Journal of Agricultural Science and Technology ›› 2025, Vol. 27 ›› Issue (8): 119-131.DOI: 10.13304/j.nykjdb.2024.0457
• ANIMAL AND PLANT HEALTH • Previous Articles
Haili LI1,2(), Fan YANG2, Jianhao CHEN2, Kang YANG2, Yiping YANG2, Jingang DUAN2, Bin LI2, Wanqi ZHANG2, Chunjiang MA2
Received:
2024-06-06
Accepted:
2024-09-24
Online:
2025-08-15
Published:
2025-08-26
李海利1,2(), 杨帆2, 陈建豪2, 杨康2, 杨夷平2, 段进刚2, 李斌2, 张婉琪2, 马春江2
作者简介:
李海利E-mail: haili8693@sina.com
基金资助:
CLC Number:
Haili LI, Fan YANG, Jianhao CHEN, Kang YANG, Yiping YANG, Jingang DUAN, Bin LI, Wanqi ZHANG, Chunjiang MA. Analysis of Bacteriostasis Activity of Paenibacillus sp. Against Super Drug-resistant Escherichia coli Carrying NDM Genes[J]. Journal of Agricultural Science and Technology, 2025, 27(8): 119-131.
李海利, 杨帆, 陈建豪, 杨康, 杨夷平, 段进刚, 李斌, 张婉琪, 马春江. 类芽孢杆菌对携带NDM基因的超级耐药大肠杆菌的抑菌活性分析[J]. 中国农业科技导报, 2025, 27(8): 119-131.
Fig. 2 Antagonism test of strain HNYJ2209J on super drug-resistant E. coliA: Super-resistant E. coli carrying NDM1/NDM5 B: Super drug-resistant E. coli carrying NDM4/NDM5
Fig. 6 Inhibitory effect of strain HNYJ2209J on super drug-resistant E. coliA: Super-resistant E. coli carrying NDM1/NDM5 B: Super drug-resistant E. coli carrying NDM4/NDM5
功能分类 Functional classification | 基因数 Number of genes |
---|---|
辅助氧化还原酶(Auxiliary activities,AAs) | 2 |
碳水化合物结合模块(Carbohydrate-binding modules,CBMs) | 26 |
碳水化合物酯酶(Carbohydrate esterases,CEs) | 32 |
糖苷水解酶(Glycoside hydrolases,GHs) | 125 |
糖基转移酶(Glycosyl transferases,GTs) | 33 |
多糖裂合酶(Polysaccharide lyases,PLs) | 1 |
Table 2 Annotation results of CAZy database
功能分类 Functional classification | 基因数 Number of genes |
---|---|
辅助氧化还原酶(Auxiliary activities,AAs) | 2 |
碳水化合物结合模块(Carbohydrate-binding modules,CBMs) | 26 |
碳水化合物酯酶(Carbohydrate esterases,CEs) | 32 |
糖苷水解酶(Glycoside hydrolases,GHs) | 125 |
糖基转移酶(Glycosyl transferases,GTs) | 33 |
多糖裂合酶(Polysaccharide lyases,PLs) | 1 |
类型 Type | 簇ID Cluster ID | 基因位置 Genome location | 最相似的基因簇 Most similar known cluster | 序列一致性 Similarity of sequence/% |
---|---|---|---|---|
非核糖体多肽合成酶Non-ribosomal peptide synthetase | Cluster 1 | 68 140~130 725 | 环脂肽类抗生素B Fusariciden B | 100 |
Cluster 2 | 341 060~362 265 | - | - | |
Cluster 7 | 1 433 971~1 494 636 | 噻唑环肽类化合物AMarthiapeptide A | ||
Cluster 9 | 2 042 324~2 103 728 | - | - | |
Cluster 10 | 2 469 235~2 562 320 | 十三肽菌素Tridecaptin | 100 | |
Cluster 11 | 2 720 521~2 845 826 | 脂质庚肽Paenilipoheptin | 19 | |
Cluster 12 | 2 944 761~2 997 159 | - | - | |
Cluster 17 | 5 001 683~5 082 857 | 多粘菌素BPolymyxin B | 100 | |
羊毛硫肽类化合物Lanthipeptide | Cluster 3 | 994 616~1 020 919 | 细菌抗菌肽Paenibacillin | 90 |
Cluster 16 | 4 869 313~4 892 543 | - | ||
TransAT-PKS | Cluster 4 | 1 042 831~1 119 499 | - | - |
Proteusin | Cluster 5 | 1 220 795~1 241 031 | - | - |
套索肽Lassopeptide | Cluster 6 | 1 356 777~1 380 842 | 拉索肽Paeninodin | 40 |
循环-内酯Cyclic-lactone | Cluster 8 | 1 800 731~1 819 131 | - | - |
Cluster 13 | 3 140 538~3 160 684 | - | - | |
