Journal of Agricultural Science and Technology ›› 2025, Vol. 27 ›› Issue (5): 239-249.DOI: 10.13304/j.nykjdb.2023.0917
• INNOVATIVE METHODS AND TECHNOLOGIES • Previous Articles
Hongli WANG(), Lin NIU, Xiaodan ZHAO, Lei CHEN, Bing LIU(
)
Received:
2023-12-13
Accepted:
2024-03-08
Online:
2025-05-15
Published:
2025-05-20
Contact:
Bing LIU
通讯作者:
刘冰
作者简介:
王宏利 E-mail:1075933838@qq.com;
基金资助:
CLC Number:
Hongli WANG, Lin NIU, Xiaodan ZHAO, Lei CHEN, Bing LIU. Preparation of Porous Carbon Material from Mangosteen Shell by Double Activation Method and Its Adsorption Properties for Congo Red[J]. Journal of Agricultural Science and Technology, 2025, 27(5): 239-249.
王宏利, 牛琳, 赵晓丹, 陈雷, 刘冰. 双活化法制备山竹壳多孔炭材料及其对刚果红的吸附性能研究[J]. 中国农业科技导报, 2025, 27(5): 239-249.
样品 Sample | 元素 Element | |||
---|---|---|---|---|
碳 Carbon | 氮 Nitrogen | 氧 Oxygen | 硫 Sulfur | |
SZK | 74.26 | 1.58 | 22.89 | 1.18 |
SZAC | 86.32 | 1.13 | 12.15 | 0.74 |
SZAC2-700 | 93.48 | 1.05 | 8.36 | 1.23 |
SSZAC3-700 | 94.62 | 1.12 | 7.05 | 0.68 |
Table 1 Elemental composition of mangosteen shell and its carbon materials
样品 Sample | 元素 Element | |||
---|---|---|---|---|
碳 Carbon | 氮 Nitrogen | 氧 Oxygen | 硫 Sulfur | |
SZK | 74.26 | 1.58 | 22.89 | 1.18 |
SZAC | 86.32 | 1.13 | 12.15 | 0.74 |
SZAC2-700 | 93.48 | 1.05 | 8.36 | 1.23 |
SSZAC3-700 | 94.62 | 1.12 | 7.05 | 0.68 |
样品 Sample | 比表面积 Specific surface area/(m2·g-1) | 总孔容 Total pore volume/(cm3·g-1) | 微孔孔容 Microporous pore volume/(cm3·g-1) | 介孔孔容 Mesoporous pore volume/(cm3·g-1) | 平均孔径 Mean aperture/nm |
---|---|---|---|---|---|
SZT | 530.63 | 0.252 0 | 0.242 8 | 0.009 2 | 15.899 5 |
SZAC2-700 | 1 016.61 | 0.573 3 | 0.333 6 | 0.239 7 | 2.255 9 |
SSZAC3-700 | 1 294.69 | 0.651 0 | 0.498 5 | 0.152 5 | 2.011 2 |
Table 2 Pore structure parameters of mangosteen shell and its carbon materials
样品 Sample | 比表面积 Specific surface area/(m2·g-1) | 总孔容 Total pore volume/(cm3·g-1) | 微孔孔容 Microporous pore volume/(cm3·g-1) | 介孔孔容 Mesoporous pore volume/(cm3·g-1) | 平均孔径 Mean aperture/nm |
---|---|---|---|---|---|
SZT | 530.63 | 0.252 0 | 0.242 8 | 0.009 2 | 15.899 5 |
SZAC2-700 | 1 016.61 | 0.573 3 | 0.333 6 | 0.239 7 | 2.255 9 |
SSZAC3-700 | 1 294.69 | 0.651 0 | 0.498 5 | 0.152 5 | 2.011 2 |
模型 Sample | 参数 Argument | 温度 Temperature/℃ | 刚果红质量浓度 Congo red mass concentration/(mg·L-1) | ||||
---|---|---|---|---|---|---|---|
25 | 35 | 45 | 150 | 200 | 250 | ||
准一级动力学模型 Quasi-first-order kinetic model | 平衡吸附量qe/(mg·g-1) | 95.357 9 | 101.762 7 | 105.728 8 | 86.627 8 | 95.357 9 | 102.093 8 |
准一级动力学常数K1/(·min-1) | 0.237 6 | 0.224 2 | 0.228 9 | 0.174 6 | 0.237 6 | 0.254 2 | |
相关系数R2 | 0.993 6 | 0.980 0 | 0.990 7 | 0.944 1 | 0.993 6 | 0.966 2 | |
准二级动力学模型 Quasi-second-order kinetic model | 平衡吸附量qe/(mg·g-1) | 97.519 2 | 104.627 4 | 108.383 7 | 90.234 4 | 97.519 2 | 106.868 5 |
