Journal of Agricultural Science and Technology ›› 2022, Vol. 24 ›› Issue (1): 71-82.DOI: 10.13304/j.nykjdb.2021.0400
• BIOTECHNOLOGY & LIFE SCIENCE • Previous Articles Next Articles
Shuwei ZHANG(), Lili ZHAO, Chao CHEN, Jingchen TAN, Li ZHANG, Yi XI(
)
Received:
2021-04-11
Accepted:
2021-06-01
Online:
2022-01-15
Published:
2022-01-25
Contact:
Yi XI
通讯作者:
席溢
作者简介:
张淑炜 E-mail:1412570109@qq.com;
基金资助:
CLC Number:
Shuwei ZHANG, Lili ZHAO, Chao CHEN, Jingchen TAN, Li ZHANG, Yi XI. Growth and Physiological Response of 3 Different Provenances of Pueraria lobate Under Low Phosphorus Stress[J]. Journal of Agricultural Science and Technology, 2022, 24(1): 71-82.
张淑炜, 赵丽丽, 陈超, 谭景晨, 张莉, 席溢. 低磷胁迫下3种不同种源葛藤的生长生理响应[J]. 中国农业科技导报, 2022, 24(1): 71-82.
大量元素Macronutrient | 微量元素Micronutrient | ||
---|---|---|---|
名称Name | 浓度Concentration/(mmol·L-1) | 名称Name | 浓度Concentration/(μmol·L-1) |
KNO3 | 1.0 | H3BO3 | 1.00 |
Ca(NO3)2 | 2.0 | MnSO4 | 1.00 |
CaCl2 | 1.5 | CuSO4 | 0.50 |
MgSO4 | 0.5 | ZnSO4 | 1.00 |
KCl | 1.8 | (NH4)6Mo7O24 | 0.10 |
Na2-EDTA | 50.00 | ||
FeSO4 | 0.05 |
Table1 Concentration of nutrient solution components
大量元素Macronutrient | 微量元素Micronutrient | ||
---|---|---|---|
名称Name | 浓度Concentration/(mmol·L-1) | 名称Name | 浓度Concentration/(μmol·L-1) |
KNO3 | 1.0 | H3BO3 | 1.00 |
Ca(NO3)2 | 2.0 | MnSO4 | 1.00 |
CaCl2 | 1.5 | CuSO4 | 0.50 |
MgSO4 | 0.5 | ZnSO4 | 1.00 |
KCl | 1.8 | (NH4)6Mo7O24 | 0.10 |
Na2-EDTA | 50.00 | ||
FeSO4 | 0.05 |
处理 Treatment | 株高 Plant height/cm | 茎粗 Stem diameter /mm | 地上部鲜重 Shoot fresh weight/g | 地下部鲜重 Root fresh weight/g | 地上部干重Shoot dry weight/g | 地下部干重Root dry weight/g | 根冠比 Root-shoot ratio |
---|---|---|---|---|---|---|---|
P0.5A | 15.66±4.36 αa | 2.19±0.31 βb | 1.57±0.18 αβb | 0.57±0.06 βa | 0.26±0.03 αβa | 0.05±0.01 αβa | 0.19±0.06 αa |
P0.05A | 12.60±3.07 αa | 2.56±0.30 αa | 1.88±0.25 βa | 0.59±0.10 βa | 0.31±0.06 βa | 0.05±0.01 αβa | 0.16±0.06 αa |
P0.005A | 13.37±3.58 αa | 2.12±0.28 βab | 1.52±0.33 αab | 0.52±0.12 αa | 0.23±0.04 αa | 0.05±0.02 αa | 0.21±0.08 αa |
P0.5H | 12.56±5.13 αb | 2.79±0.33 αa | 1.16±0.40 βb | 0.52±0.08 βa | 0.19±0.02 βb | 0.04±0.01 βa | 0.21±0.08 αa |
P0.05H | 14.57±4.41 αab | 2.69±0.33 αa | 1.86±0.26 βa | 0.55±0.07 βa | 0.37±0.05 αβa | 0.05±0.02 βa | 0.13±0.04 αa |
P0.005H | 16.55±3.96 αa | 2.75±0.25 αa | 1.51±0.16 αab | 0.37±0.08 βb | 0.20±0.05 αb | 0.03±0.08 αa | 0.15±0.01 αa |
P0.5J | 15.67±4.24 αa | 2.65±0.54 αa | 2.01±0.53 αb | 0.88±0.11 αa | 0.33±0.13 αb | 0.08±0.04 αa | 0.25±0.14 αa |
P0.05J | 13.97±3.47 αa | 2.69±0.58 αa | 2.67±0.37 αa | 0.90±0.12 αa | 0.46±0.04 αa | 0.08±0.03 αa | 0.16±0.08 αa |
P0.005J | 14.88±3.73 αa | 2.38±0.45 βa | 1.41±0.23 αc | 0.54±0.06 αb | 0.22±0.06 αc | 0.05±0.07 αa | 0.26±0.08 αa |
Table 2 Biomass of Pueraria lobata seedlings under different low phosphorus stresses