TransAT-PKS-like | Cluster 14 | 3 639 549~3 741 439 | Aurantinin B/C/D | 35 |
Ranthipeptide | Cluster 15 | 4 502 063~4 527 449 | - |
Table 3 List of gene clusters encoding secondary metabolites in the genome of strain HNYJ2209J
类型 Type | 簇ID Cluster ID | 基因位置 Genome location | 最相似的基因簇 Most similar known cluster | 序列一致性 Similarity of sequence/% |
---|---|---|---|---|
非核糖体多肽合成酶Non-ribosomal peptide synthetase | Cluster 1 | 68 140~130 725 | 环脂肽类抗生素B Fusariciden B | 100 |
Cluster 2 | 341 060~362 265 | - | - | |
Cluster 7 | 1 433 971~1 494 636 | 噻唑环肽类化合物AMarthiapeptide A | ||
Cluster 9 | 2 042 324~2 103 728 | - | - | |
Cluster 10 | 2 469 235~2 562 320 | 十三肽菌素Tridecaptin | 100 | |
Cluster 11 | 2 720 521~2 845 826 | 脂质庚肽Paenilipoheptin | 19 | |
Cluster 12 | 2 944 761~2 997 159 | - | - | |
Cluster 17 | 5 001 683~5 082 857 | 多粘菌素BPolymyxin B | 100 | |
羊毛硫肽类化合物Lanthipeptide | Cluster 3 | 994 616~1 020 919 | 细菌抗菌肽Paenibacillin | 90 |
Cluster 16 | 4 869 313~4 892 543 | - | ||
TransAT-PKS | Cluster 4 | 1 042 831~1 119 499 | - | - |
Proteusin | Cluster 5 | 1 220 795~1 241 031 | - | - |
套索肽Lassopeptide | Cluster 6 | 1 356 777~1 380 842 | 拉索肽Paeninodin | 40 |
循环-内酯Cyclic-lactone | Cluster 8 | 1 800 731~1 819 131 | - | - |
Cluster 13 | 3 140 538~3 160 684 | - | - | |
TransAT-PKS-like | Cluster 14 | 3 639 549~3 741 439 | Aurantinin B/C/D | 35 |
Ranthipeptide | Cluster 15 | 4 502 063~4 527 449 | - |
基因ID Gene ID | 毒力因子ID编号 VFDB ID | 毒力因子名称 Vfs | 序列一致性 Identity/% |
---|---|---|---|
Gene0185 | VFG000077(gb|NP_465991) | ClpP(VF0074) | 69.05 |
Gene01193 | VFG050186(gb|AJI07989.1) | BpsC (CVF891) | 71.58 |
Gene01194 | VFG050185(gb|AJI07977.1) | BpsD (CVF891) | 63.73 |
Gene01214 | VFG050185(gb|AJI07977.1) | BpsD (CVF891) | 61.31 |
Gene01261 | VFG012095(gb|YP_001086664) | GroEL (VF0594) | 70.71 |
Gene01364 | VFG002158(gb|NP_464456) | LpIAI (VF0347) | 61.63 |
Gene01805 | VFG039282(gb|NP_819314) | CBU (CVF803) | 63.01 |
Gene02451 | VFG000077(gb|NP_465991) | ClpP (VF0074) | 64.17 |
Gene03327 | VFG006717(gb|NP_465159) | Lap (VF0444) | 63.74 |
Gene03414 | VFG048830(gb|YP_002920353.1) | Capsule (VF0560) | 68.59 |
Gene04258 | VFG000077(gb|NP_465991) | ClpP (VF0074) | 65.82 |
Gene04825 | VFG046465(gb|YP_169203.1) | EF-Tu (VF0460) | 72.84 |
Gene04856 | VFG000079(gb|NP_463763) | ClpC (VF0072) | 76.20 |
Gene04883 | VFG050186(gb|AJI07989.1) | BpsC (CVF891) | 64.77 |
Table 4 Virulence gene prediction of HNYJ2209J strain
基因ID Gene ID | 毒力因子ID编号 VFDB ID | 毒力因子名称 Vfs | 序列一致性 Identity/% |
---|---|---|---|
Gene0185 | VFG000077(gb|NP_465991) | ClpP(VF0074) | 69.05 |
Gene01193 | VFG050186(gb|AJI07989.1) | BpsC (CVF891) | 71.58 |
Gene01194 | VFG050185(gb|AJI07977.1) | BpsD (CVF891) | 63.73 |
Gene01214 | VFG050185(gb|AJI07977.1) | BpsD (CVF891) | 61.31 |
Gene01261 | VFG012095(gb|YP_001086664) | GroEL (VF0594) | 70.71 |
Gene01364 | VFG002158(gb|NP_464456) | LpIAI (VF0347) | 61.63 |
Gene01805 | VFG039282(gb|NP_819314) | CBU (CVF803) | 63.01 |
Gene02451 | VFG000077(gb|NP_465991) | ClpP (VF0074) | 64.17 |