准二级动力学常数K2/(g·mg-1·min-1) | 0.004 5 | 0.003 5 | 0.003 7 | 0.002 7 | 0.004 5 | 0.004 0 | |
相关系数R2 | 0.998 7 | 0.995 2 | 0.999 4 | 0.980 9 | 0.998 7 | 0.987 8 | |
颗粒内扩散模型 Intra particle diffusion model | 平衡吸附量qe/(mg·g-1) | 50.866 7 | 50.992 1 | 54.765 3 | 40.195 5 | 50.866 6 | 52.010 8 |
颗粒内扩散常数Kpi/(g·mg-1·min-1) | 2.977 0 | 3.454 5 | 3.435 4 | 3.164 1 | 2.977 0 | 3.428 4 | |
相关系数R2 | 0.423 6 | 0.508 7 | 0.463 8 | 0.563 3 | 0.423 6 | 0.498 0 |
Table 3 Adsorption kinetic model parameters of mangosteen shell porous carbon material for Congo red adsorption in solution
模型 Sample | 参数 Argument | 温度 Temperature/℃ | 刚果红质量浓度 Congo red mass concentration/(mg·L-1) | ||||
---|---|---|---|---|---|---|---|
25 | 35 | 45 | 150 | 200 | 250 | ||
准一级动力学模型 Quasi-first-order kinetic model | 平衡吸附量qe/(mg·g-1) | 95.357 9 | 101.762 7 | 105.728 8 | 86.627 8 | 95.357 9 | 102.093 8 |
准一级动力学常数K1/(·min-1) | 0.237 6 | 0.224 2 | 0.228 9 | 0.174 6 | 0.237 6 | 0.254 2 | |
相关系数R2 | 0.993 6 | 0.980 0 | 0.990 7 | 0.944 1 | 0.993 6 | 0.966 2 | |
准二级动力学模型 Quasi-second-order kinetic model | 平衡吸附量qe/(mg·g-1) | 97.519 2 | 104.627 4 | 108.383 7 | 90.234 4 | 97.519 2 | 106.868 5 |
准二级动力学常数K2/(g·mg-1·min-1) | 0.004 5 | 0.003 5 | 0.003 7 | 0.002 7 | 0.004 5 | 0.004 0 | |
相关系数R2 | 0.998 7 | 0.995 2 | 0.999 4 | 0.980 9 | 0.998 7 | 0.987 8 | |
颗粒内扩散模型 Intra particle diffusion model | 平衡吸附量qe/(mg·g-1) | 50.866 7 | 50.992 1 | 54.765 3 | 40.195 5 | 50.866 6 | 52.010 8 |
颗粒内扩散常数Kpi/(g·mg-1·min-1) | 2.977 0 | 3.454 5 | 3.435 4 | 3.164 1 | 2.977 0 | 3.428 4 | |
相关系数R2 | 0.423 6 | 0.508 7 | 0.463 8 | 0.563 3 | 0.423 6 | 0.498 0 |
模型 Model | 参数 Parameter | 温度 Temperature/℃ | ||
---|---|---|---|---|
25 | 35 | 45 | ||
Langmuir模型 Langmuir model | 吸附常数KL/(L·mg-1) | 0.268 3 | 0.274 9 | 0.286 3 |
最大饱和吸附量qm/(mg·g-1) | 167.870 3 | 171.313 2 | 174.432 3 | |
决定系数R2 | 0.997 6 | 0.994 4 | 0.996 1 | |
Freundlich模型 Freundlich model | 吸附常数KF/(mg·g-1·(1/mg)1/n) | 84.673 8 | 87.751 8 | 91.178 2 |
常数n | 7.370 4 | 7.547 6 | 7.780 3 | |
决定系数R2 | 0.904 7 | 0.885 6 | 0.877 6 | |
Temkin模型 Temkin model | 模型常数A/(L·mg-1) | 44.238 2 | 51.309 5 | 63.979 4 |
吸收热常数B | 14.821 8 | 16.785 3 | 17.791 1 | |
决定系数R2 | 0.941 8 | 0.925 8 | 0.918 1 |
Table 4 Adsorption isotherm model parameters of the porous carbon material of the mangosteen for Congo red
模型 Model | 参数 Parameter | 温度 Temperature/℃ | ||
---|---|---|---|---|
25 | 35 | 45 | ||
Langmuir模型 Langmuir model | 吸附常数KL/(L·mg-1) | 0.268 3 | 0.274 9 | 0.286 3 |
最大饱和吸附量qm/(mg·g-1) | 167.870 3 | 171.313 2 | 174.432 3 | |
决定系数R2 | 0.997 6 | 0.994 4 | 0.996 1 | |
Freundlich模型 Freundlich model | 吸附常数KF/(mg·g-1·(1/mg)1/n) | 84.673 8 | 87.751 8 | 91.178 2 |
常数n | 7.370 4 | 7.547 6 | 7.780 3 | |
决定系数R2 | 0.904 7 | 0.885 6 | 0.877 6 | |
Temkin模型 Temkin model | 模型常数A/(L·mg-1) | 44.238 2 | 51.309 5 | 63.979 4 |
吸收热常数B | 14.821 8 | 16.785 3 | 17.791 1 | |
