Journal of Agricultural Science and Technology ›› 2022, Vol. 24 ›› Issue (8): 25-34.DOI: 10.13304/j.nykjdb.2021.0671
• BIOTECHNOLOGY & LIFE SCIENCE • Previous Articles Next Articles
Limin ZHAI1(), Wentong LI2, Zheng FENG1, Hua LI1, Yangli PEI1(
)
Received:
2021-08-08
Accepted:
2022-01-18
Online:
2022-08-15
Published:
2022-08-22
Contact:
Yangli PEI
翟利敏1(), 李文通2, 冯政1, 李华1, 裴杨莉1(
)
通讯作者:
裴杨莉
作者简介:
翟利敏 E-mail: 1772726298@qq.com;
基金资助:
CLC Number:
Limin ZHAI, Wentong LI, Zheng FENG, Hua LI, Yangli PEI. Current Status of Gene-edited Pigs[J]. Journal of Agricultural Science and Technology, 2022, 24(8): 25-34.
翟利敏, 李文通, 冯政, 李华, 裴杨莉. 基因编辑猪的研究现状[J]. 中国农业科技导报, 2022, 24(8): 25-34.
1 | FANG X, MOU Y, HUANG Z, et al.. The sequence and analysis of a Chinese pig genome [J/OL]. Gigascience, 2012, 1(1): 16 [2021-08-10]. . |
2 | 章德宾,罗瑶,陈文进.基因编辑技术发展现状[J].生物工程学报,2020, 36(11): 2345-2356. |
ZHANG D B, LUO Y, CHEN W J. Current development of gene editing [J]. Chin. J. Biotechnol., 2020, 36(11): 2345-2356. | |
3 | 朱向星,全守能,黄勇,等.体细胞核移植技术在猪基因修饰中的应用[J].基因组学与应用生物学,2013, 32(6):9-16. |
ZHU X X, QUAN S N, HUANG Y, et al.. Application of somatic cell nuclear transfer technology in porcine gene modification [J]. Genomics Appl. Biol., 2013, 32(6):9-16. | |
4 | GROTH C G, KORSGREN O, TIBELL A, et al.. Transplantation of porcine fetal pancreas to diabetic patients [J]. Lancet, 1994, 344(8934): 1402-1404. |
5 | PUGA Y G L, RIEBEN R, BÜHLER L, et al.. Xenotransplantation: where do we stand in 2016? [J/OL]. Swiss Med. Wkly., 2017, 147: w14403 [2021-08-13]. . |
6 | VALDES-GONZALEZ R, RODRIGUEZ-VENTURA A L, WHITE D J, et al.. Long-term follow-up of patients with type 1 diabetes transplanted with neonatal pig islets [J/OL]. Clin. Exp. Immunol., 2010, 162(3): 537-542 [2021-08-13]. . |
7 | MATSUMOTO S, TAN P, BAKER J, et al.. Clinical porcine islet xenotransplantation under comprehensive regulation [J]. Transplant Proc., 2014, 46(6): 1992-1995. |
8 | NIEMANN H, PETERSEN B. The production of multi-transgenic pigs: update and perspectives for xenotransplantation [J]. Transgenic Res., 2016, 25(3): 361-374. |
9 | TANIHARA F, TAKEMOTO T, KITAGAWA E, et al.. Somatic cell reprogramming-free generation of genetically modified pigs [J/OL]. Sci. Adv., 2016, 2(9): e1600803 [2021-08-13]. . |
10 | NISHIO K, TANIHARA F, NGUYEN T V, et al.. Effects of voltage strength during electroporation on the development and quality of in vitro-produced porcine embryos [J]. Reprod. Domest. Anim., 2018, 53(2): 313-318. |
11 | FAN Z, LIU Z, XU K, et al.. Long-term, multidomain analyses to identify the breed and allelic effects in MSTN-edited pigs to overcome lameness and sustainably improve nutritional meat production [J]. Sci. China Life Sci., 2022,65(2): 362-375. |
12 | LIU X, LIU H, WANG M, et al.. Disruption of the ZBED6 binding site in intron 3 of IGF2 by CRISPR/Cas9 leads to enhanced muscle development in Liang Guang Small Spotted pigs [J]. Transgenic Res., 2019, 28(1): 141-150. |
13 | XIANG G, REN J, HAI T, et al.. Editing porcine IGF2 regulatory element improved meat production in Chinese Bama pigs [J]. Cell Mol. Life Sci., 2018, 75(24): 4619-4628. |
14 | QIAN L, TANG M, YANG J, et al.. Targeted mutations in myostatin by zinc-finger nucleases result in double-muscled phenotype in Meishan pigs [J/OL]. Sci. Rep., 2015, 5: 14435 [2021-08-13]. . |