Gene03327 | VFG006717(gb|NP_465159) | Lap (VF0444) | 63.74 |
Gene03414 | VFG048830(gb|YP_002920353.1) | Capsule (VF0560) | 68.59 |
Gene04258 | VFG000077(gb|NP_465991) | ClpP (VF0074) | 65.82 |
Gene04825 | VFG046465(gb|YP_169203.1) | EF-Tu (VF0460) | 72.84 |
Gene04856 | VFG000079(gb|NP_463763) | ClpC (VF0072) | 76.20 |
Gene04883 | VFG050186(gb|AJI07989.1) | BpsC (CVF891) | 64.77 |
[1] | CHENG Z, AITHA M, THOMAS C A, et al.. Machine learning models identify inhibitors of New Delhi metallo-beta-lactamase [J]. J. Chem. Inf. Model., 2024, 64(10):3977-3991. |
[2] | KWANKAEW P, SANGKANU S, MITSUWAN W, et al.. Inhibitory and anti-adherent effects of Piper betle L. leaf extract against Acanthamoeba triangularis in co-infection with Staphylococcus aureus and Pseudomonas aeruginosa: a sustainable one-health approach [J]. Vet. World., 2024, 17(4):848-862. |
[3] | 王晓晴,刘博,王子墨,等.曼陀罗内生真菌Fusarium solani MBM-5活性次级代谢产物研究[J].中国中药杂志,2024,49(10):2722-2727. |
[4] | BARRETO RAMOS D G, GURGEL AMARAL A G, DUARTE I G, et al.. Endophytic species of Colletotrichum associated with cashew tree in northeastern Brazil [J]. Fungal. Biol., 2024, 128(3):1780-1789. |
[5] | WANG W H, LI C R, QIN X J, et al.. Novel Alkaloids from Aspergillus fumigatus VDL36, an endophytic fungus associated with Vaccinium dunalianum [J]. J. Agric. Food. Chem., 2024, 72(19):10970-10980. |
[6] | TRAPP MA, KAI M, MITHOFER A. RODRIGUES-FILHO E. Antibiotic oxylipins from Alternanthera brasiliana and its endophytic bacteria [J]. Phytochemistry, 2015, 110:72-82. |
[7] | LIU H X, LIU Z M, ZHANG Y J, et al.. Antioxidant aryl-substituted phthalan derivatives produced by endophytic fungus Cytospora rhizophorae [J/OL]. Front. Chem., 2022, 10:826615 [2024-05-10]. . |
[8] | YIN G P, GONG M, XUE G M, et al.. Penispidins A-C, Aromatic sesquiterpenoids from Penicillium virgatum and their inhibitory effects on hepatic lipid accumulation [J]. J. Nat. Prod., 2021, 84(10):2623-2629. |
[9] | GUO Z, CHEN B, CHEN D, et al.. New Isocoumarin and pyrone derivatives from the Chinese mngrove plant Rhizophora mangle-associated fungus Phomopsis sp. DHS-11 [J]. Molecules, 2023, 28(9):125-135. |
[10] | GUPTA A, MESHRAM V, GUPTA M, et al.. Fungal endophytes: microfactories of novel bioactive compounds with therapeutic interventions; a comprehensive review on the biotechnological developments in the field of fungal endophytic biology over the last decade [J]. Biomolecules, 2023, 13(7):213-223 |
[11] | KANTARI S A K, BISWAL R P, KUMAR P, et al.. Antioxidant and antidiabetic activities, and UHPLC-ESI-QTOF-MS-based metabolite profiling of an endophytic fungus Nigrospora sphaerica BRN 01 isolated from Bauhinia purpurea L. [J]. Appl. Biochem. Biotechnol., 2023, 195(12):7465-7482. |
[12] | CASTILLO U F, STROBEL G A, FORD E J, et al.. Munumbicins, wide-spectrum antibiotics produced by Streptomyces NRRL 30562, endophytic on Kennedia nigriscans [J]. Microbiology, 2002, 148(9):2675-2685. |