处理 Treatment | 株高 Plant height/cm | 茎粗 Stem diameter /mm | 地上部鲜重 Shoot fresh weight/g | 地下部鲜重 Root fresh weight/g | 地上部干重Shoot dry weight/g | 地下部干重Root dry weight/g | 根冠比 Root-shoot ratio |
---|---|---|---|---|---|---|---|
P0.5A | 15.66±4.36 αa | 2.19±0.31 βb | 1.57±0.18 αβb | 0.57±0.06 βa | 0.26±0.03 αβa | 0.05±0.01 αβa | 0.19±0.06 αa |
P0.05A | 12.60±3.07 αa | 2.56±0.30 αa | 1.88±0.25 βa | 0.59±0.10 βa | 0.31±0.06 βa | 0.05±0.01 αβa | 0.16±0.06 αa |
P0.005A | 13.37±3.58 αa | 2.12±0.28 βab | 1.52±0.33 αab | 0.52±0.12 αa | 0.23±0.04 αa | 0.05±0.02 αa | 0.21±0.08 αa |
P0.5H | 12.56±5.13 αb | 2.79±0.33 αa | 1.16±0.40 βb | 0.52±0.08 βa | 0.19±0.02 βb | 0.04±0.01 βa | 0.21±0.08 αa |
P0.05H | 14.57±4.41 αab | 2.69±0.33 αa | 1.86±0.26 βa | 0.55±0.07 βa | 0.37±0.05 αβa | 0.05±0.02 βa | 0.13±0.04 αa |
P0.005H | 16.55±3.96 αa | 2.75±0.25 αa | 1.51±0.16 αab | 0.37±0.08 βb | 0.20±0.05 αb | 0.03±0.08 αa | 0.15±0.01 αa |
P0.5J | 15.67±4.24 αa | 2.65±0.54 αa | 2.01±0.53 αb | 0.88±0.11 αa | 0.33±0.13 αb | 0.08±0.04 αa | 0.25±0.14 αa |
P0.05J | 13.97±3.47 αa | 2.69±0.58 αa | 2.67±0.37 αa | 0.90±0.12 αa | 0.46±0.04 αa | 0.08±0.03 αa | 0.16±0.08 αa |
P0.005J | 14.88±3.73 αa | 2.38±0.45 βa | 1.41±0.23 αc | 0.54±0.06 αb | 0.22±0.06 αc | 0.05±0.07 αa | 0.26±0.08 αa |
处理Treatment | 总根长 Total root length /cm | 根表面积 Root surface area/cm2 | 根直径 Root average diameter/mm | 根体积 Root volume/cm3 | 根尖数 Root tips No. | 根毛数 Root hairs No. |
---|---|---|---|---|---|---|
P0.5A | 101.97±20.20 αb | 21.67±7.04 αa | 0.69±0.06 αa | 0.37±0.10 αβa | 462.75±35.21 βb | 659.00±114.81 βa |
P0.05A | 180.50±21.49 αa | 26.48±4.74 αa | 0.72±0.11 βb | 0.48±0.08 αa | 691.50±32.84 αa | 695.00±107.33 αa |
P0.005A | 101.34±7.04 αb | 18.87±7.62 αa | 0.65±0.22 αab | 0.35±0.12 αa | 406.00±51.46 αc | 399.50±86.30 βb |
P0.5H | 129.70±7.63 αa | 22.09±10.06 αa | 0.58±0.10 αa | 0.31±0.10 βa | 670.25±20.85 αa | 362.75±46.67 γa |
P0.05H | 134.98±15.03 βa | 23.26±4.36 αa | 0.55±0.06 βa | 0.32±0.09 βa | 513.00±77.73 βab | 464.00±69.07 βa |
P0.005H | 95.21±10.22 αb | 16.70±3.52 αa | 0.56±0.08 αa | 0.24±0.08 αa | 391.25±84.78 αb | 380.00±56.22 βa |
P0.5J | 118.68±27.92 αa | 26.41±3.64 αa | 0.73±0.14 αa | 0.48±0.09 αa | 344.50±105.69 γa | 884.00±62.92 αa |
P0.05J | 126.13±37.49 βa | 26.60±4.29 αa | 0.76±0.14 βa | 0.48±0.07 αa | 348.50±75.59 γa | 911.25±99.72 αa |
P0.005J | 93.46±16.93 αa | 19.14±4.92 αa | 0.67±0.09 αa | 0.32±0.08 αb | 329.50±32.75 αa | 599.00±76.00 αb |
Table 3 Root morphological of Pueraria lobata seedlings under different low phosphorus stresses
处理Treatment | 总根长 Total root length /cm | 根表面积 Root surface area/cm2 | 根直径 Root average diameter/mm | 根体积 Root volume/cm3 | 根尖数 Root tips No. | 根毛数 Root hairs No. |
---|---|---|---|---|---|---|
P0.5A | 101.97±20.20 αb | 21.67±7.04 αa | 0.69±0.06 αa | 0.37±0.10 αβa | 462.75±35.21 βb | 659.00±114.81 βa |