15 | WANG K, OUYANG H, XIE Z, et al.. Efficient generation of myostatin mutations in pigs using the CRISPR/Cas9 system [J/OL]. Sci.Rep., 2015,5: 16623 [2021-08-13]. . |
16 | BI Y, HUA Z, LIU X, et al.. Isozygous and selectable marker-free MSTN knockout cloned pigs generated by the combined use of CRISPR/Cas9 and Cre/LoxP [J/OL]. Sci. Rep., 2016, 6:31729 [2021-08-13]. . |
17 | ZHU X X, ZHAN Q M, WEI Y Y, et al.. CRISPR/Cas9-mediated MSTN disruption accelerates the growth of Chinese Bama pigs [J]. Reprod. Domest. Anim., 2020, 55(10): 1314-1327. |
18 | REN H, XIAO W, QIN X, et al.. Myostatin regulates fatty acid desaturation and fat deposition through MEF2C/miR222/SCD5 cascade in pigs [J/OL]. Commun. Biol., 2020, 3(1): 612 [2021-08-13]. . |
19 | 彭定威,李瑞强,曾武,等.编辑MSTN半胱氨酸节基元促进两广小花猪肌肉生长[J]. 遗传,2021, 43(3): 261-270. |
PENG D W, LI R Q, ZENG W, et al.. Edit MSTN cysteine ganglion to promote muscle growth of Guangdong and Guangdong Xiaohua pigs [J]. Hereditas, 2021,43(3):261-270. | |
20 | SHAHIDI F, AMBIGAIPALAN P. Omega-3 polyunsaturated fatty acids and their health benefits [J]. Annu. Rev. Food Sci. Technol., 2018, 9: 345-381. |
21 | LAI L, KANG J X, LI R, et al.. Generation of cloned transgenic pigs rich in omega-3 fatty acids [J]. Nat. Biotechnol., 2006, 24(4): 435-436. |
22 | RICHARDS M P, KATHIRVEL P, GONG Y, et al.. Long chain omega-3 fatty acid levels in loin muscle from transgenic (fat-1 gene) pigs and effects on lipid oxidation during storage [J]. Food Biotechnol., 2011, 25(2): 103-114. |
23 | ZHANG P, ZHANG Y, DOU H, et al.. Handmade cloned transgenic piglets expressing the nematode fat-1 gene [J]. Cell Reprogram, 2012, 14(3): 258-266. |
24 | LI M, OUYANG H, YUAN H, et al.. Site-specific fat-1 knock-in enables significant decrease of n-6PUFAs/n-3PUFAs ratio in pigs [J]. G3 (Bethesda, Md.), 2018, 8(5): 1747-1754. |
25 | TANG F, YANG X, LIU D, et al.. Co-expression of fat1 and fat2 in transgenic pigs promotes synthesis of polyunsaturated fatty acids [J]. Transgenic Res., 2019, 28(3-4): 369-379. |
26 | COLLINS J E, BENFIELD D A, CHRISTIANSON W T, et al.. Isolation of swine infertility and respiratory syndrome virus (isolate ATCC VR-2332) in North America and experimental reproduction of the disease in gnotobiotic pigs [J]. J. Vet. Diagn Invest., 1992, 4(2): 117-126. |
27 | WHITWORTH K M, ROWLAND R R, EWEN C L, et al.. Gene-edited pigs are protected from porcine reproductive and respiratory syndrome virus [J]. Nat. Biotechnol., 2016, 34(1): 20-22. |
28 | WELLS K D, BARDOT R, WHITWORTH K M, et al.. Replacement of porcine CD163 scavenger receptor cysteine-rich domain 5 with a CD163-like homolog confers resistance of pigs to genotype 1 but not genotype 2 porcine reproductive and respiratory syndrome virus [J/OL]. J. Virol., 2017, 91(2) : e01521-16 [2021-08-13]. . |
29 | YANG H, ZHANG J, ZHANG X, et al.. CD163 knockout pigs are fully resistant to highly pathogenic porcine reproductive and respiratory syndrome virus [J]. Antiviral Res., 2018, 151: 63-70. |
30 | XU K, ZHOU Y, MU Y, et al.. CD163 and pAPN double-knockout pigs are resistant to PRRSV and TGEV and exhibit decreased susceptibility to PDCoV while maintaining normal production performance [J/OL]. eLife, 2020, 9: 57132 [2021-08-13]. . |