[13] | HUA H, ZHANG X, YAO Y, et al.. Complete genome sequence of a novel mitovirus identified in the phytopathogenic fungus Fusarium oxysporum F. sp. melonis strain T-SD3 [J/OL]. Arch. Virol., 2024, 169(6):126 [2024-05-10]. . |
[14] | LI H, GAO S, SHI S, et al.. Rational construction of genome-minimized Streptomyces host for the expression of secondary metabolite gene clusters [J]. Synth. Syst. Biotechnol., 2024, 9(3):600-608. |
[15] | WEN Y, LV Y, HAO J, et al.. Two new compounds of Penicillium polonicum, an endophytic fungus from Camptotheca acuminata Decne [J]. Nat. Prod. Res., 2020, 34(13):1879-1883. |
[16] | 李海利,郎利敏,张青娴,等.同时产碳青霉烯酶NDM5和NDM的大肠埃希氏菌的鉴定及耐药性研究[J].生物技术通报,2022,28(9):106-115. |
LI H L, LANG L M, ZHANG Q X, et al.. Identification and drug resistance of Escherichia coli simultaneously producing carbapenemase NDM-1 and NDM-5 [J]. Biotechnol. Bull., 2022, 28(9):106-115. | |
[17] | 李海利,张青娴,朱文豪,等。携带新德里金属β-内酰胺酶的猪源大肠杆菌全基因组测序分析及敏感植物提取物药物筛选研究[J].中国兽药杂志,2023,57(6):23-33. |
LI H L, ZHANG Q X, ZHU W H, et al.. Whole genome sequencing analysis of Escherichia coli from pigs carrying delhi metal β-lactamase and drug screening of sensitive plant extracts [J]. Chin. J. Vet. Drug, 2023, 57(6):23-33. | |
[18] | AL-BAYSSARI C, NAWFAL DAGHER T, HAMOUI S E L, et al.. Carbapenem and colistin-resistant bacteria in North Lebanon: coexistence of mcr-1 and NDM-4 genes in Escherichia coli [J]. J. Infect. Dev. Countries, 2021, 15(7):934-342. |
[19] | MEHAFFEY M R, AHN Y C, RIVERA D D, et al.. Elusive structural changes of New Delhi metallo-beta-lactamase revealed by ultraviolet photodissociation mass spectrometry [J]. Chem. Sci., 2020, 11(33):8999-9010. |
[20] | RAHMAN M, SHUKLA S K, PRASAD K N, et al.. Prevalence and molecular characterisation of New Delhi metallo-beta-lactamases NDM-1, NDM-5, NDM-6 and NDM-7 in multidrug-resistant Enterobacteriaceae from India [J]. Int. J. Antimicrob. Agents., 2014, 44(1):30-37. |
[21] | ZHANG Y, ZHANG Q, LI C, et al.. Advances in cell membrane-based biomimetic nanodelivery systems for natural products [J/OL]. Drug. Deliv., 2024, 31(1):23611696 [2024-05-10]. . |
[22] | MAMANGKEY J, MENDES L W, MUSTOPA A Z, et al.. Endophytic Aspergillii and Penicillii from medicinal plants: a focus on antimicrobial and multidrug resistant pathogens inhibitory activity [J]. Biol. Technol., 2024, 105(1):83-95. |
[23] | MARYAM H, FAZEL P, MOSTAFA N. Isolation and screening of antibacterial activity of Actinomycetota from the medicinal plant, Anthemis pseudocotula Boiss [J]. Archives Razi Institute, 2023, 78(5):1638-1646. |
[24] | 刘玉珍,高飞,马雪燕,等.连翘中具有药物活性成分内生菌的筛选及其拮抗特性的研究[J].延安大学学报(自然科学版),2024,4(33):84-88. |
LIU Y Z, GAO F, MA X Y, et al.. Screening of drug active products endophytic from Fructus Forsythiae and study on their antagonism [J]. J. Yanan Univ. (Nat. Sci.), 2024, 4(33):84-88. | |
[25] | 杨雪.高产连翘苷内生真菌Colletotriclum gloeosporioides的诱变选育[D].西安:陕西师范大学,2014. |
YANG X. Mutagenesis and breeding of endophytic fungus Colletotriclum gloeosporioides with high yield of forsythin [D]. Xi’an: Shaanxi Normal University, 2014. | |
