere in a changing climate: changes, impacts and risks [J]. Mar. Sci. Bull., 2020, 39(2): 143-151. | |
11 | 蔡榕硕, 刘克修, 谭红建. 气候变化对中国海洋和海岸带的影响、风险与适应对策[J]. 中国人口·资源与环境, 2020, 30(9): 1-8. |
CAI R S, LIU K X, TAN H J. Impacts and risks of climate change on China’s coastal zones and seas and related adaptation [J]. China Popul. Resour. Environ., 2020, 30(9): 1-8. | |
12 | 陈晨, 赵丽玲, 陈新军. 过洋性渔业入渔风险评价指标体系构建[J]. 上海海洋大学学报, 2020, 29(3): 401-410. |
CHEN C, ZHAO L L, CHEN X J. Indicator system construction of distant water fisheries risk assessment [J]. J. Shanghai Ocean Univ., 2020, 29(3): 401-410. | |
13 | WALZ R. Development of environmental indicator systems: experiences from Germany [J]. Environ. Manage., 2000, 25(6): 613-623. |
14 | 王国萍, 闵庆文, 丁陆彬, 等. 基于PSR模型的国家公园综合灾害风险评估指标体系构建[J]. 生态学报, 2019, 39(22): 8232-8244. |
WANG G P, MIN Q W, DING L B, et al.. Comprehensive disaster risk assessment index system for national parks based on the PSR model [J]. Acta Ecol. Sin., 2019, 39(22): 8232-8244. | |
15 | XIAO S, ZOU L, XIA J, et al.. Assessment of the urban waterlogging resilience and identification of its driving factors: a case study of Wuhan city, China [J/OL]. Sci. Total Enviro., 2023: 161321 [2023-03-10]. . |
16 | FU L, DING M, ZHANG Q. Flood risk assessment of urban cultural heritage based on PSR conceptual model with game theory and cloud model-a case study of Nanjing [J]. J. Cult. Herit., 2022, 58: 1-11. |
17 | ZHU M, LI B, LIU G. Groundwater risk assessment of abandoned mines based on pressure-state-response—the example of an abandoned mine in southwest China [J]. Energy Rep., 2022, 8: 10728-10740. |
18 | 金亚男, 张时琪, 郑双怡. 基于PSR模型的粮食安全风险评估及保障措施——以长江中下游粮食主产区为例[J]. 农村经济, 2021(7): 42-49. |
JIN Y N, ZHANG S Q, ZHENG S Y. Food security risk assessment and safeguard measures based on PSR model: an example of main grain-producing areas in the middle and lower reach of Yangtze River [J]. Rural Econ., 2021(7): 42-49. | |
19 | ZOU S, ZHANG L, HUANG X, et al.. Early ecological security warning of cultivated lands using RF-MLP integration model: a case study on China’s main grain-producing areas [J/OL]. Ecol. Indic., 2022, 141: 109059 [2023-03-10]. . |
20 | ALLISON E H, PERRY A L, BADJECK M C, et al.. Vulnerability of national economies to the impacts of climate change on fisheries [J]. Fish Fish., 2009, 10(2): 173-196. |
21 | DING Q, CHEN X, HILBORN R, et al.. Vulnerability to impacts of climate change on marine fisheries and food security [J]. Mar. Policy, 2017, 83: 55-61. |
22 | HECK N, BECK M W, REGUERO B, et al.. Global climate change risk to fisheries—a multi-risk assessment [J/OL]. Mar. Policy, 2023, 148: 105404 [2023-03-10]. . |
23 | 陈琦, 胡求光. 中国海洋渔业社会——生态系统脆弱性评价及影响因素分析[J].农业现代化研究, 2018, 39(3): 468-477. |
CHEN Q, HU Q G. The vulnerability evaluation and influencing factors of the socio-ecological system of China’s marine fisheries [J]. Res. Agric. Mod., 2018, 39(3): 468-477. | |
24 | ISLAM M M, SALLU S, HUBACEK K, et al.. Vulnerability of fishery-based livelihoods to the impacts of climate variability and change: insights from coastal Bangladesh [J]. Reg. Environ. Change, 2014, 14(1): 281-294. |