P0.05A | 180.50±21.49 αa | 26.48±4.74 αa | 0.72±0.11 βb | 0.48±0.08 αa | 691.50±32.84 αa | 695.00±107.33 αa |
P0.005A | 101.34±7.04 αb | 18.87±7.62 αa | 0.65±0.22 αab | 0.35±0.12 αa | 406.00±51.46 αc | 399.50±86.30 βb |
P0.5H | 129.70±7.63 αa | 22.09±10.06 αa | 0.58±0.10 αa | 0.31±0.10 βa | 670.25±20.85 αa | 362.75±46.67 γa |
P0.05H | 134.98±15.03 βa | 23.26±4.36 αa | 0.55±0.06 βa | 0.32±0.09 βa | 513.00±77.73 βab | 464.00±69.07 βa |
P0.005H | 95.21±10.22 αb | 16.70±3.52 αa | 0.56±0.08 αa | 0.24±0.08 αa | 391.25±84.78 αb | 380.00±56.22 βa |
P0.5J | 118.68±27.92 αa | 26.41±3.64 αa | 0.73±0.14 αa | 0.48±0.09 αa | 344.50±105.69 γa | 884.00±62.92 αa |
P0.05J | 126.13±37.49 βa | 26.60±4.29 αa | 0.76±0.14 βa | 0.48±0.07 αa | 348.50±75.59 γa | 911.25±99.72 αa |
P0.005J | 93.46±16.93 αa | 19.14±4.92 αa | 0.67±0.09 αa | 0.32±0.08 αb | 329.50±32.75 αa | 599.00±76.00 αb |
处理 Treatment | 叶面积 Leaf area/cm2 | 叶周长 Leaf girth/cm | 叶长 Leaf length/cm | 叶宽 Leaf width/cm |
---|---|---|---|---|
P0.5A | 10.12±3.76 αb | 13.48±2.89 αb | 4.37±0.52 αb | 3.53±0.80 αb |
P0.05A | 13.19±5.32 αa | 16.37±3.91 αa | 5.16±0.89 αa | 3.97±0.96 αa |
P0.005A | 9.22±2.98 βb | 13.96±4.92 αb | 4.37±0.69 βb | 3.36±0.64 βb |
P0.5H | 9.65±3.97 αb | 13.92±4.05 αb | 4.40±0.79 αb | 3.41±0.82 αb |
P0.05H | 14.15±5.18 αa | 17.34±4.47 αa | 5.31±0.81 αa | 4.13±0.81 αa |
P0.005H | 11.70±4.80 αb | 15.57±3.56 αab | 4.77±0.79 αb | 3.50±0.78 αab |
P0.5J | 11.58±3.60 αab | 14.39±2.52 αa | 4.74±0.48 αab | 3.75±0.83 αab |
P0.05J | 13.99±6.00 αa | 15.73±3.46 αa | 5.08±0.81 αa | 4.14±0.98 αa |
P0.005J | 10.55±2.94 αβb | 14.36±2.81 αa | 4.63±0.53 αβb | 3.59±0.66 αβb |
Table 4 Leaf morphological indexes of Pueraria lobata seedlings under different low phosphorus stresses
处理 Treatment | 叶面积 Leaf area/cm2 | 叶周长 Leaf girth/cm | 叶长 Leaf length/cm | 叶宽 Leaf width/cm |
---|---|---|---|---|
P0.5A | 10.12±3.76 αb | 13.48±2.89 αb | 4.37±0.52 αb | 3.53±0.80 αb |
P0.05A | 13.19±5.32 αa | 16.37±3.91 αa | 5.16±0.89 αa | 3.97±0.96 αa |
P0.005A | 9.22±2.98 βb | 13.96±4.92 αb | 4.37±0.69 βb | 3.36±0.64 βb |
P0.5H | 9.65±3.97 αb | 13.92±4.05 αb | 4.40±0.79 αb | 3.41±0.82 αb |
P0.05H | 14.15±5.18 αa | 17.34±4.47 αa | 5.31±0.81 αa | 4.13±0.81 αa |
P0.005H | 11.70±4.80 αb | 15.57±3.56 αab | 4.77±0.79 αb | 3.50±0.78 αab |
P0.5J | 11.58±3.60 αab | 14.39±2.52 αa | 4.74±0.48 αab | 3.75±0.83 αab |
P0.05J | 13.99±6.00 αa | 15.73±3.46 αa | 5.08±0.81 αa | 4.14±0.98 αa |
P0.005J | 10.55±2.94 αβb | 14.36±2.81 αa | 4.63±0.53 αβb | 3.59±0.66 αβb |
Fig.1 Contents of osmotic adjustment substances of Pueraria lobata seedlings under different treatmentsNote: In the figure, different Greek letters indicate significant differences between different provenances of same phosphorus treatment at P<0.05 level; different English letters indicate significant differences between different phosphorus treatments of same provenance at P<0.05 level.