决定系数R2 | 0.941 8 | 0.925 8 | 0.918 1 |
质量浓度 Mass concentration/(mg·L-1) | 温度 Temperature/℃ | 吉布斯自由能 ΔG(kJ·mol-1) | 自由焓变 ΔH(kJ·mol-1) | 吸附期间焓变 ΔS(J·mol-1·K-1) |
---|---|---|---|---|
200 | 25 | -3.940 6 | 1.177 5 | 119.222 4 |
35 | -5.289 2 | |||
45 | -6.319 7 | |||
300 | 25 | -2.402 7 | 1.201 3 | 116.188 7 |
35 | -3.707 6 | |||
45 | -4.721 8 |
Table 5 Adsorption heat model parameters of Congo red adsorbed by porous carbon material of mangosteen shell
质量浓度 Mass concentration/(mg·L-1) | 温度 Temperature/℃ | 吉布斯自由能 ΔG(kJ·mol-1) | 自由焓变 ΔH(kJ·mol-1) | 吸附期间焓变 ΔS(J·mol-1·K-1) |
---|---|---|---|---|
200 | 25 | -3.940 6 | 1.177 5 | 119.222 4 |
35 | -5.289 2 | |||
45 | -6.319 7 | |||
300 | 25 | -2.402 7 | 1.201 3 | 116.188 7 |
35 | -3.707 6 | |||
45 | -4.721 8 |
1 | 包维维. 吸附材料的制备及其对重金属离子和染料吸附性能研究[D].长春:吉林大学, 2013. |
BAO W W. Preparation of materials for the asorption of heavy metal ion and dyes [D]. Changchun: Jilin University, 2013. | |
2 | MAZEAU K, WYSZOMIRSKI M. Modeling of congo red adsorption on a surface of crystalline cellulose using molecular dynamics [J]. Cellulose, 2012, 19: 1495-1506. |
3 | WANG B, LIAN G Q, LEE X Q, et al.. Phosphogypsum as a novel modifier for distillers grains biochar removal of phosphate from water [J/OL]. Chemosphere, 2020,238:124684 [2023-11-12]. . |
4 | FANG S, HUANG X, XIE S, et al.. Removal of chromium (VI) by a magnetic nanoscale zerovalent iron-assisted chicken manure-derived biochar:adsorption behavior and synergetic mechanism [J/OL]. Front. Bioeng. Biotechnol., 2022,10: 935525[2023-11-12]. . |
5 | ABDI S, NASIRI M, MESBAHI A, et al.. Investigation of uranium (VI) adsorption by polypyrrole [J]. J. Hazard. Mater.,2017,332:132-139. |
6 | 孙宇. 辣椒秸秆生物炭的制备, 改性及对有机染料的吸附性能研究 [D]. 邯郸: 河北工程大学, 2021. |
SUN Y. Preparation and modification of biocharfrom pepper straw and its adsorption properties for organic dyes [D]. Handan: Hebei University of Technology, 2021. | |
7 | 丁华毅.生物炭的环境吸附行为及在土壤重金属镉污染治理中的应用[D].厦门:厦门大学,2014. |
DING H Y. Environmental adsorption behavior of biochar and its application in remediation of cadmium contaminated soil [D]. Xiamen: Xiamen University, 2014. | |
8 | 缪旭东,曹澄澄,陈颖,等.玉米秸秆生物炭吸附挥发性有机物的基本特性[J].环境科技,2021,34(1):24-29. |
MIAO X D, CAO C C, CHEN Y, et al.. Basic properties of volatile organic compounds adsorption on straw-based biochar [J]. Environ. Sci. Technol., 2021,34(1):24-29. | |
9 | QU J, CHE N J, NIU G L, et al.. Iron/manganese binary metal oxide-biochar nano-composites with high adsorption capacities of Cd2+:preparation and adsorption mechanisms [J/OL]. J. Water Process. Eng., 2023, 51:103332 [2023-11-12]. . |
10 | SOSZKA E, SNEKA-PŁATEK O, SKIBA E, et al.. Influence of the presence of impurities and of the biomass source on the performance of Ru catalysts in the hydrolytic hydrogenation of cellulose towards γ-valerolactone [J/OL]. Fuel, 2022,319:123646 [2023-11-12]. . |
