Journal of Agricultural Science and Technology ›› 2022, Vol. 24 ›› Issue (10): 44-52.DOI: 10.13304/j.nykjdb.2022.0013
• BIOTECHNOLOGY & LIFE SCIENCE • Previous Articles Next Articles
Dongmei HAO1(), Ying FAN2, Jin XU1, Yueqin GUO1, Jilian LI1, Jun YAO1(
)
Received:
2022-01-06
Accepted:
2022-03-08
Online:
2022-10-15
Published:
2022-10-25
Contact:
Jun YAO
郝冬梅1(), 樊莹2, 徐进1, 郭岳琴1, 李继莲1, 姚军1(
)
通讯作者:
姚军
作者简介:
郝冬梅 E-mail:haodongmei2021@163.com;
基金资助:
CLC Number:
Dongmei HAO, Ying FAN, Jin XU, Yueqin GUO, Jilian LI, Jun YAO. Effects of Different Concentrations of Lysine on Development and Metabolism of Young Bumblebee Workers (Bombus terrestris)[J]. Journal of Agricultural Science and Technology, 2022, 24(10): 44-52.
郝冬梅, 樊莹, 徐进, 郭岳琴, 李继莲, 姚军. 不同赖氨酸水平对熊蜂幼年工蜂发育及代谢影响[J]. 中国农业科技导报, 2022, 24(10): 44-52.
Fig. 1 Chest muscle protein content of worker bees under different treatmentNote:Different small letters indicate significant differences between different treatments at P<0.05 levels.
赖氨酸水平Lysine level | 0% | 2% | 4% |
---|---|---|---|
2% | 0.053 | — | — |
4% | 0.084 | 0.802 | — |
6% | <0.001 | 0.009 | 0.005 |
Table 1 Differences in survival rate of workerbees under different lysine levels
赖氨酸水平Lysine level | 0% | 2% | 4% |
---|---|---|---|
2% | 0.053 | — | — |
4% | 0.084 | 0.802 | — |
6% | <0.001 | 0.009 | 0.005 |
代谢物 Metabolite | 保留时间 Retention time/min | VIP | 差异倍数Fold change | P值P-value | 趋势 Trend |
---|---|---|---|---|---|
黄嘌呤 Xanthine | 6.23 | 1.17 | 10.21 | 1.40e-12 | 上升Up |
S-腺苷高半胱氨酸 S-adenosylhomocysteine | 9.37 | 1.17 | 7.37 | 3.39e-12 | 上升Up |
哌啶酸Pipecolinic acid | 10.31 | 1.17 | 28.34 | 1.33e-10 | 上升Up |
L-高胱氨酸 L-homocystine | 10.40 | 1.17 | 7.75 | 2.85e-10 | 上升Up |
N-乙酰组胺 N-acetylhistamine | 6.63 | 1.17 | 0.38 | 2.10e-10 | 下降Down |
胞嘧啶 Cytosine | 6.46 | 1.16 | 0.18 | 8.13e-10 | 下降Down |
N8-乙酰基亚精胺 N8-acetylspermidine | 9.50 | 1.16 | 0.08 | 6.18e-10 | 下降Down |
腺苷Adenosine | 5.56 | 1.16 | 0.37 | 1.62e-09 | 下降Down |
戊二酸 Glutaric acid | 2.46 | 1.16 | 5.79 | 2.29e-09 | 上升Up |
腺嘌呤 Adenine | 5.23 | 1.16 | 0.42 | 2.97e-09 | 下降Down |
咪唑乳酸 Imidazolelactic acid | 8.49 | 1.16 | 0.10 | 7.77e-09 | 下降Down |
3-磷酸甘油 Glycerol 3-phosphate | 9.38 | 1.15 | 0.32 | 1.27e-08 | 下降Down |
组胺 Histamine | 6.68 | 1.15 | 0.24 | 3.35e-08 | 下降Down |
泛醇 Panthenol | 2.20 | 1.15 | 0.26 | 4.57e-08 | 下降Down |
L-酵母氨酸 L-saccharopine | 10.75 | 1.15 | 18.11 | 6.08e-08 | 上升Up |
L-缬氨酸 L-valine | 1.92 | 1.14 | 0.36 | 8.50e-08 | 下降Down |
N-乙酰-L-赖氨酸 N-acetyl-L-lysine | 8.65 | 1.14 | 2.38 | 1.65e-07 | 上升Up |
α-酮戊二酸 α-oxoglutaric acid | 8.18 | 1.13 | 2.18 | 4.94e-07 | 上升Up |
5-氨基乙酰丙酸 5-aminolevulinic acid | 8.36 | 1.13 | 0.13 | 4.41e-07 | 下降Down |