Fig. 2 Contents of MDA of Pueraria lobata seedlings under different treatmentsNote: In the figure, different Greek letters indicate significant differences between different provenances of same phosphorus treatment at P<0.05 level; different English letters indicate significant differences between different phosphorus treatments of same provenance at P<0.05 level.
Fig. 3 Activities of antioxidant enzyme in Pueraria lobata seedlings under different low phosphorus stressesNote: In the figure, Different Greek letters indicate significant differences between different provenances of same phosphorus treatment at P<0.05 level; different English letters indicate significant differences between different phosphorus treatments of same provenance at P<0.05 level.
指标Index | P0.05 | P0.005 | ||||
---|---|---|---|---|---|---|
澳大利亚 Australia | 湖南 Hunan | 江苏 Jiangsu | 澳大利亚 Australia | 湖南 Hunan | 江苏 Jiangsu | |
株高Plant height | 0.81 | 1.16 | 0.89 | 0.85 | 1.32 | 0.95 |
茎粗Stem diameter | 1.17 | 0.96 | 1.02 | 0.97 | 0.98 | 0.90 |
地上部鲜重Shoot fresh weight | 1.19 | 1.61 | 1.33 | 0.96 | 1.30 | 0.70 |
地下部鲜重Root fresh weight | 1.04 | 1.07 | 1.02 | 0.92 | 0.71 | 0.62 |
地上部干重Shoot dry weight | 1.17 | 1.96 | 1.37 | 0.87 | 1.06 | 0.65 |
地下部干重Root dry weight | 0.96 | 1.18 | 1.00 | 0.94 | 0.73 | 0.63 |
根冠比Root-shoot ratio | 0.85 | 0.61 | 0.65 | 1.10 | 0.71 | 1.03 |
总根长Root length | 1.77 | 1.04 | 1.06 | 0.99 | 0.73 | 0.79 |
根表面积Root surface area | 1.23 | 1.05 | 1.01 | 0.87 | 0.76 | 0.73 |
根直径Root average diameter | 1.04 | 0.95 | 1.04 | 0.94 | 0.96 | 0.91 |
根体积Root volume | 1.30 | 1.06 | 1.00 | 0.95 | 0.78 | 0.66 |
根尖数Root Tips No. | 1.49 | 0.76 | 1.01 | 0.88 | 0.58 | 0.96 |
根毛数Root hairs No. | 1.06 | 1.28 | 1.03 | 0.61 | 1.05 | 0.68 |
叶面积Leaf area | 1.30 | 1.47 | 1.21 | 0.91 | 1.21 | 0.91 |
叶周长Leaf girth | 1.21 | 1.25 | 1.09 | 1.04 | 1.12 | 1.00 |
叶长Leaf length | 1.18 | 1.21 | 1.07 | 1.00 | 1.08 | 0.98 |
叶宽Leaf width | 1.13 | 1.21 | 1.10 | 0.95 | 1.03 | 0.96 |
可溶性蛋白(根)SP(Root) | 0.67 | 0.56 | 0.98 | 0.63 | 0.38 | 0.81 |
可溶性蛋白(叶)SP(Leaf) | 0.81 | 0.61 | 0.76 | 0.68 | 0.54 | 0.73 |
可溶性糖(根)SS(Root) | 1.11 | 1.36 | 1.05 | 1.68 | 1.39 | 1.14 |
可溶性糖(叶)SS(Leaf) | 1.16 | 1.23 | 1.37 | 1.47 | 1.56 | 1.55 |
脯氨酸(根)Pro(Root) | 1.82 | 1.10 | 1.09 | 2.45 | 1.85 | 1.37 |
脯氨酸(叶)Pro(Leaf) | 1.05 | 1.67 | 1.65 | 1.49 | 2.19 | 1.94 |
丙二醛(根)MDA(Root) | 0.28 | 0.26 | 0.12 | -0.24 | -0.33 | -0.46 |
丙二醛(叶)MDA(Leaf) | 0.22 | 0.12 | 0.11 | -0.36 | -0.39 | -0.56 |
过氧化物歧化酶(根)SOD(Root) | 1.34 | 1.14 | 1.04 | 1.48 | 1.51 | 1.22 |
过氧化物歧化酶(叶)SOD(Leaf) | 1.12 | 1.05 | 1.22 | 1.53 | 1.33 | 1.98 |
过氧化物酶(根)POD(Root) | 1.17 | 1.22 | 1.20 | 2.29 | 1.39 | 1.33 |
过氧化物酶(叶)POD(Leaf) | 1.17 | 1.03 | 1.14 | 1.54 | 1.39 | 1.71 |
过氧化氢酶(根)CAT(Root) | 1.45 | 1.18 | 1.02 | 2.18 | 1.79 | 1.22 |
过氧化氢酶(叶)CAT(Leaf) | 1.69 | 1.31 | 1.09 | 2.32 | 1.92 | 1.20 |
Table 5 Low phosphorus tolerance coefficient of every single index of Pueraria lobate
指标Index | P0.05 | P0.005 | ||||
