Journal of Agricultural Science and Technology ›› 2023, Vol. 25 ›› Issue (6): 107-116.DOI: 10.13304/j.nykjdb.2021.0961
• INTELLIGENT AGRICULTURE & AGRICULTURAL MACHINERY • Previous Articles
Received:
2021-11-09
Accepted:
2022-01-18
Online:
2023-06-01
Published:
2023-07-28
作者简介:
张丽珍 E-mail:lzzhang@shou.edu.cn
基金资助:
CLC Number:
Lizhen ZHANG, Tan ZHU. Influence of Centrifugal Disc of Centrifugal Feeder on Breaking Rate[J]. Journal of Agricultural Science and Technology, 2023, 25(6): 107-116.
张丽珍, 朱倓. 离心式投饲机抛料盘对饲料破碎率的影响[J]. 中国农业科技导报, 2023, 25(6): 107-116.
参数名称Parameter | 数值Value |
---|---|
饲料密度Feed density | 700 |
泊松比Poisson’s ratio | 0.3 |
剪切模量Shear modulus | 3.5×107 |
饲料-饲料碰撞恢复系数 Feed-feed collision recovery coefficient | 0.340 |
饲料-饲料静摩擦系数 Feed-feed static friction coefficient | 0.163 |
饲料-饲料动摩擦系数 Feed-feed dynamic friction coefficient | 0.035 |
饲料-抛料盘碰撞恢复系数 Feed-disc collision recovery coefficient | 0.175 |
饲料-抛料盘静摩擦系数 Feed-disc static friction coefficient | 0.353 |
饲料-抛料盘动摩擦系数 Feed-disc dynamic friction coefficient | 0.125 |
Table.1 Material properties of particles
参数名称Parameter | 数值Value |
---|---|
饲料密度Feed density | 700 |
泊松比Poisson’s ratio | 0.3 |
剪切模量Shear modulus | 3.5×107 |
饲料-饲料碰撞恢复系数 Feed-feed collision recovery coefficient | 0.340 |
饲料-饲料静摩擦系数 Feed-feed static friction coefficient | 0.163 |
饲料-饲料动摩擦系数 Feed-feed dynamic friction coefficient | 0.035 |
饲料-抛料盘碰撞恢复系数 Feed-disc collision recovery coefficient | 0.175 |
饲料-抛料盘静摩擦系数 Feed-disc static friction coefficient | 0.353 |
饲料-抛料盘动摩擦系数 Feed-disc dynamic friction coefficient | 0.125 |
水平 Level | 因素Factor | ||
---|---|---|---|
A:盘倾角 Tilt angle of disc/(°) | B:肋板个数 Number of ribs | C:曲率半径 Radius of curvature/mm | |
-1 | 10 | 4 | 60 |
0 | 15 | 5 | 70 |
1 | 20 | 6 | 80 |
Table 2 Coding of factors
水平 Level | 因素Factor | ||
---|---|---|---|
A:盘倾角 Tilt angle of disc/(°) | B:肋板个数 Number of ribs | C:曲率半径 Radius of curvature/mm | |
-1 | 10 | 4 | 60 |
0 | 15 | 5 | 70 |
1 | 20 | 6 | 80 |
序号 Number | 因素Factor | 破碎率 Breakage rate/% | ||
---|---|---|---|---|
盘倾角 Tilt angle of disc/(°) | 肋板个数 Number of ribs | 曲率半径 Radius of curvature/mm | ||
1 | 20 | 4 | 70 | 2.76 |
2 | 15 | 6 | 70 | 2.24 |
3 | 15 | 6 | 70 | 2.25 |
4 | 15 | 6 | 70 | 2.29 |
5 | 10 | 6 | 60 | 3.73 |
Table 3 Results of three factor and three level orthogonal test
序号 Number | 因素Factor | 破碎率 Breakage rate/% | ||
---|---|---|---|---|
盘倾角 Tilt angle of disc/(°) | 肋板个数 Number of ribs | 曲率半径 Radius of curvature/mm | ||
1 | 20 | 4 | 70 | 2.76 |
2 | 15 | 6 | 70 | 2.24 |
3 | 15 | 6 | 70 | 2.25 |
4 | 15 | 6 | 70 | 2.29 |
5 | 10 | 6 | 60 | 3.73 |