31 | KARALYAN Z, ZAKARYAN H, ARAKELOVA E, et al.. Evidence of hemolysis in pigs infected with highly virulent African swine fever virus [J]. Vet. World, 2016, 9(12): 1413-1419. |
32 | LILLICO S G, PROUDFOOT C, KING T J, et al.. Mammalian interspecies substitution of immune modulatory alleles by genome editing [J/OL]. Sci.Rep., 2016, 6: 21645 [2021-08-13]. . |
33 | MCCLEARY S, STRONG R, MCCARTHY R R, et al.. Substitution of warthog NF-κB motifs into RELA of domestic pigs is not sufficient to confer resilience to African swine fevervirus [J/OL].Sci.Rep.,2020,10(1):8951 [2021-08-13]. . |
34 | XIE Z, JIAO H, XIAO H, et al.. Generation of pRSAD2 gene knock-in pig via CRISPR/Cas9 technology [J/OL]. Antiviral Res., 2020, 174: 104696 [2021-08-13]. . |
35 | HUANG J, WANG A, HUANG C, et al.. Generation of marker-free pbd-2 knock-in pigs using the CRISPR/Cas9 and Cre/loxP systems [J/OL]. Genes,2020,11(8):951 [2021-08-13]. . |
36 | SACHS D H. The pig as a potential xenograft donor [J]. Vet. Immunol. Immunopathol., 1994, 43(1-3): 185-191. |
37 | GROENEN M A M, ARCHIBALD A L, UENISHI H, et al.. Analyses of pig genomes provide insight into porcine demography and evolution [J]. Nature, 2012, 491(7424): 393-398. |
38 | TANABE T, WATANABE H, SHAH J A, et al.. Role of intrinsic (graft) versus extrinsic (host) factors in the growth of transplanted organs following allogeneic and xenogeneic transplantation [J]. Am. J. Transplant., 2017, 17(7): 1778-1790. |
39 | SYKES M, SACHS D H. Transplanting organs from pigs to humans [J/OL]. Sci. Immunol., 2019, 4(41): eaau6298 [2021-08-10]. . |
40 | SOEDE N M, LANGENDIJK P, KEMP B. Reproductive cycles in pigs [J]. Anim. Reprod. Sci., 2011, 124(3-4): 251-258. |
41 | SIPPEL K C, DESTEFANO J D, BERSON E L, et al.. Evaluation of the human arrestin gene in patients with retinitis pigmentosa and stationary night blindness [J]. Invest. Ophth. Vis. Sci., 1998, 39(3): 665-670. |
42 | HAI T, TENG F, GUO R, et al.. One-step generation of knockout pigs by zygote injection of CRISPR/Cas system [J]. Cell Res., 2014, 24(3): 372-375. |
43 | PABST R. The pig as a model for immunology research [J]. Cell Tiss. Res., 2020, 380(2): 287-304. |
44 | IQBAL M A, HONG K, KIM J H, et al.. Severe combined immunodeficiency pig as an emerging animal model for human diseases and regenerative medicines [J]. BMB Rep., 2019, 52(11): 625-634. |
45 | ZHOU X, XIN J, FAN N, et al.. Generation of CRISPR/Cas9-mediated gene-targeted pigs via somatic cell nuclear transfer [J]. Cell. Mol. Life Sci., 2015, 72(6): 1175-1184. |
46 | STOWER H. A pig model of Huntington’s disease [J/OL]. Nat. Med., 2018, 24(7): 898 [2021-08-13]. . |
47 | OSUM S H, WATSON A L, LARGAESPADA D A. Spontaneous and engineered large animal models of neurofibromatosis type 1 [J/OL]. Int. J. Mol. Sci., 2021, 22(4): 1954 [2021-08-13]. . |
48 | WANG K, JIN Q, RUAN D, et al.. Cre-dependent Cas9-expressing pigs enable efficient in vivo genome editing [J]. Genome Res., 2017, 27(12): 2061-2071. |
49 | HAUSER A S, ATTWOOD M M, RASK-ANDERSEN M, et al.. Trends in GPCR drug discovery: new agents, targets and indications [J]. Nat. Rev. Drug Discov., 2017, 16(12): 829-842. |
50 | HE J, YE J, LI Q, et al.. Construction of a transgenic pig model overexpressing polycystic kidney disease 2 (PKD2) gene [J]. Transgenic Res., 2013, 22(4): 861-867. |