---|---|---|---|---|---|---|
澳大利亚 Australia | 湖南 Hunan | 江苏 Jiangsu | 澳大利亚 Australia | 湖南 Hunan | 江苏 Jiangsu | |
株高Plant height | 0.81 | 1.16 | 0.89 | 0.85 | 1.32 | 0.95 |
茎粗Stem diameter | 1.17 | 0.96 | 1.02 | 0.97 | 0.98 | 0.90 |
地上部鲜重Shoot fresh weight | 1.19 | 1.61 | 1.33 | 0.96 | 1.30 | 0.70 |
地下部鲜重Root fresh weight | 1.04 | 1.07 | 1.02 | 0.92 | 0.71 | 0.62 |
地上部干重Shoot dry weight | 1.17 | 1.96 | 1.37 | 0.87 | 1.06 | 0.65 |
地下部干重Root dry weight | 0.96 | 1.18 | 1.00 | 0.94 | 0.73 | 0.63 |
根冠比Root-shoot ratio | 0.85 | 0.61 | 0.65 | 1.10 | 0.71 | 1.03 |
总根长Root length | 1.77 | 1.04 | 1.06 | 0.99 | 0.73 | 0.79 |
根表面积Root surface area | 1.23 | 1.05 | 1.01 | 0.87 | 0.76 | 0.73 |
根直径Root average diameter | 1.04 | 0.95 | 1.04 | 0.94 | 0.96 | 0.91 |
根体积Root volume | 1.30 | 1.06 | 1.00 | 0.95 | 0.78 | 0.66 |
根尖数Root Tips No. | 1.49 | 0.76 | 1.01 | 0.88 | 0.58 | 0.96 |
根毛数Root hairs No. | 1.06 | 1.28 | 1.03 | 0.61 | 1.05 | 0.68 |
叶面积Leaf area | 1.30 | 1.47 | 1.21 | 0.91 | 1.21 | 0.91 |
叶周长Leaf girth | 1.21 | 1.25 | 1.09 | 1.04 | 1.12 | 1.00 |
叶长Leaf length | 1.18 | 1.21 | 1.07 | 1.00 | 1.08 | 0.98 |
叶宽Leaf width | 1.13 | 1.21 | 1.10 | 0.95 | 1.03 | 0.96 |
可溶性蛋白(根)SP(Root) | 0.67 | 0.56 | 0.98 | 0.63 | 0.38 | 0.81 |
可溶性蛋白(叶)SP(Leaf) | 0.81 | 0.61 | 0.76 | 0.68 | 0.54 | 0.73 |
可溶性糖(根)SS(Root) | 1.11 | 1.36 | 1.05 | 1.68 | 1.39 | 1.14 |
可溶性糖(叶)SS(Leaf) | 1.16 | 1.23 | 1.37 | 1.47 | 1.56 | 1.55 |
脯氨酸(根)Pro(Root) | 1.82 | 1.10 | 1.09 | 2.45 | 1.85 | 1.37 |
脯氨酸(叶)Pro(Leaf) | 1.05 | 1.67 | 1.65 | 1.49 | 2.19 | 1.94 |
丙二醛(根)MDA(Root) | 0.28 | 0.26 | 0.12 | -0.24 | -0.33 | -0.46 |
丙二醛(叶)MDA(Leaf) | 0.22 | 0.12 | 0.11 | -0.36 | -0.39 | -0.56 |
过氧化物歧化酶(根)SOD(Root) | 1.34 | 1.14 | 1.04 | 1.48 | 1.51 | 1.22 |
过氧化物歧化酶(叶)SOD(Leaf) | 1.12 | 1.05 | 1.22 | 1.53 | 1.33 | 1.98 |
过氧化物酶(根)POD(Root) | 1.17 | 1.22 | 1.20 | 2.29 | 1.39 | 1.33 |
过氧化物酶(叶)POD(Leaf) | 1.17 | 1.03 | 1.14 | 1.54 | 1.39 | 1.71 |
过氧化氢酶(根)CAT(Root) | 1.45 | 1.18 | 1.02 | 2.18 | 1.79 | 1.22 |
过氧化氢酶(叶)CAT(Leaf) | 1.69 | 1.31 | 1.09 | 2.32 | 1.92 | 1.20 |
1 | 王昕,李海港,程凌云,等.磷与水分互作的根土界面效应及其高效利用机制研究进展[J].植物营养与肥料学报,2017,23(4):1054-1064. |
WANG X, LI H G, CHENG L Y, et al.. Advances of root-soil interface effect of phosphorus and water interaction and mechanisms of their efficient use [J]. Plant Nutr. Fert. Sci., 2017, 23(4):1054-1064. | |
2 | MUSSARAT M, SHAIR M, MUHAMMAD D, et al.. Accentuating the role of nitrogen to phosphorus ratio on the growth and yield of wheat crop [J/OL]. Sustainability, 2021, 13(4):2253 [2021-03-11]. . |
3 | DAWSON C J, HILTON J. Fertiliser availability in a resource-limited world: production and recycling of nitrogen and phosphorus [J/OL]. Food Policy, 2012, 36 [2021-03-11]. . |
4 | YUSUF M, KASMURI N, AHMAD R, et al.. Phosphorus reduction in batch culture using seed sludge of wastewater [J]. Earth Environ. Sci., 2021, 646(1):120-126. |
5 | 田志刚,王鹏飞.供磷水平对核桃苗木根系发育、幼苗生长及光合性能的影响[J].北方园艺,2019(4):52-58. |