L-天冬氨酸 L-aspartic acid | 9.88 | 1.13 | 2.09 | 6.20e-07 | 上升Up |
5-脱氧-5-甲硫腺苷 5’-s-methyl-5’-thioadenosine | 2.91 | 1.12 | 0.40 | 1.54e-06 | 下降Down |
左旋多巴 L-dopa | 8.62 | 1.12 | 2.09 | 1.89e-06 | 上升Up |
油酸酰胺 Oleamide | 1.28 | 1.11 | 0.26 | 2.20e-06 | 下降Down |
尿刊酸 Urocanic acid | 2.07 | 1.11 | 0.33 | 4.57e-06 | 下降Down |
天冬酰胺 Asparagine | 9.33 | 1.10 | 0.41 | 6.26e-06 | 下降Down |
己二酸 Adipic acid | 1.86 | 1.10 | 0.29 | 8.24e-06 | 下降Down |
托品碱 Tropine | 8.77 | 1.09 | 0.41 | 1.14e-05 | 下降Down |
7-甲基鸟嘌呤 7-methylguanine | 6.09 | 1.07 | 0.33 | 3.56e-05 | 下降Down |
Table 2 Differential metabolites
代谢物 Metabolite | 保留时间 Retention time/min | VIP | 差异倍数Fold change | P值P-value | 趋势 Trend |
---|---|---|---|---|---|
黄嘌呤 Xanthine | 6.23 | 1.17 | 10.21 | 1.40e-12 | 上升Up |
S-腺苷高半胱氨酸 S-adenosylhomocysteine | 9.37 | 1.17 | 7.37 | 3.39e-12 | 上升Up |
哌啶酸Pipecolinic acid | 10.31 | 1.17 | 28.34 | 1.33e-10 | 上升Up |
L-高胱氨酸 L-homocystine | 10.40 | 1.17 | 7.75 | 2.85e-10 | 上升Up |
N-乙酰组胺 N-acetylhistamine | 6.63 | 1.17 | 0.38 | 2.10e-10 | 下降Down |
胞嘧啶 Cytosine | 6.46 | 1.16 | 0.18 | 8.13e-10 | 下降Down |
N8-乙酰基亚精胺 N8-acetylspermidine | 9.50 | 1.16 | 0.08 | 6.18e-10 | 下降Down |
腺苷Adenosine | 5.56 | 1.16 | 0.37 | 1.62e-09 | 下降Down |
戊二酸 Glutaric acid | 2.46 | 1.16 | 5.79 | 2.29e-09 | 上升Up |
腺嘌呤 Adenine | 5.23 | 1.16 | 0.42 | 2.97e-09 | 下降Down |
咪唑乳酸 Imidazolelactic acid | 8.49 | 1.16 | 0.10 | 7.77e-09 | 下降Down |
3-磷酸甘油 Glycerol 3-phosphate | 9.38 | 1.15 | 0.32 | 1.27e-08 | 下降Down |
组胺 Histamine | 6.68 | 1.15 | 0.24 | 3.35e-08 | 下降Down |
泛醇 Panthenol | 2.20 | 1.15 | 0.26 | 4.57e-08 | 下降Down |
L-酵母氨酸 L-saccharopine | 10.75 | 1.15 | 18.11 | 6.08e-08 | 上升Up |
L-缬氨酸 L-valine | 1.92 | 1.14 | 0.36 | 8.50e-08 | 下降Down |
N-乙酰-L-赖氨酸 N-acetyl-L-lysine | 8.65 | 1.14 | 2.38 | 1.65e-07 | 上升Up |
α-酮戊二酸 α-oxoglutaric acid | 8.18 | 1.13 | 2.18 | 4.94e-07 | 上升Up |
5-氨基乙酰丙酸 5-aminolevulinic acid | 8.36 | 1.13 | 0.13 | 4.41e-07 | 下降Down |
L-天冬氨酸 L-aspartic acid | 9.88 | 1.13 | 2.09 | 6.20e-07 | 上升Up |
5-脱氧-5-甲硫腺苷 5’-s-methyl-5’-thioadenosine | 2.91 | 1.12 | 0.40 | 1.54e-06 | 下降Down |
左旋多巴 L-dopa | 8.62 | 1.12 | 2.09 | 1.89e-06 | 上升Up |
油酸酰胺 Oleamide | 1.28 | 1.11 | 0.26 | 2.20e-06 | 下降Down |
尿刊酸 Urocanic acid | 2.07 | 1.11 | 0.33 | 4.57e-06 | 下降Down |
天冬酰胺 Asparagine | 9.33 | 1.10 | 0.41 | 6.26e-06 | 下降Down |
己二酸 Adipic acid | 1.86 | 1.10 | 0.29 | 8.24e-06 | 下降Down |
托品碱 Tropine | 8.77 | 1.09 | 0.41 | 1.14e-05 | 下降Down |
7-甲基鸟嘌呤 7-methylguanine | 6.09 | 1.07 | 0.33 | 3.56e-05 | 下降Down |
通路名称 Map title | 富集编号 Map ID | 显著性P-value |
---|---|---|
组氨酸代谢Histidine metabolism | map00340 | 0.003 |