51 | 陈雨荣,安星兰,汪正铸,等.猪作为人类疾病模型的研究进展[J].中国比较医学杂志,2020, 30(7): 110-119. |
CHEN Y, AN X L, WANG Z Z, et al.. Research progress of pigs as human disease model [J]. Chin. J. Comp. Med., 2020, 30(7) :110-119. | |
52 | JIANG R D, LIU M Q, CHEN Y, et al.. Pathogenesis of SARS-CoV-2 in transgenic mice expressing human angiotensin-Converting enzyme2 [J]. Cell, 2020 182(1):50-58. |
53 | BAO L L, DENG W, HUANG B W, et al.. The pathogenicity of SARS-CoV-2 in hACE2 transgenic mice [J].Nature,2020,583(7818):830-833. |
54 | MCCRAY PB Jr, PEWE L, WOHLFORD-LENANE C, et al.. Lethal infection of K18-hACE2 mice infected with severe acute respiratory syndrome coronavirus [J]. J. Virol., 2007, 81(2):813-21. |
55 | DU X, GUO Z, FAN W, et al.. Establishment of a humanized swine model for COVID-19 [J/OL]. Cell Discov., 2021, 7(1):70 [2021-08-25]. . |
56 | 黎汝楣,胡仁明.代谢性炎症综合征发病机制的研究进展[J].复旦学报(医学版),2017, 44(3):132-136. |
LI R M, H R M, Progress in the pathogenesis of metabolic inflammatory syndrome [J]. Fudan Univ. J. Med. Sci., 2017, 44(3):132-136. | |
57 | ZHANG K, TAO C, XU J, et al.. CD8+ T cells involved in metabolic inflammation in visceral adipose tissue and liver of transgenic pigs [J/OL]. Front. Immunol., 2021, 12: 690069 [2021-08-13]. . |
58 | 黄耀强, 李国玲, 杨化强, 等.基因编辑猪在生物医学研究中的应用[J]. 遗传 2018, 40(8): 30-44. |
HUANG Y Q, LI G L, YANG H Q, et al.. Progress and application of genome-edited pigs inbiomedical research [J]. Hereditas. 2018, 40(8): 30-44. | |
59 | BAXA M, HRUSKA-PLOCHAN M, JUHAS S, et al.. A transgenic minipig model of Huntington’s disease [J]. J Huntingtons Dis., 2013, 2(1): 47-68. |
60 | LADOWSKI J M, HOUPJ, HAUPTFELD-DOLEJSEK V, et al.. Aspects of histocompatibility testing in xenotransplantation [J/OL]. Transplant Immunol.,2021,67:101409 [2021-08-13]. . |
61 | 李国玲,徐志谦,杨化强,等.转基因和基因编辑猪的研究进展[J].华南农业大学学报,2019(5):99-109. |
LI G L, XU Z Q, YANG H Q, et al.. Research progress of transgenic and gene editing pigs [J]. South China Agric.Univ., 2019 (5):99-109. | |
62 | YUE Y, XU W, KAN Y, et al.. Extensive germline genome engineering in pigs [J]. Nat. Biomed. Eng., 2021, 5(2): 134-143. |
63 | WANG H, YANG Y G. Innate cellular immunity and xenotransplantation [J]. Curr. Opin. Organ. Tran., 2012, 17(2): 162-167. |
64 | GRIESEMER A, YAMADA K, SYKES M. Xenotransplantation: immunological hurdles and progress toward tolerance [J]. Immunol. Rev., 2014, 258(1): 241-258. |
65 | LAI L, PRATHER R S. Progress in producing knockout models for xenotransplantation by nuclear transfer [J]. Ann. Med., 2002, 34(7-8): 501-506. |
66 | HAUSCHILD J, PETERSEN B, SANTIAGO Y, et al.. Efficient generation of a biallelic knockout in pigs using zinc-finger nucleases [J]. Proc. Natl. Acad. Sci. USA, 2011, 108(29): 12013-12017. |
67 | SUZUKI A. Genetic basis for the lack of N-glycolylneuraminic acid expression in human tissues and its implication to human evolution [J]. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci., 2006, 82(3): 93-103. |
68 | MIWA Y, KOBAYASHI T, NAGASAKA T, et al.. Are N-glycolylneuraminic acid (Hanganutziu-Deicher) antigens important in pig-to-human xenotransplantation? [J]. Xenotransplantation, 2004, 11(3): 247-253. |
69 | ZHU A, HURST R. Anti-N-glycolylneuraminic acid antibodies identified in healthy human serum [J]. Xenotransplantation, 2002, 9(6): 376-381. |