TIAN Z G, WANG P F. Effect of phosphorus levels on root development, seedling growth and photosynthetic performance [J]. North Hortic., 2019(4):52-58. | |
6 | 唐荣莉,王春萍,王红娟,等.低磷胁迫对辣椒苗期生长和生理特性的影响[J].西南农业学报,2020,33(9):1933-1942. |
TANG R L, WANG C P, WANG H J, et al.. Effects of low phosphorus stress on growth and physiological characteristics of pepper at seedling stage [J]. Southwest China J. Agric. Sci., 2020, 33(9):1933-1942. | |
7 | 樊卫国,罗燕.不同磷水平下4种柑橘砧木的生长状况、根系形态和生理特性[J].中国农业科学,2015,48(3):534-545. |
FAN W G, LUO Y. Growth status, root morphology and physiological characteristics of four citrus rootstocks under different phosphorus levels [J]. Sci. Agric. Sin., 2015, 48(3):534-545. | |
8 | 乔光,崔博文,文晓鹏,等.不同种源马尾松幼苗对低磷胁迫的生理响应[J].种子,2017,36(8):32-36, 41. |
QIAO G, CUI B W, WEN X P, et al.. Physiological and biochemical responses to low phosphorus stress for different Masson Pine (Pinus massoniana) provenances [J]. Seed, 2017, 36(8):32-36, 41. | |
9 | 任立飞,张文浩,李衍素.低磷胁迫对黄花苜蓿生理特性的影响[J].草业学报,2012,21(3):242-249. |
REN L F, ZHANG W H, LI Y S. Effect of phosphorus deficiency on physiological properties of Medicago falcate [J]. Acta Pratac. Sin., 2012, 21(3):242-249. | |
10 | 张海程,夏振强.石漠化治理新模式——种葛藤养豆丹[J].中国水土保持,2017(8):39-41. |
ZHANG H C, XIA Z Q. A new model of rocky desertification control—planting Pueraria lobate to raise Clanis bilineat [J]. Soil Water Conserv. China, 2017(8):39-41. | |
11 | 邓素媛,易显凤,庞天德,等.发酵葛藤饲喂肉猪效果分析[J].草业科学,2020, 37(1):185-193. |
DENG S Y, YI X F, PANG T D, et al.. Effect of feeding fermented Pueraria lobata on pork meat [J]. Pratac. Sci., 2020, 37(1):185-193. | |
12 | XU X Y, NIU L L, LIU Y, et al.. Study on the mechanism of Gegen Qinlian decoction for treating type II diabetes mellitus by integrating network pharmacology and pharmacological evaluation [J]. J. Ethnopharmacol., 2020, 262:789-799. |
13 | 徐文娴,李金秋,孟磊,等.葛藤覆盖对幼龄橡胶园表层土壤理化性状和酶活性的影响[J].植物营养与肥料学报,2020, 26(9):1740-1748. |
XU W X, LI J Q, MENG L, et al... Effects of kudzu mulching on physical and chemical properties and enzyme activities of surface soil in young rubber plantation [J]. Plant Nutr. Fert. Sci., 2020, 26(9):1740-1748. | |
14 | 高俊凤.植物生理学实验指导[M].北京:高等教育出版社,2006: 1-287. |
GAO J F. Experimental Guidance of Plant Physiology [M]. Beijing: Higher Education Press, 2006: 1-287. | |
15 | 张志良,瞿伟菁.植物生理学实验指导[M].第5版.北京:高等教育出版社,2016: 1-292. |
ZHANG Z L, QU W Q, Experimental Guidance of Plant Physiology [M]. 5th Edn. Beijing: Higher Education Press, 2016: 1-292. | |
16 | 刘渊,李喜焕,王瑞霞,等.大豆耐低磷指标筛选与耐低磷品种鉴定[J].中国农业科技导报,2015,17(4):30-41. |
LIU Y, LI X H, WANG R X, et al.. Screen indexes for soybean tolerance to phosphorus deficiency and identification of low phosphorus tolerant Soybean cultivars [J]. J. Agric. Sci. Technol., 2015, 17(4):30-41. | |
17 | CAI Z D, CHENG Y B, XIAN P Q, et al.. Acid phosphatase gene GmHAD1 linked to low phosphorus tolerance in soybean, through fine mapping [J]. Theor. Appl. Genet., 2018, 131(8):1715-1728. |