[26] | 翼玉良,李丹青,李堆淑,等.连翘内生菌的分离及对植物病原菌的抑菌活性测定[J].西南农业学报,2011,246:2258-2262. |
YI Y L, LI D Q, LI D S, et al.. Isolation of endophyte from Fructus forsythiae and determination of its inhibition activities to plant pathogens [J]. Southwest Agric. J., 2011, 24(6):2258-2262 | |
[27] | 袁保红,杜青平,胡立勇.小连翘内生放线菌YBL-02菌株的初步鉴定和发酵产物分离[J].中国现代应用药学杂志,2009,5(26):360-363. |
YUAN B H, DU Q P, HU L Y. Taxonomy, fermentation and products characterization of actinomycete strain YBL-02 from Hyperioums sampsonii Hance [J]. Chin. J. Modern Appl. Pharmacy, 2009, 5(26):360-363. | |
[28] | NADEEM H, NIAZI P, ASIF M, et al.. Bacterial strains integrated with surfactin molecules of Bacillus subtilis MTCC441 enrich nematocidal activity against Meloidogyne incognita [J]. Plant Biol., 2021, 23(6):1027-1036. |
[29] | KIM Y T, KIM S E, LEE W J, et al.. Isolation and characterization of a high iturin yielding Bacillus velezensis UV mutant with improved antifungal activity [J/OL]. PLoS One, 2020, 15(12):e0234177 [2024-05-10]. . |
[30] | FANAEI M, JURCIC K, EMTIAZI G. Detection of simultaneous production of kurstakin, fengycin and surfactin lipopeptides in Bacillus mojavensis using a novel gel-based method and MALDI-TOF spectrometry [J]. World J. Microbiol. Biotechnol., 2021, 37(6):97-107. |
[31] | SHARMA D, SINGH S S, BAINDARA P, et al.. Surfactin like broad spectrum antimicrobial lipopeptide co-produced with sublancin from Bacillus subtilis strain A52: dual reservoir of bioactives [J]. Front. Microbiol., 2020, 11:1167-1177. |
[32] | GAN P, JIN D, ZHAO X, et al.. Bacillus-produced surfactin attenuates chronic inflammation in atherosclerotic lesions of ApoE(-/-) mice [J]. Int. Immunopharmacol., 2016, 35:226-234. |
[33] | 都海明,戚广州,王建军,等.抗菌脂肽对断奶仔猪生长性能、肠道微生物及血液指标的影响研究[J].中国粮油学报,2011,26(5):76-82. |
DU H M, QI G Z, WANG J J, et al.. Effects of antimicrobial lipopeptides on performance, intestinal microflora and blood biochemical parameters in weaned pigs [J]. J. Chin. Cereals Oils Assoc., 2011, 26(5):76-82. | |
[34] | 翟少伟,李剑,孙秀文.饲料中添加表面活性素对吉富罗非鱼生长性能、血清生化指标及脂肪代谢的影响[J].动物营养学报,2015,27(12):3959-3967. |
ZHAI S W, LI J, SUN X W. Effects of surfactin supplementation on growth performance, serum biochemical indexes and lipid metabolism of genetically improved farmed tilapia (Oreochromis niloticus) [J]. Chin. J. Anim. Nutr., 2015, 27(12):3959-3967. |
[1] | Haili LI, Yindi XU, Zhifang WANG, Wenhao ZHU, Lixian ZHANG, Chunjiang MA. Whole Genome Sequencing of Multi-drug Resistant Escherichia coli and Its Drug Resistance Analysis [J]. Journal of Agricultural Science and Technology, 2024, 26(6): 113-121. |
[2] | Hongbo LI, Yueyue CHEN, Yujie YANG, Qiqi XU, Lei QIN, Xin CAI, Lining XIA. Drug Resistance and Genotype Analysis of Escherichia coli in Healthy Chickens from Zhaosu, Yili, Xinjiang [J]. Journal of Agricultural Science and Technology, 2023, 25(11): 123-131. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||