丙氨酸、天冬氨酸和谷氨酸代谢 Alanine, aspartate and glutamate metabolism | map00250 | 0.013 |
精氨酸生物合成 Arginine biosynthesis | map00220 | 0.026 |
嘌呤代谢Purine metabolism | map00230 | 0.029 |
泛酸和辅酶A生物合成 Pantothenate and CoA biosynthesis | map00770 | 0.046 |
氨酰tRNA生物合成 Aminoacyl-tRNA biosynthesis | map00970 | 0.056 |
D-谷氨酰胺与D-谷氨酰胺代谢 D-Glutamine and D-glutamate metabolism | — | 0.106 |
半胱氨酸和蛋氨酸代谢 Cysteine and methionine metabolism | map00270 | 0.121 |
缬氨酸、亮氨酸和异亮氨酸生物合成 Valine, leucine and isoleucine biosynthesis | map00290 | 0.138 |
丁酸代谢 Butanoate metabolism | map00650 | 0.244 |
烟酸和烟酰胺代谢 Nicotinate and nicotinamide metabolism | map00760 | 0.244 |
甘油酯代谢 Glycerolipid metabolism | map00561 | 0.258 |
柠檬酸循环(TCA循环) Citrate cycle (TCA cycle) | map00020 | 0.312 |
β-丙氨酸代谢 β-alanine metabolism | map00410 | 0.325 |
赖氨酸降解 Lysine degradation | map00310 | 0.374 |
卟啉与叶绿素代谢 Porphyrin and chlorophyll metabolism | map00860 | 0.430 |
甘氨酸、丝氨酸和苏氨酸代谢 Glycine, serine and threonine metabolism | map00260 | 0.462 |
甘油磷脂代谢 Glycerophospholipid metabolism | map00564 | 0.492 |
缬氨酸、亮氨酸和异亮氨酸降解 Valine, leucine and isoleucine degradation | map00280 | 0.529 |
酪氨酸代谢 Tyrosine metabolism | map00350 | 0.546 |
Table 3 Enrichmegnt of KEGG pathway
通路名称 Map title | 富集编号 Map ID | 显著性P-value |
---|---|---|
组氨酸代谢Histidine metabolism | map00340 | 0.003 |
丙氨酸、天冬氨酸和谷氨酸代谢 Alanine, aspartate and glutamate metabolism | map00250 | 0.013 |
精氨酸生物合成 Arginine biosynthesis | map00220 | 0.026 |
嘌呤代谢Purine metabolism | map00230 | 0.029 |
泛酸和辅酶A生物合成 Pantothenate and CoA biosynthesis | map00770 | 0.046 |
氨酰tRNA生物合成 Aminoacyl-tRNA biosynthesis | map00970 | 0.056 |
D-谷氨酰胺与D-谷氨酰胺代谢 D-Glutamine and D-glutamate metabolism | — | 0.106 |
半胱氨酸和蛋氨酸代谢 Cysteine and methionine metabolism | map00270 | 0.121 |
缬氨酸、亮氨酸和异亮氨酸生物合成 Valine, leucine and isoleucine biosynthesis | map00290 | 0.138 |
丁酸代谢 Butanoate metabolism | map00650 | 0.244 |
烟酸和烟酰胺代谢 Nicotinate and nicotinamide metabolism | map00760 | 0.244 |
甘油酯代谢 Glycerolipid metabolism | map00561 | 0.258 |
柠檬酸循环(TCA循环) Citrate cycle (TCA cycle) | map00020 | 0.312 |
β-丙氨酸代谢 β-alanine metabolism | map00410 | 0.325 |
赖氨酸降解 Lysine degradation | map00310 | 0.374 |
卟啉与叶绿素代谢 Porphyrin and chlorophyll metabolism | map00860 | 0.430 |
甘氨酸、丝氨酸和苏氨酸代谢 Glycine, serine and threonine metabolism | map00260 | 0.462 |
甘油磷脂代谢 Glycerophospholipid metabolism | map00564 | 0.492 |
缬氨酸、亮氨酸和异亮氨酸降解 Valine, leucine and isoleucine degradation | map00280 | 0.529 |
酪氨酸代谢 Tyrosine metabolism | map00350 | 0.546 |
1 | 彭文君,安建东,梁诗魁.熊蜂生物学特性及授粉机理[J].中国养蜂, 1999, 50(6): 27-28. |
2 | 赵亚周,安建东,周志勇,等.意大利蜜蜂和小峰熊蜂在温室桃园的传粉行为及其影响因素[J]. 昆虫学报, 2011, 54(1): 89-96. |