18 | SUN Y L, MU C H, CHEN Y, et al.. Comparative transcript profiling of maize inbreds in response to long-term phosphorus deficiency stress [J]. Plant Physiol. Biochem., 2016, 109: 467-481. |
19 | DISSANAYAKA D M S B, MARUYAMA H, NISHIDA S, et al.. Landrace of japonica rice, Akamai exhibits enhanced root growth and efficient leaf phosphorus remobilization in response to limited phosphorus availability [J]. Plant Soil, 2017, 414:327-338. |
20 | CHEN Y H, NGUYEN T H N, QIN J J, et al.. Phosphorus assimilation of Chinese fir from two provenances during acclimation to changing phosphorus availability [J]. Environ. Exp. Bot., 2018, 153:21-34. |
21 | PLAXTON W C, LAMBERS H. Metabolic adaptations of the non-mycotrophic proteaceae to soils with low phosphorus availability [J/OL]. Annual Plant Rev., 2018(4):0526 [2021-03-11]. . |
22 | 李亚华,陈龙,高荣广,等.LED光质对茄子果实品质及抗氧化能力的影响[J].应用生态学报,2015,26(9):2728-2734. |
Li Y H, CHEN L, GAO R G, et al.. Effects of LED qualities on quality and antioxidation capacity of eggplant fruits [J]. Chin. J. Appl. Ecol., 2015, 26(9):2728-2734. | |
23 | 张平,周毅,高祥,等.氮形态对低磷胁迫下苗期玉米生物学性状及磷素吸收的影响[J].南京农业大学学报,2012,35(4):32-36. |
ZHANG P, ZHOU Y, GAO X, et al.. Effects of nitrogen forms on biological characteristics and phosphorus absorption under phosphorus stress in maize seedling [J]. J. Nanjing Agric.Univ., 2012, 35(4):32-36. | |
24 | WANG Y L, MARIT A, NICHOLAS C, et al.. Contrasting responses of root morphology and root-exuded organic acids to low phosphorus availability in three important food crops with divergent root traits [J/OL]. AoB Plants, 2015,7:plv097 [2021-03-11]. . |
25 | 王岚.低磷对霸王根形态和根系分泌物的影响[D].兰州:兰州大学, 2019. |
WANG L. Effect of low phosphorus on root morphology and root exudation of Zygophyllum xanthoxylum [D]. Lanzhou: Lanzhou University, 2019. | |
26 | 赵诣,徐胜,何兴元,等.三种冷季型草坪草对高浓度O3的生理响应[J].生态学杂志, 2014, 33(12):3203-3208. |
ZHAO Y, XU S, HE X Y, et al.. Physiological responses of three cool-season types of turfgrass to elevated O3 concentrations [J]. Chin. J. Ecol., 2014, 33(12):3203-3208. | |
27 | 焦蓉,刘好宝,刘贯山,等.论脯氨酸累积与植物抗渗透胁迫[J].中国农学通报, 2011, 27(7): 216-221. |
JIAO R, LIU H B, LIU G S, et al.. Discussion of accumulation of Proline and its relationship with osmotic stress tolerance of plants [J]. Chin. Agric. Sci. Bull., 2011, 27(7): 216-221. | |
28 | 何鹏,王大鹏,韦家少,等.低磷胁迫对巴西橡胶树幼苗若干生理代谢指标的影响[J].热带作物学报, 2012, 33(11):1976-1979. |
HE P, WANG D P, WEI J S, et al.. Low phoshorus stress on the physiological metabolism of Hevea seedling [J]. Chin. J. Trop. Crops, 2012, 33(11):1976-1979. | |
29 | 龚丝雨,梁喜欢,杨帅强,等.低磷胁迫对不同磷效率基因型烟草苗期生长及生理特征的影响[J].核农学报, 2019, 33(6):1217-1224. |
GONG S Y, LIANG X H, YANG S Q, et al.. Effect on growth and physiological characteristics of tobacco genotypes with different P-efficiency at seedling stage under low-phosphorus stress [J]. Acta Agric. Nucl. Sci., 2019, 33(6):1217-1224. | |
30 | 李俊,张春雷,秦岭,等.不同磷效率基因型油菜对低磷胁迫的生理响应[J].中国油料作物学报, 2010, 32(2):222-228, 234. |