25 | DOS SANTOS SÁ A K D, CUTRIM M V J, NASCIMENTO FEITOSA F A D O, et al.. Multiple stressors influencing the general eutrophication status of transitional waters of the Brazilian tropical coast: an approach utilizing the pressure, state, and response (PSR) framework [J/OL]. J. Sea Res., 2022, 189: 102282 [2023-03-10]. . |
26 | 徐廷廷, 徐长乐, 刘洋. 全球气候变化背景下上海社会经济脆弱性评价研究——基于PSR模型[J]. 资源开发与市场, 2015, 31(3): 288-292. |
XU T T, XU C L, LIU Y. Research on Shanghai comprehensive vulnerability assessment of climate change—based on PSR model [J]. Resour. Dev. Mark., 2015, 31(3): 288-292. | |
27 | JACINTO M R, SONGCUAN A J G, YIP G V, et al.. Development and application of the fisheries vulnerability assessment tool (fish vool) to tuna and sardine sectors in the Philippines [J]. Fish. Res., 2015, 161: 174-181. |
28 | HECK N, BECK M W, REGUERO B. Storm risk and marine fisheries: a global assessment [J/OL]. Mar. Policy, 2021, 132: 104698 [2023-03-10]. . |
29 | DELGADO E R M, RÍOS E B R, CASASOLA D B, et al.. Artisanal fishery in Ecuador. A case study of Manta city and its economic policies to improve competitiveness of the sector [J/OL]. Mar. Policy, 2021, 124: 104313 [2023-03-10]. . |
30 | 田鹏, 李加林, 曹罗丹,等. 中国渔业经济效率评价及发展趋势预测[J]. 中国农业资源与区划, 2023,44(6): 160-172. |
TIAN P, LI J L, CAO L D, et al.. Evaluation of fishery economic efficiency and development trend forecast in China [J]. Chin. J. Agric. Resour. Reg. Plan., 2023,44(6): 160-172. | |
31 | 辛岭, 陈洁, 安晓宁. 我国渔业现代化发展水平评价研究[J]. 中国农业资源与区划, 2020, 41(11): 140-149. |
XIN L, CHEN J, AN X N. Research on the evaluation of the development level of fishery modernization in China [J]. Chin. J. Agric. Resour. Reg. Plan., 2020, 41(11): 140-149. | |
32 | MALTBY K M, KERIN S, MILLS K E. Barriers and enablers of climate adaptation in fisheries: insights from Northeast US fishing communities [J/OL]. Mar. Policy, 2023, 147: 105331 [2023-03-10]. . |
33 | 周为峰, 陈亮亮, 崔雪森, 等. 异常气候下温跃层及时空因子对中西太平洋黄鳍金枪鱼渔场分布的影响[J]. 中国农业科技导报, 2021, 23(10): 192-201. |
ZHOU W F, CHEN L L, CUI X S, et al.. Effects of thermocline and space-time factors on yellowfin tuna fishing ground distribution in the central and western pacific in abnormal climate [J]. J. Agric. Sci. Technol., 2021, 23(10): 192-201. | |
34 | 方舟, 陈洋洋, 陈新军, 等. 基于不同模型研究环境因子对中西太平洋鲣资源丰度的影响[J].中国水产科学, 2018, 25(5): 1123-1130. |
FANG Z, CHEN Y Y, CHEN X J, et al.. Influence of environmental factors on the abundance of skipjack tuna (Katsuwonus pelamis) in west-central Pacific Ocean determined using different models [J]. J. Fish. Sci. China, 2018, 25(5): 1123-1130. | |
35 | 刘洪生, 蒋汉凌, 戴小杰. 中西太平洋长鳍金枪鱼渔场与海温的关系[J]. 上海海洋大学学报, 2014, 23(4): 602-607. |
LIU H S, JIANG H L, DAI X J. Relationship between albacore (Thunnus alalunga) fishing grounds in the Western and Central Pacific and sea surface temperature [J]. J. Shanghai Ocean Univ., 2014, 23(4): 602-607. | |
36 | ZHOU D, LIN Z, LIU L, et al.. Assessing secondary soil salinization risk based on the PSR sustainability framework [J]. J. Environ. Manage., 2013, 128: 642-654. |
37 | 许振琦,汪金涛,雷林, 等. AIS数据在远洋渔业中的应用研究进展[J].海洋渔业, 2023, 45(2): 237-247. |
XU Z Q, WANG J T, LEI L, et al.. Research progress on application of AlS data in distant-water fishery [J]. Mar. Fish., 2023, 45(2): 237-247. | |