ZHAO Y Z, AN J D, ZHOU Z Y, et al.. Pollination behavior of Apis mellifera ligustica and Bombus hypocrita (Hymenoptera, Apidae) and the influencing factors in peach greenhouse [J]. Acta Entomol. Sin., 2011, 54(1): 89-96. | |
3 | AYASSE M, JARAU S. Chemical ecology of bumble bees [J]. Ann. Rev. Entomol., 2014, 59(1): 299-319. |
4 | 徐希莲,王欢.国内熊蜂授粉产业化现状与发展建议[J].黑龙江畜牧兽医, 2018(16): 199-202. |
5 | TASEI J, AUPINEL P. Nutritive value of 15 single pollens and pollen mixes tested on larvae produced by bumblebee workers (Bombus terrestris, Hymenoptera: Apidae) [J]. Apidologie, 2008, 39(4): 397-409. |
6 | GENISSEL A, AUPINEL P, BRESSAC C, et al.. Influence of pollen origin on performance of Bombus terrestris micro-colonies [J]. Entomol. Exp. Appl., 2002, 104(2): 329-336. |
7 | WU G. Functional amino acids in growth, reproduction, and health [J]. Adv. Nutr., 2010, 1(1): 31-37. |
8 | BOISEN S, HVELPLUND T, WEISBJERG M R. Ideal amino acid profiles as a basis for feed protein evaluation [J]. Livest. Prod. Sci., 2000, 64(2): 239-251. |
9 | LEE K P. The interactive effects of protein quality and macronutrient imbalance on nutrient balancing in an insect herbivore [J]. J. Exp. Biol., 2007, 210(18): 3236-3244. |
10 | HENDRIKSMA H P, PACHOW C D, NIEH J C. Effects of essential amino acid supplementation to promote honey bee gland and muscle development in cages and colonies [J/OL]. J. Insect Physiol., 2019, 117: 103906 [2022-05-06]. . |
11 | HENDRIKSMA H P, OXMAN K L, SHAFIR S. Amino acid and carbohydrate tradeoffs by honey bee nectar foragers and their implications for plant-pollinator interactions [J]. J. Insect Physiol., 2014, 69: 56-64. |
12 | NICOLSON S W, HUMAN H. Chemical composition of the 'low quality’ pollen of sunflower (Helianthus annuus, Asteraceae) [J]. Apidologie, 2013, 44(2): 144-152. |
13 | PERNAL S F, CURRIE R W. Pollen quality of fresh and 1-year-old single pollen diets for worker honey bees (Apis mellifera L.) [J]. Apidologie, 2000, 31(3): 387-409. |
14 | GROOT A P D. Amino acid requirements for growth of the honeybee (Apis mellifica L.) [J]. Experientia, 1952, 8(5): 192-194. |
15 | LEONHARDT S D, BLüTHGEN N. The same, but different: pollen foraging in honeybee and bumblebee colonies [J]. Apidologie, 2012, 43(4): 449-464. |
16 | MOERMAN R, VANDERPLANCK M, ROGER N, et al.. Growth rate of bumblebee larvae is related to pollen amino acids [J]. J. Econ. Entomol., 2016, 109(1): 25-30. |
17 | LE COUTEUR D G, SOLON-BIET S, COGGER V C, et al.. The impact of low-protein high-carbohydrate diets on aging and lifespan [J]. Cell. Mol. Life Sci., 2015, 73(6): 1237-1252. |