序号 Number | 因素Factor | 破碎率 Breakage rate/% | ||
---|---|---|---|---|
盘倾角 Tilt angle of disc/(°) | 肋板个数 Number of ribs | 曲率半径 Radius of curvature/mm | ||
6 | 10 | 5 | 80 | 2.34 |
7 | 10 | 6 | 80 | 3.22 |
8 | 20 | 4 | 60 | 4.58 |
9 | 20 | 5 | 70 | 3.37 |
10 | 15 | 5 | 60 | 2.77 |
11 | 15 | 4 | 80 | 1.53 |
12 | 15 | 5 | 60 | 2.71 |
13 | 10 | 4 | 60 | 4.03 |
14 | 20 | 4 | 80 | 1.98 |
15 | 10 | 4 | 70 | 2.38 |
16 | 15 | 5 | 60 | 2.79 |
17 | 20 | 6 | 60 | 4.39 |
18 | 15 | 6 | 60 | 2.74 |
19 | 20 | 6 | 80 | 3.88 |
20 | 20 | 5 | 70 | 2.87 |
Table 3 Results of three factor and three level orthogonal test
序号 Number | 因素Factor | 破碎率 Breakage rate/% | ||
---|---|---|---|---|
盘倾角 Tilt angle of disc/(°) | 肋板个数 Number of ribs | 曲率半径 Radius of curvature/mm | ||
6 | 10 | 5 | 80 | 2.34 |
7 | 10 | 6 | 80 | 3.22 |
8 | 20 | 4 | 60 | 4.58 |
9 | 20 | 5 | 70 | 3.37 |
10 | 15 | 5 | 60 | 2.77 |
11 | 15 | 4 | 80 | 1.53 |
12 | 15 | 5 | 60 | 2.71 |
13 | 10 | 4 | 60 | 4.03 |
14 | 20 | 4 | 80 | 1.98 |
15 | 10 | 4 | 70 | 2.38 |
16 | 15 | 5 | 60 | 2.79 |
17 | 20 | 6 | 60 | 4.39 |
18 | 15 | 6 | 60 | 2.74 |
19 | 20 | 6 | 80 | 3.88 |
20 | 20 | 5 | 70 | 2.87 |
来源 Source | 方差 Variance | 均方 Mean square | F值 F value | P值 P value |
---|---|---|---|---|
模型Model | 12.36 | 1.37 | 25.41 | <0.000 1 |
A | 0.785 7 | 0.785 7 | 14.53 | 0.003 4 |
B | 0.973 4 | 0.973 4 | 18.00 | 0.001 7 |
C | 4.21 | 4.21 | 77.93 | <0.000 1 |
AB | 0.085 1 | 0.085 1 | 1.57 | 0.238 2 |
AC | 0.036 9 | 0.036 9 | 0.68 | 0.427 8 |
BC | 1.40 | 1.40 | 25.93 | 0.000 5 |
A² | 3.89 | 3.89 | 71.97 | <0.000 1 |
B² | 0.254 7 | 0.254 7 | 4.71 | 0.055 1 |
C² | 1.02 | 1.02 | 18.85 | 0.001 5 |
残差Residual | 0.540 7 | 0.054 1 | — | — |
失拟项Lack of fit | 0.410 8 | 0.082 2 | 3.16 | 0.116 0 |
误差Pure error | 0.129 9 | 0.026 0 | — | — |
总和Total | 12.90 | — | — | — |
Table 4 Variance analysis
来源 Source | 方差 Variance | 均方 Mean square | F值 F value | P值 P value |
---|---|---|---|---|
模型Model | 12.36 | 1.37 | 25.41 | <0.000 1 |
A | 0.785 7 | 0.785 7 | 14.53 | 0.003 4 |
B | 0.973 4 | 0.973 4 | 18.00 | 0.001 7 |
C | 4.21 | 4.21 | 77.93 | <0.000 1 |
AB | 0.085 1 | 0.085 1 | 1.57 | 0.238 2 |
AC | 0.036 9 | 0.036 9 | 0.68 | 0.427 8 |
BC | 1.40 | 1.40 | 25.93 | 0.000 5 |
A² | 3.89 | 3.89 | 71.97 | <0.000 1 |
B² | 0.254 7 | 0.254 7 | 4.71 | 0.055 1 |
C² | 1.02 | 1.02 | 18.85 | 0.001 5 |
残差Residual | 0.540 7 | 0.054 1 | — | — |
失拟项Lack of fit | 0.410 8 | 0.082 2 | 3.16 | 0.116 0 |
误差Pure error | 0.129 9 | 0.026 0 | — | — |
总和Total | 12.90 | — | — | — |
1 | 吴强泽.池塘养殖智能投饲系统的研究[D].南京:南京农业大学, 2016. |