LI J, ZHANG C L, QIN L, et al.. Physiological response to low phosphorus stress for different P-efficiency genotype of rapeseed [J]. Chin. J. Oil Crop Sci., 2010, 32(2):222-228, 234. | |
31 | CATOLA S, MARINO G, EMILIANI G, et al.. Physiological and metabolomic analysis of Punica granatum (L.) under drought stress [J]. Planta, 2016, 243(2):441-449. |
32 | 姚海梅,李永生,张同祯,等.旱-盐复合胁迫对玉米种子萌发和生理特性的影响[J].应用生态学报, 2016, 27(7):2301-2307. |
YAO H H, LI Y S, ZHANG T Z, et al.. Effects of combined drought and salinity stress on germination and physiological characteristics of maize (Zea mays) [J]. Chin. J. Appl. Ecol., 2016, 27(7):2301-2307. | |
33 | 郭天荣,姚鹏程,张子栋,等.铝毒和低磷胁迫下水稻幼苗抗氧化系统的响应[J].中国水稻科学, 2013, 27(6):653-657. |
GUO T R, YAO P C, ZHANG Z D, et al.. Involvement of antioxidative defense system in Rice seedlings exposed to aluminum toxicity and phosphorus deficiency [J]. Chin. J. Rice Sci., 2013, 27(6):653-657. | |
34 | 柯野,谢璐,蓝林,等.低磷胁迫对甘蔗幼苗生长和生理特性的影响[J].江苏农业科学, 2019, 47(20):114-118. |
KE Y, XIE L, LAN L, et al.. Effects of low phosphorus stress on growth and physiological characteristics of sugarcane seedlings [J]. Jiangsu Agric. Sci., 2019, 47(20):114-118. | |
35 | 余小芬,线罕英,邱学礼,等.低温与氮肥耦合对水稻生理指标的影响[J].西南农业学报, 2020, 33(10):2190-2197. |
YU X F, XIAN H Y, QIU X L, et al.. Coupling effect of low temperature and nitrogen on physiological indexes of rice [J]. Southwest China J. Agric. Sci., 2020, 33(10):2190-2197. |
[1] | HUO Chuan, WANG Shiquan, SHEN Junhong, ZENG Hongyan. Morphological Characteristics and Its Hereditary Behavior of High-nodal-positionTillering in Rice#br# [J]. Journal of Agricultural Science and Technology, 2021, 23(5): 35-43. |
[2] | LI Xing, HU Yang, MA Yuan, JIA Shouyi, LI Gangtie. Physiological Response of Tamarix leptostachys Bunge to Three Single Salt Stress [J]. Journal of Agricultural Science and Technology, 2021, 23(5): 52-60. |
[3] | YANG Ruiping1, LIU Ruixiang1, MA Yingmei1*, Guo Zhanbin2, ZHANG Hongwu2, BAI Yu1, ZHAO Xinyu1. Evaluation of Different Chenopodium quinoa Resources and Effects of Osmotic Regulators on Their Drought Resistance [J]. Journal of Agricultural Science and Technology, 2020, 22(9): 52-60. |
[4] | YANG Ying1, WANG Yuelin2, YAN Jingqiuzi1, LI Gangtie1*. Effects of Salt Stress on Seed Germination and Seedling Physiological Characteristics of Hemiptelea davidii [J]. Journal of Agricultural Science and Technology, 2020, 22(4): 53-60. |
[5] | WANG Xue1, FAN Junpeng1, LI Haitao2, SHI Lei1,2, CAI Hongmei1, XU Fangsen1,2, LIU Kede2, DING Guangda1* . Effects of Phosphorus Deficiency on Seed Yield and Quality of A Brassica napus Natural Population [J]. Journal of Agricultural Science and Technology, 2018, 20(2): 93-100. |
[6] | CHEN Hai-xiao1,2, LU Sheng-lian1*, XU Jian2. Studies Research Progress on Fruit Tree Canopy Shape Characteristics Measurement and Analysis [J]. Journal of Agricultural Science and Technology, 2016, 18(6): 97-102. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||