18 | KONASHI S, TAKAHASHI K, AKIBA Y. Effects of dietary essential amino acid deficiencies on immunological variables in broiler chickens [J]. Brit. J. Nutr., 2000, 83(4): 449-456. |
19 | 王帅,王红芳,刘振国,等.赖氨酸在蜜蜂中的营养功能及其研究进展[J].蜜蜂杂志, 2016, 36(10): 9-11. |
WANG S, WANG H F, LIU Z G, et al.. Nutritionai function of lysine in bee and its research progress [J]. J. Bee, 2016, 36(10): 9-11. | |
20 | 陈盼盼,闵育娜,王哲鹏,等.日粮赖氨酸水平对1~21日龄肉鸡生长性能和血清生化指标的影响[J].中国家禽, 2017, 39(9): 29-34. |
CHEN PP, MIN YN, WANG ZP, et al.. Effects of dietary lysine level on growth performance and serum biochemical parameters of broilers at the age of 1 to 21 days [J]. Chin. Poultry, 2017, 39(9): 29-34. | |
21 | CHEN C, SANDER J E, DALE N M. The effect of dietary lysine deficiency on the immune response to Newcastle disease vaccination in chickens [J]. Avian Dis., 2003, 47(4): 1346-1351. |
22 | LIAO S F, WANG T, REGMI N. Lysine nutrition in swine and the related monogastric animals: muscle protein biosynthesis and beyond [J]. Springerplus, 2015, 4: 147. |
23 | 代伟伟,麦康森,徐玮,等.饲料中赖氨酸和精氨酸含量对大菱鲆幼鱼生长、体成分和肌肉氨基酸含量的影响[J].水产学报, 2015, 39(6): 876-887. |
DAI WW, MAI KS, XU W, et al.. Effects of lysine-arginine interaction on growth performance, body composition, and muscle amino acid levels of juvenile turbot (Scophthalmus maximus L. ) [J]. J. Fish. Chin., 2015, 39: 876-887. | |
24 | BIDNER B S, ELLIS M, WITTE D P, et al.. Influence of dietary lysine level, pre-slaughter fasting, and rendement napole genotype on fresh pork quality [J]. Meat Sci., 2004, 68(1): 53-60. |
25 | ALTAYE S Z, PIRK C W W, CREWE R M, et al.. Convergence of carbohydrate-biased intake targets in caged worker honeybees fed different protein sources [J]. J. Exp. Biol., 2010, 213(19): 3311-3318. |
26 | GROOT A P D. Protein and amino acid requirements of the honeybee (Apis mellifica L.) [J]. Physiol. Comp. Oecol., 1953, 3: 197-285. |
27 | 王帅,王红芳,胥保华.意大利蜜蜂工蜂幼虫饲粮的适宜赖氨酸水平[J].动物营养学报, 2017, 29(11): 4236-4244. |
WANG S, WANG HF, XU BH. Aietary appropriate lysine level for Apis mellifera ligustica worker bee larvae [J]. Chin. J. Anim. Nutr., 2017, 29: 4236-4244. | |
28 | WANG L, MEEUS I, ROMBOUTS C, et al.. Metabolomics-based biomarker discovery for bee health monitoring: a proof of concept study concerning nutritional stress in Bombus terrestris [J/OL]. Sci. Rep., 2019, 9(1): 11423 [2022-05-06]. . |
29 | BORSUK G, PTASZYŃSKA A A, OLSZEWSKI K, et al.. A new method for quick and easy hemolymph collection from Apidae adults [J/OL]. PLoS One, 2017, 12(1): e170487 [2022-05-06]. . |
30 | CANFIELD L M, CHYTIL F. Effect of low lysine diet on rat protein metabolism [J]. J. Nutr., 1978, 108(8): 1343-1347. |