70 | GAO H, ZHAO C, XIANG X, et al.. Production of α1,3-galactosyltransferase and cytidine monophosphate-N-acetylneuraminic acid hydroxylase gene double-deficient pigs by CRISPR/Cas9 and handmade cloning [J]. J. Reprod. Dev., 2017, 63(1): 17-26. |
71 | LUNDVIG D M, IMMENSCHUH S, WAGENER F A. Heme oxygenase, inflammation, and fibrosis: the good, the bad, and the ugly? [J/OL]. Front. Pharmacol., 2012, 3: 81 [2021-08-13]. . |
72 | SINGH A K, CHAN J L, DICHIACCHIO L, et al.. Cardiac xenografts show reduced survival in the absence of transgenic human thrombomodulin expression in donor pigs [J/OL]. Xenotransplantation, 2019, 26(2): e12465 [2021-08-13]. . |
73 | MOHIUDDIN M M, SINGH A K, CORCORAN P C, et al.. Chimeric 2C10R4 anti-CD40 antibody therapy is critical for long-term survival of GTKO.hCD46.hTBM pig-to-primate cardiacxenograft [J/OL]. Nat. Commun., 2016, 7: 11138 [2021-08-13]. . |
74 | LEE S J, KIM J S, CHEE H K, et al.. Seven years of experiences of preclinical experiments of xeno-heart transplantation of pig to non-human primate (cynomolgus monkey) [J]. Transplant Proc., 2018, 50(4): 1167-1171. |
75 | IRIE A, KOYAMA S, KOZUTSUMI Y, et al.. The molecular basis for the absence of N-glycolylneuraminic acid in humans [J]. J. Biol. Chem., 1998, 273(25): 15866-15871. |
76 | CHONG A S, SHEN J, XIAO F, et al.. Delayed xenograft rejection in the concordant hamster heart into Lewis rat model [J]. Transplantation,1996, 62(1): 90-96. |
77 | CARDONA K, KORBUTT G S, MILAS Z, et al.. Long-term survival of neonatal porcine islets in nonhuman primates by targeting costimulation pathways [J]. Nat. Med., 2006, 12(3): 304-306. |
78 | HERING B J, WIJKSTROM M, GRAHAM M L, et al.. Prolonged diabetes reversal after intraportal xenotransplantation of wild-type porcine islets in immunosuppressed nonhuman primates [J]. Nat. Med., 2006, 12(3): 301-303. |
79 | TSUYUKI S, KONO M, BLOOM E T. Cloning and potential utility of porcine Fas ligand: overexpression in porcine endothelial cells protects them from attack by human cytolytic cells [J]. Xenotransplantation, 2002, 9(6): 410-421. |
80 | BäHR A, KäSER T, KEMTER E, et al.. Ubiquitous LEA29Y expression blocks T cell co-stimulation but permits sexual reproduction in genetically modified pigs [J/OL]. PLoS One, 2016, 11(5): e0155676 [2021-08-13]. . |
81 | NOTTLE M B, SALVARIS E J, FISICARO N, et al.. Targeted insertion of an anti-CD2 monoclonal antibody transgene into the GGTA1 locus in pigs using FokI-dCas9 [J/OL]. Sci. Rep., 2017, 7(1): 8383 [2021-08-13]. . |
82 | VABRES B, LE BAS-BERNARDET S, RIOCHET D, et al.. hCTLA4-Ig transgene expression in keratocytes modulates rejection of corneal xenografts in a pig to non-human primate anterior lamellar keratoplasty model [J]. Xenotransplantation, 2014, 21(5): 431-443. |
83 | BOEKE J D, CHURCH G, HESSEL A, et al.. GENOME ENGINEERING. the genome project-write [J]. Science, 2016, 353(6295): 126-127. |
84 | NIU D, WEI H J, LIN L, et al.. Inactivation of porcine endogenous retrovirus in pigs using CRISPR-Cas9 [J]. Science, 2017, 357(6357): 1303-1307. |
[1] | Yu WANG, Chunguang LI, Huan LIU, Yuehua ZHANG, Xiaomin FENG, Yaoguang LI, Huaiqi LI, Yanqiu JING, Mi SUN. Study on Chloroplast Ultrastructure of Flue-cured Tobacco Leaves and Its Relationship with Degrading Products of Plastid Pigment [J]. Journal of Agricultural Science and Technology, 2022, 24(3): 67-76. |