WU Q Z.Researsh on intelligent feeding ship system of pond aguaculture. [D]. Nanjing: Nanjing Agricultural University, 2016. | |
2 | 郭子淳,黄家怿,王水传,等.智能投饵船研究现状与展望[J].农业机械学报, 2020, 51(): 385-396, 404. |
GUO Z C, HUANG J Y, WANG S C, et al.. Research and prospect of intelligent bait-dropping boat [J]. Trans. Chin. Soc. Agric. Mach., 2020, 51(S1): 385-396, 404. | |
3 | 于泽,姜忠爱,张靖铎,等.水产养殖自动投饵机发展现状[J].河北渔业, 2020(1): 57-60. |
YU Z, JIANG Z A, ZHANG J D, et al.. Development status of automatic feeding machine for aquaculture [J]. Hebei Fish., 2020(1): 57-60. | |
4 | 唐荣,沈逸,许鹏,等.池塘养殖全自动精准投饲系统设计与应用[J].农业工程学报, 2021, 37(9): 289-296. |
TANG R, SHEN Y, XU P, et al.. Design and application of the automatic precision feeding system of pond aquaculture [J]. Trans. Chin. Soc. Agric. Eng., 2021, 37(9): 289-296. | |
5 | 杨朦朦.池塘养殖精准投喂量投饵机的研究[D] .上海:上海海洋大学, 2018. |
YANG M M. The research on the precise feeding machine of pond farming [D]. Shanghai: Shanghai Ocean University, 2018. | |
6 | 张丽珍,马迪红,胡庆松,等.移动式双盘对称抛料投饵系统的设计与试验[J].机械设计, 2018, 35(9): 73-78. |
ZHANG L Z, MA D H, HU Q S, et al.. Design and experiment of mobile symmetric double-disk feeding system [J]. J. Machine Design, 2018, 35(9): 73-78. | |
7 | 马迪红.虾塘移动式投饵系统设计与实验[D] .上海:上海海洋大学,2017. |
MA D H. The design and experiment of movable shrimp feeding system [D]. Shanghai: Shanghai Ocean University, 2017. | |
8 | 胡庆松,程文平,李俊.移动式虾塘投饵装置偏心抖料及抛饵系统优化与试验[J].上海海洋大学学报, 2016, 25(5): 794-800. |
HU Q S, CHENG W P, LI J. Eccentric shaking and bait throwing system optimization and experiment of the mobile shrimp feeding machine [J]. J. Shanghai Ocean Univ.,2016, 25(5): 794-800. | |
9 | 曾智伟,马旭,曹秀龙,等.离散元法在农业工程研究中的应用现状和展望[J].农业机械学报, 2021, 52(4): 1-20. |
ZENG Z W, MA X, CAO X L, et al.. Application status and prospect of discrete element method in agricultural engineering research [J]. Trans. Chin. Soc. Agric. Mach., 2021, 52(4): 1-20. | |
10 | OSKOOEI P R, MOHAMMADINIA A, ARULRAJAH A, et al.. DEM modeling and experimental analysis of the breakage behavior of recycled crushed brick particles [J/OL]. Transport. Geotech., 2021, 30: 100586 [2021-10-22]. . |
11 | CLEARY P W. DEM modelling of particulate flow in a screw feeder [J]. Prog. Comput. Fluid Dy., 2007, 7(2-4): 128-138. |
12 | VILLETTE S, COINTAULT F, PIRON E, et al.. Centrifugal spreading: an analytical model for the motion of fertiliser particles on aspinning disc [J]. Biosyst. Eng., 2005, 92(2): 157-164. |
13 | ROZBROJ J, ZEGZULKA J, NECAS J. Use of DEM in the determination of rriction parameters on a physical comparative model of a vertical screw conveyor [J]. Chem. Biochem. Eng. Quarterly, 2015, 29(1): 25-34. |