11 | BUTNARU E, PAMFIL D, STOLERU E, et al.. Characterization of bark, needles and cones from silver fir (Abies alba mill.) towards valorization of biomass forestry residues [J/OL]. Biomass Bioenergy, 2022, 159: 106413[2023-11-12]. . |
12 | PÉREZ S, RENEDO C, ORTIZ A, et al.. Energy potential of waste from 10 forest species in the North of Spain (Cantabria) [J]. Bioresour. Technol., 2008,99(14):6339-6345. |
13 | TERRY L M, LOY A C M, CHEW J J, et al.. Chemical engineering and the sustainable oil palm biomass industry—recent advances and perspectives for the future [J]. Chem. Eng.Res. Des., 2022,188: 729-735. |
14 | 江建方.城市生活垃圾外热式热解技术的研究[D].武汉:华中科技大学,2006. |
JIANG J F. Dissertation submitted in fulfillment of the requirements for th e degree of doctor of philosophy in engineering [D].Wuhan: Huazhong University of Science and Technology, 2006. | |
15 | WYNN P A, PRESTON R. Hearing impairment in municipal refuse and glass recycling collection operatives [J]. Ann. Work.Expos. Health, 2021,65(6):727-731. |
16 | 李婷,李欣桐,李敏,等.山竹壳基生物质活性炭的制备及其吸附性能研究[J].化工新型材料,2018,46(2):213-216. |
LI T, LI X T, LI M, et al.. Preparation and adsorption property of mangosteen shell based activated carbon [J]. New Chem. Mater., 2018,46(2):213-216. | |
17 | 单锐,谈莉,陈凤鸣,等.改性山竹壳炭对废水中Ni(Ⅱ)的吸附效果与机理研究[J].安全与环境学报,2022,22(6):3473-3483. |
SHAN R, TAN L, CHEN F M, et al.. Study on the adsorption effect and mechanism of modified mangosteen charcoal on Ni(Ⅱ) in wastewater [J]. J. Saf. Environ., 2022,22(6):3473-3483. | |
18 | 单永芳,黄齐林,韩汝莲,等.山竹壳基活性炭的制备及性能研究[J].现代农业科技,2020(12):193-196. |
SHAN Y F, HUANG Q L, HAN R L, et al.. Study on preparation and properties of mangosteen shell-based activated carbon [J]. Mod. Agric. Sci. Technol., 2020(12):193-196. | |
19 | MARCELLO M, LORENZIN A, DE CAL M, et al.. Bilirubin removal by plasmafiltration-adsorption: ex vivo adsorption kinetics model and single case report [J]. Blood Purif., 2023,52(4):345-351. |
20 | GUO D L, HU D G, YAN Z Y, et al.. Preparation and characteristic of high surface area lignin-based porous carbon by potassium tartrate activation [J/OL]. Microporous Mesoporous Mater., 2021,326:111340 [2023-11-12]. . |
21 | LANGMUIR I. The adsorption of gases on plane surfaces of glass,mica and platinum [J]. J. Am. Chem. Soc., 1918,40(9):1361-1403. |
22 | 焦豫滨.核桃壳活性炭的制备及其对水中有机污染物的吸附性能研究[D].郑州: 郑州大学,2016. |
JIAO Y B. Study on the adsorption performance of modified activated carbon prepared from nutshell [D]. Zhengzhou: Zhengzhou University, 2016. | |
23 | VYAVAHARE G, GURAV R, PATIL R, et al.. Sorption of brilliant green dye using soybean straw-derived biochar:characterization, kinetics, thermodynamics and toxicity studies [J]. Environ. Geochem. Health, 2021,43(8):2913-2926. |