[2] | PU Quanming, YANG Peng, YONG Lei, DENG Yuchuan, HE Zihan, LIN Bangmin, SHI Songmei, XIANG Chengyong, FANG Fang. Studies on Pigment Content and Photosyntheic Characteristics of Purple-red Leaf Color Mutant in Radish [J]. Journal of Agricultural Science and Technology, 2021, 23(8): 45-54. |
[3] | GAO Yun, WANG Yu, LU Sidi, LEI Minggang, LUO Junjie, LI Xuan, . Thermal Comfort Evaluation of Pigsty and CFD Simulation of Wet Curtain in Summer [J]. Journal of Agricultural Science and Technology, 2021, 23(7): 125-135. |
[4] | HE Yefeng1, ZHANG Chunying2, LIU Qunlu1,2*. Characterization of Flower Coloration in Petals of Rhododendron simsii#br# [J]. Journal of Agricultural Science and Technology, 2021, 23(2): 50-56. |
[5] | LI Gang, ZHENG Minna, LI Yinfan. Comprehensive Evaluation of Production Performance and Nutritional Value of Forage Oat Varieties in Northern Shanxi Province [J]. Journal of Agricultural Science and Technology, 2021, 23(12): 42-53. |
[6] | WANG Zuli. Impact of COVID-19 Epidemic on Chinas Pig Industry #br# and Countermeasures [J]. Journal of Agricultural Science and Technology, 2020, 22(6): 6-11. |
[7] | ZHOU Dan1,2, GAO Yun1,3*, LEI Minggang3,4, LI Xuan1,3. Numerical Simulation of Carbon Dioxide Concentration in Piglets House in Winter [J]. Journal of Agricultural Science and Technology, 2019, 21(8): 90-98. |
[8] | LI Dan, CHEN Yifei*, LI Xingjian, PU Dong. Research Advance on Computer Vision in Behavioral Analysis of Pigs [J]. Journal of Agricultural Science and Technology, 2019, 21(7): 59-69. |
[9] | NIE Yunbin, QIAO Juan*. Impact of African Swine Fever on the Development of Pig Industry in China [J]. Journal of Agricultural Science and Technology, 2019, 21(1): 11-17. |
[10] | XIA Xin, ZHAO Shuhong, HU Junyong, LIU Wanghong, NI Debin*. Influencing Factors of Breeding Pig Living Performance Detection by B-mode Equipment [J]. Journal of Agricultural Science and Technology, 2019, 21(1): 37-42. |
[11] | HUANG Mingyue, NIU Dexin, WANG Lizhi, LOU Yanan, LI Yanhua,YANG Shengnan, ZHANG Hongying, CUI Hong*. Effects of Organic Fertilizer Application on the Biosynthesis of Plastid Pigment in Flue-cured Tobacco [J]. Journal of Agricultural Science and Technology, 2018, 20(4): 29-35. |
[12] | ZHANG Bo, ZHU Xia, SHENG Wenjun, MA Tengzhen, HAN Shunyu*. Studious on Copigmentation of Anthocyanins in Red Wines [J]. Journal of Agricultural Science and Technology, 2017, 19(8): 92-104. |
[13] | NIU Dexin, LI Yanhua, HUANG Mingyue, YANG Shengnan, CUI Hong, ZHANG Hongying*. Effect of Nitrogen Application on the Biosynthesis of Plastid Pigment in Flue-cured Tobacco [J]. Journal of Agricultural Science and Technology, 2017, 19(5): 28-34. |
[14] | LIU Yong1,2, XU Shipu1,2*, WANG Yunsheng1,2. Remote Monitoring System for Breeding Pig Growth based on 4G Communication [J]. Journal of Agricultural Science and Technology, 2017, 19(2): 59-64. |
[15] | ZHAO Yong1,2,3, SHEN Wei3, ZHANG Hong-fu1*. Research Progress on Effects of Air Particle Matters, NH3 and H2S on Animal Fertility and Performance [J]. Journal of Agricultural Science and Technology, 2016, 18(4): 132-138. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||