14 | ABBOU-OU-CHERIF E M, PIRON E, CHATEAUNEUF A, et al.. On-the-field simulation of fertilizer spreading: Part 3-Control of disk inclination for uniform application on undulating fields [J]. Comput. Electron. Agric., 2019, 158: 150-158. |
15 | 任万军,吴振元,李蒙良,等.水稻无人机撒肥系统设计与试验[J].农业机械学报, 2021, 52(3): 88-98. |
REN W J, WU Z Y, LI M L, et al.. Design and experiment of UAV fertilization spreader system for rice [J]. Trans. Chin. Soc. Agric. Mach., 2021, 52(3): 88-98. | |
16 | 牟孝栋,姜慧新,孙延成,等.青贮玉米收获机碟盘式籽粒破碎装置仿真优化与试验[J].农业机械学报, 2020, 51(): 218-226. |
MOU X D, JIANG H X, SUN Y C, et al.. Simulation optimization and experiment of disc-type grain crushing device of silage corn harvester [J]. Trans. Chin. Soc. Agric. Mach., 2020, 51(S1): 218-226. | |
17 | 廖庆喜,张朋玲,廖宜涛,等.基于EDEM的离心式排种器排种性能数值模拟[J].农业机械学报, 2014, 45(2): 109-114. |
LIAO Q X, ZHANG P L, LIAO Y T, et al.. Numerical simulation on seeding performance of centrifugal rape-seed metering device based on EDEM [J]. Trans. Chin. Soc. Agric. Mach., 2014, 45(2): 109-114. | |
18 | 胡永光,杨叶成,肖宏儒,等.茶园施肥机离心撒肥过程仿真与参数优化[J].农业机械学报, 2016, 47(5): 77-82. |
HU Y G, YANG Y C, XIAO H R, et al.. Simulation and parameter optimization of centrifugal fertilizer spreader for tea plants [J]. Trans. Chin. Soc. Agric. Mach., 2016, 47(5): 77-82. | |
19 | 李仲斌,王凌冰,罗永攀.基于离散元法的单辊破碎机磨损分析[J].烧结球团, 2021, 46(1): 49-54. |
LI Z B, WANG L B, LUO Y P, et al.. Wear analysis of single roll crusher based on discrete element method [J]. Sinter. Pelletiz., 2021, 46(1): 49-54. | |
20 | 武秋俊,张勇,刘浩宇,等.非规则物料黏结颗粒下的惯性圆锥破碎机仿真[J].烧结球团, 2020, 45(4): 55-60. |
WU Q J, ZHANG Y, LIU H Y, et al.. Simulation research on inertial cone crusher with irregular material bonded particles [J]. Sinter. Pelletiz., 2020, 45(4): 55-60. | |
21 | 张成. 立轴冲击式破碎机流场分析与优化设计研究[D] .贵阳:贵州大学,2019. |
ZHANG C. Study on flow field analysis and optimization design of vertical shaft impact crusher [D]. Guiyang: Guizhou University, 2019. | |
22 | 黄鹏鹏,肖观发,李成,等.基于EDEM的物料破碎效果仿真分析[J].矿山机械, 2014, 42(10): 76-80. |
HUANG P P, XIAO G F, LI C, et al.. Simulation analysis of material crushing effect based on edem [J]. Mining Proc. Equip., 2014, 42(10): 76-80. | |
23 | 张瑞华,芮筱亭,赵宏立,等.基于离散单元法的发射装药挤压破碎模拟实验[J].爆炸与冲击, 2021, 41(6):15-23. |
ZHANG R H, RUI X T, ZHAO H L, et al.. Simulational test on compression and fracture of propellant charge based on the discrete element method [J]. Explosion Shock Waves, 2021, 41(6): 15-23. | |
24 | 贾富国,韩燕龙,刘扬,等.稻谷颗粒物料堆积角模拟预测方法[J].农业工程学报, 2014, 30(11): 254-260. |
JIA F G, HAN Y L, LIU Y, et al.. Simulation prediction method of repose angle for rice particle materials [J]. Trans. Chin. Soc. Agric. Eng., 2014, 30(11): 254-260. | |