38 | 宋利明, 许柳雄, 沙锋, 等. "订单式"培养远洋渔业紧缺人才的实践与思考[J].浙江海洋学院学报(人文科学版), 2015, 32(3): 32-35. |
SONG L M, XU L X, SHA F, et al.. Practice and thoughts on “order-orientated training program” for talents shortage in distant-water fisheries [J]. J. Zhejiang Ocean Univ. (Humanities Sci.), 2015, 32(3): 32-35. |
[1] | HANG Xiaoning, LUO Jia, ZHANG Pengcheng, LI Zhenyi, ZHANG Jian, HU Liujie, YU Duan, HE Weiyuan, ZHOU Youliang, LIAO Dunxiu. Countermeasures on Developing Climate-smart Agriculture in Southwest China [J]. Journal of Agricultural Science and Technology, 2021, 23(8): 8-15. |
[2] | JIN Linxue1, TANG Hongyan1*, WU Rongsheng1, WANG Huizhen1, LIU Linchun2. Risk Analysis and Regionalization of Soybean Drought Disasters in Inner Mongolia [J]. Journal of Agricultural Science and Technology, 2020, 22(1): 106-115. |
[3] | MENG Handong1,2, JI Xingjie2. Effects of Climate Changes on the Petroleum Ether Extract Contents of Flue-cured Tobacco in Henan Tobacco Growing Areas [J]. Journal of Agricultural Science and Technology, 2019, 21(12): 140-150. |
[4] | ZHANG Junye1,2, YU Fei3, LIU Xiaodong1, YU Yuanchun1*. Advance of Heavy Metals and Polycyclic Aromatic Hydrocarbons in Foliar Particulate Matter of Urban Forest Plants [J]. Journal of Agricultural Science and Technology, 2019, 21(10): 140-147. |
[5] | PENG Yingshu, GAO Handong*, YUAN Zhaohe*. Impact of Global Climate Change on Temperate Fruit Tree [J]. Journal of Agricultural Science and Technology, 2018, 20(7): 1-10. |
[6] | GUAN Dahai1, ZHANG Jun2, WANG Qingmei1, ZHANG Yanping1, . Climate-Smart Agriculture and its Enlightenment to Agricultural Development of China [J]. Journal of Agricultural Science and Technology, 2017, 19(10): 7-13. |
[7] | LI Kuo, XU Yinlong*. Study on Adjustment of Agricultural Planting Structures in China for Adapting to Climate Change#br# [J]. Journal of Agricultural Science and Technology, 2017, 19(1): 8-17. |
[8] | WANG Xing, XUE Jian-fu, WANG Yu-qiao, LI Ke-jia, ZHAO Xin, ZHANG Hai-lin*. Evaluation on Carbon Balance of Crop Production in Western China [J]. Journal of Agricultural Science and Technology, 2016, 18(3): 104-111. |
[9] | ZHANG Lijian1, ZHANG Xinglian2, JANG Shiqiang3*. Risk Monitoring and Assessment of the Agroproducts Quality and Safety [J]. , 2013, 15(4): 8-13. |
[10] | HUANG Baoyong, SUN Jiang, XIAO Zhiyong. Risk Assessment of Chronic Intaking Chlorpyrifos in Vegetable in Beijing [J]. , 2013, 15(4): 55-60. |
[11] | SONG Li-li1, WANG Xiu-dong2*. Thoughts about Century Drought in USA [J]. , 2012, 14(6): 1-5. |
[12] | JIA Jing-dun1*, WEI Xun1*, JIN Shu-qin2. Development of Carbon-sinking Agriculture in Australia and its Enlightenment to China [J]. , 2012, 14(2): 7-11. |
[13] | JIN Shu-qin1, DU Min1, WEI Xun2, SUN Yu3. Environmental Impact Assessment of Cotton Planting and Suggestions for its Sustainable Development [J]. , 2011, 13(6): 110-117. |
[14] | LI Pei-wu, DING Xiao-xia. Studies on Control Technology for Grain and Oil Quality and Safety in China and Development Countermeasure [J]. , 2011, 13(5): 54-58. |
[15] | SHI Kuan-yu1,2, CUI Yong-wei1,2| HU Rui-fa1. Impact of High Temperature at Flowering on Midseason Rice Yield [J]. , 2009, 11(2): 78-83. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||