24 | HWANG Y J, JEONG S K, SHIN J S, et al.. High capacity disordered carbons obtained from coconut shells as anode materials for lithium batteries [J]. J. Alloys Compd., 2008,448(1/2):141-147. |
25 | ALFATTANI R, SHAH M A, SIDDIQUI M I H, et al.. Bio-char characterization produced from walnut shell biomass through slow pyrolysis: Sustainable for soil amendment and an alternate bio-fuel [J/OL]. Energies, 2021, 15(1): 15010001 [2023-11-12]. . |
26 | ANEMANA T, ÓVÁRI M, VARGA M, et al.. Granular activated charcoal from peanut (Arachis hypogea) shell as a new candidate for stabilization of arsenic in soil [J/OL].Microchem. J., 2019, 149: 104030 [2023-11-12]. . |
27 | 张江南,黄正宏,徐成俊,等.竹基多孔炭用作超级电容器极板材料的研究[J].世界竹藤通讯,2008,6(4):13-16. |
ZHANG J N, HUANG Z H, XU C J, et al.. Study on bamboo based porous carbon as material for supercapacitor [J]. World Bamboo Rattan, 2008,6(4):13-16. | |
28 | YAN S W, YU W, YANG T, et al.. The adsorption of corn stalk biochar for Pb and Cd: preparation characterization and batch adsorption study [J/OL]. Separations 2022, 9(2):22 [2023-11-12]. . |
29 | LYKOUDI A, FRONTISTIS Z, VAKROS J, et al.. Degradation of sulfamethoxazole with persulfate using spent coffee grounds biochar as activator [J/OL]. J. Environ. Manag., 2020,271:111022 [2023-11-12]. . |
30 | SUN Z J, WANG S J, YAN L L, et al.. Mesoporous carbon materials prepared from litchi shell as sulfur encapsulator for lithium-sulfur battery application [J]. J. Power Sources, 2016,324: 547-555. |
31 | 朱秀珍.有机钾盐活化法制备活性炭及其对氯霉素吸附性能的研究[D].济南:山东大学,2018. |
ZHU X Z. Preparation of activated carbon by organic potassium salt activation for adsorption of chloramphenicol [D]. Ji'nan: Shandong University, 2018. | |
32 | YANG X M, XIE D, WANG W H, et al.. An activated carbon from walnut shell for dynamic capture of high concentration gaseous iodine [J/OL]. Chem. Eng. J., 2023,454:140365 [2023-11-12]. . |
33 | SINGH G, MARIA RUBAN A, GENG X, et al.. Recognizing the potential of K-salts, apart from KOH, for generating porous carbons using chemical activation [J/OL]. Chem. Eng. J., 2023,451:139045 [2023-11-12]. . |
34 | LUO H M, YANG Y F, ZHAO X, et al.. 3D sponge-like nanoporous carbons via a facile synthesis for high-performance supercapacitors:direct carbonization of tartrate salt [J].Electrochim. Acta, 2015,169:13-21. |
35 | WANG M X, HE D, ZHU M W, et al.. Green fabrication of hierarchically porous carbon microtubes from biomass waste via self-activation for high-energy-density supercapacitor [J/OL]. J. Power Sources, 2023,560:232703 [2023-11-12]. . |
[1] | WANG Xinyu1,2, ZHANG Xi2, MENG Haibo2, SHEN Yujun2, XIE Hengyan1*, ZHOU Haibin2, CHENG Hongsheng2, SONG Liqiu2. Impact of Temperature on Adsorption Characteristics of Biochar on Heavy Metals [J]. Journal of Agricultural Science and Technology, 2021, 23(2): 150-158. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||