25 | 李永祥,李飞翔,徐雪萌,等.基于颗粒缩放的小麦粉离散元参数标定[J].农业工程学报, 2019, 35(16): 320-327. |
LI Y X, LI F X, XU X M, et al.. Parameter calibration of wheat flour for discrete element method simulation based on particle scaling [J]. Trans. Chin. Soc. Agric. Eng., 2019, 35(16): 320-327. | |
26 | 王志鹏,李永祥,徐雪萌.基于堆积实验的小米离散元参数标定[J].中国粮油学报, 2021, 36(2): 115-120. |
WANG Z P, LI Y X, XU X M, et al.. Parameter calibration of millet discrete element based on stacking experiment [J]. J. Chin. Cereals Oils Association, 2021, 36(2): 115-120. | |
27 | 谷坚,葛一健,徐英士,等. 投饲机: [S]. 北京:中国标准出版社,2011. |
28 | 杨叶成.茶园离心撒肥装置工作参数优化与试验研究[D].镇江:江苏大学,2016. |
YANG Y C. Operating parameter optimization and experiment on centrifugal fertilizer distributor for tea fields [D]. Zhenjiang:Jiangsu University, 2016. | |
29 | 邵恺怿,牛智有,于重洋,等.水产颗粒饲料悬浮速度测定与分析[J].中国农业科技导报, 2022,24(3):128-137. |
SHAO K Y, NIU Z Y, YU C Y, et al.. Measurement and analysis on suspension velocity of aquaculture pellets feed [J]. J. Agric. Sci. Technol., 2022,24(3): 128-137. | |
30 | 王志勇,冯书庆,林礼群,等.网箱养殖平台自动投饲系统设计与试验分析[J].渔业现代化,2020,47(5):52-58. |
[1] | Hailong WEI, Yi CHENG, Bi SONG, Jun ZOU, Jin ZUO, Lei LI, Jun ZHANG, Dailing LIU, Tao ZENG, Jingfeng FU, Sheng WEI. Grain Filling Characteristics of Fresh Waxy Maize at Different Sowing Dates and Its Relationship with Meteorological Factors [J]. Journal of Agricultural Science and Technology, 2023, 25(4): 45-55. |
[2] | Zhixiong HOU, Changqing JING, Gongxin WANG, Wenzhang GUO, Weikang ZHAO. Temporal and Spatial Variation of Natural Grassland Vegetation Coverage and Its Relationship with Meteorological Factors in Northern Xinjiang from 1998 to 2018 [J]. Journal of Agricultural Science and Technology, 2023, 25(2): 140-151. |
[3] | Yaru HUANG, Yingbin MA, Yonghua LI, Xue DONG, Yuan LIU, Meng YU, Chunxia HAN, Kaimin JIAN, Haifeng MA. Relationships Between Soil Factors and Populus euphratica’s Sap Flow at Different Time Scales [J]. Journal of Agricultural Science and Technology, 2022, 24(6): 196-205. |
[4] | Nanrui TANG, Yong ZHOU, Guozhong ZHANG, Fang LIANG, Huibin KE. Performance Simulation and Experiment of Stirred and Bunch Rice Seeding Device [J]. Journal of Agricultural Science and Technology, 2022, 24(4): 107-115. |
[5] | Zhiyong WU, Hong GU, Dawei CHENG, Lan LI, Shasha HE, Ming LI, Jinyong CHEN. Advances in Regulatory Mechanism of Brassinolide on Plant Root Development [J]. Journal of Agricultural Science and Technology, 2022, 24(2): 68-76. |