31 | KOIE M, TANAKA M, HAYASE K, et al.. Effects of adding dietary lysine to a low gluten diet on the brain protein synthesis rate in aged rats [J]. Biosci. Biotechnol. Biochem., 2000, 64(7): 1466-1471. |
32 | 曾佩玲,张常明,王修启,等.日粮不同赖氨酸水平对生长猪养分表观消化率、血清氨基酸含量和生化指标的影响[J].华北农学报, 2009, 24(S2): 116-120. |
ZENG P L, ZHANG C M, WANG X Q, et al.. Effects of different dietary lysine levels on apparent nutrient digestibility and serum amino acid concent ration and serum biochemical indexes in growing pig [J]. Acta Agric. Boreali-Sin., 2009, 24(S2): 116-120. | |
33 | 夏济平.尿刊酸的免疫抑制作用研究进展[J].国外医学(皮肤性病学分册), 1998, 24(4): 213-216. |
34 | 胡孟,武书庚,王晶,等.组氨酸的生理功能及在动物生产中的应用[J].中国饲料, 2018(7): 38-45. |
HU M, WU S, WANG J, et al.. Physiological function and application of histidine in animal production [J]. Chin. Feed, 2018 (7): 38-45. | |
35 | 康培,张亚,刘双,等.大肠杆菌生产L-组氨酸研究进展[J].食品与发酵工业, 2016, 42(11): 249-254. |
KANG P, ZHANG Y, LIU S, et al.. Research on L-histidine production by Escherichia coli [J]. Food Ferment. Ind., 2016, 42(11): 249-254. | |
36 | ROSENFELDT F L, KORCHAZHKINA O V, RICHARDS S M, et al.. Aspartate improves recovery of the recently infarcted rat heart after cardioplegic arrest [J]. Eur. J. Cardio-thoracic., 1998, 14(2): 185-190. |
37 | RUSSELL R R, TAEGTMEYER H. Changes in citric acid cycle flux and anaplerosis antedate the functional decline in isolated rat hearts utilizing acetoacetate [J]. J. Clin. Invest., 1991, 87(2): 384-390. |
38 | 陈家顺,苏文璇,符晨星,等.α-酮戊二酸的生理功能及其在动物生产中的应用[J].动物营养学报, 2018, 30(10): 3818-3827. |
CHEN J, SU W E, FU C, et al.. Physiological function of alpha-ketoglutarate and its application in animal production [J]. Chin. J. Anim. Nutr., 2018, 30(10): 3818-3827. | |
39 | 张再明,杨琳,侯水生.动物营养中赖氨酸与精氨酸互作关系的研究进展[J].饲料广角, 2010(21): 26-28. |
40 | 刘劲,代方银,朱勇,等.家蚕突变体的嘌呤代谢[J].蚕学通讯, 2005, 25(3): 9-14. |
LIU J, DAI F Y, ZHU Y, et al.. Purine metabolism in silkworm mutants [J]. Newsl. Sericul. Sci., 2005, 25(3): 9-14. | |
41 | BECKER B F. Towards the physiological function of uric acid [J]. Free Radical Biol. Med., 1993, 14(6): 615-631. |
42 | 栾贻宏,路宁,王基伟,等.辅酶A的生化功能和应用[J].中国生化药物杂志, 2003, 24(3): 159-161. |
LUAN Y H, LU N, WANG J W, et al. Biochemical functionand applicationof coenzyme A [J]. Chin. J. Biochem. Phar., 2003, 24(3): 159-161. |
[1] | XU Longlong, WU Jie*, LI Jilian*. Research Progress in Symbiotic Bacteria in Bees [J]. , 2013, 15(6): 107-112. |
[2] | WANG Liang1,2, LI Shu1,2, MAO Zhonggui1,2*, ZHAO Fulin3. Optimization of Fermentation Medium for εPolylysine Production by Recombinant Streptomyces sp. FEEL1 [J]. , 2013, 15(1): 76-83. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||