[6] | Biao ZHANG, Dongmei ZHANG, Lang ZHANG, Zhongke FENG, Linhao SUN. Development of Trunk Sap Flow Monitoring System [J]. Journal of Agricultural Science and Technology, 2022, 24(11): 121-129. |
[7] | Liangyan YANG, Yanan LI, Hongjian FAN, Yating WANG. Temporal and Spatial Distribution and Influencing Factors of Evapotranspiration in Mu Us Sandy Land [J]. Journal of Agricultural Science and Technology, 2022, 24(10): 169-178. |
[8] | Wenzhang GUO, Changqing JING, Xiaojin DENG, Chen CHEN, Weikang ZHAO, Zhixiong HOU, Gongxin WANG. Soil Respiration Characteristics of Typical Grassland on the Northern Slopes of the Tianshan Mountains and Their Response to Environmental Factors [J]. Journal of Agricultural Science and Technology, 2022, 24(10): 189-199. |
[9] | HU Ting, QUAN Wei, WU Mingliang, LI Lin. Design and Experiment of Seed Channel Opener for Double Ridge Four Row Peanut Seeder [J]. Journal of Agricultural Science and Technology, 2021, 23(9): 129-137. |
[10] | LI Ziyan1, ZHU Shoudong2, LIU Lanbo3, YANG Min1, ZHANG Lei4, ZHANG Chunhong 1*, LI Minhui1,4*. Research on the Ecological Suitability Division of Astragalus membranaceus (Fisch.) Bge. var. mongholicus (Bge.) P. K. Hsiao in Inner Mongolia [J]. Journal of Agricultural Science and Technology, 2021, 23(2): 170-176. |
[11] | LI Tai, LU Shijun, HUANG Jiazhang, CHEN Lei, FAN Xieyu. Research Progress of Apple Quality Evaluation Standards [J]. Journal of Agricultural Science and Technology, 2021, 23(11): 121-130. |
[12] | LIU Huixia, SUN Zongjiu, SHI Yukun, WU Wenchao, ZHENG Li, AI Tijian. [J]. Journal of Agricultural Science and Technology, 2021, 23(11): 147-155. |
[13] | LIU Xinghong, ZHANG Qingqing, ZHANG Guangpeng, LI Hong . Analysis of Spatial Distribution and Influencing Factors of Plant Communities in the Lower Reaches of Tarim River [J]. Journal of Agricultural Science and Technology, 2021, 23(10): 131-144. |
[14] | YIN Quanyu1, LIU Jianhao1, LIU Guoshun1, YANG Xinling2, LI Xiaofu2, ZHANG Yulan1, LI Yang1,YE Hongchao3*. Effects of Biochar Application for Four Consecutive Years on Microbial Community Structure of Tobacco Cinnamon Soil [J]. Journal of Agricultural Science and Technology, 2021, 23(1): 176-185. |
[15] |
HUANG Yaru1, LI Yonghua2*, XIN Zhiming1, MA Yingbin1, DONG Xue1, LI Xinle1, DUAN Ruibing1, LUO Fengmin1, BIAN Kai1.
Sap Flow Variation Characteristics and Its Relationship with Meteorological Factors of artificial Haloxylon ammodendron(C. A. Mey.) Bunge in Summer in Ulan Buh Desert
[J]. Journal of Agricultural Science and Technology, 2020, 22(7): 155-165.
|
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||