Journal of Agricultural Science and Technology ›› 2024, Vol. 26 ›› Issue (1): 110-118.DOI: 10.13304/j.nykjdb.2023.0557
• INTELLIGENT AGRICULTURE & AGRICULTURAL MACHINERY • Previous Articles
Hui WANG1(), Hongyu FU2(
), Yunkai YUE2, Guoxian CUI2, Wei SHE2(
)
Received:
2023-07-18
Accepted:
2023-10-28
Online:
2024-01-15
Published:
2024-01-08
Contact:
Wei SHE
王辉1(), 付虹雨2(
), 岳云开2, 崔国贤2, 佘玮2(
)
通讯作者:
佘玮
作者简介:
王辉 E-mail: 724863563@qq.com基金资助:
CLC Number:
Hui WANG, Hongyu FU, Yunkai YUE, Guoxian CUI, Wei SHE. Ramie Yield SSA-BP Prediction Model Based on Climate Variables[J]. Journal of Agricultural Science and Technology, 2024, 26(1): 110-118.
王辉, 付虹雨, 岳云开, 崔国贤, 佘玮. 基于气候变量的苎麻产量SSA-BP预测模型[J]. 中国农业科技导报, 2024, 26(1): 110-118.
产量 Yield/(kg·hm-2) | 最小值 Min. value | 最大值 Max. value | 平均值 Average value | 标准偏差 Standard deviation | 变异系数 CV/% |
---|---|---|---|---|---|
纤维Fiber | 493 | 1 228 | 798 | 1.82 | 3.32 |
鲜皮Fresh skin | 2 570 | 10 520 | 6 550 | 1.73 | 2.98 |
Table 1 Statistical of ramie yield
产量 Yield/(kg·hm-2) | 最小值 Min. value | 最大值 Max. value | 平均值 Average value | 标准偏差 Standard deviation | 变异系数 CV/% |
---|---|---|---|---|---|
纤维Fiber | 493 | 1 228 | 798 | 1.82 | 3.32 |
鲜皮Fresh skin | 2 570 | 10 520 | 6 550 | 1.73 | 2.98 |
气候因子 Climatic factor | 头麻产量 Frist crop yield | 二麻产量 Second corp yield | 三麻产量 Thrid corp yield | |||
---|---|---|---|---|---|---|
纤维 Fibre | 鲜皮 Fresh skin | 纤维 Fibre | 鲜皮 Fresh skin | 纤维 Fibre | 鲜皮 Fresh skin | |
季平均气温 Average seasonal temperature | -0.29 | 0.45** | -0.35** | -0.27 | 0.08 | 0.26 |
季极端最低气温均值 Average seasonal extreme minimum temperature | -0.40** | -0.48** | -0.33* | -0.37** | -0.18 | 0.15 |
季降水量均值 Mean seasonal precipitation | -0.06 | 0.41** | -0.19 | -0.12 | 0.08 | 0.31* |
季日照时数均值 Average seasonal sunshine hours | 0.08 | 0.53** | -0.17 | -0.13 | 0.32* | 0.54** |
季极端最高气温均值 Average seasonal extreme maximum temperature | 0.09 | -0.26 | -0.12 | -0.06 | 0.37** | 0.35** |
Table 2 Correlation analysis between climatic factors and ramie yield in different seasons
气候因子 Climatic factor | 头麻产量 Frist crop yield | 二麻产量 Second corp yield | 三麻产量 Thrid corp yield | |||
---|---|---|---|---|---|---|
纤维 Fibre | 鲜皮 Fresh skin | 纤维 Fibre | 鲜皮 Fresh skin | 纤维 Fibre | 鲜皮 Fresh skin | |
季平均气温 Average seasonal temperature | -0.29 | 0.45** | -0.35** | -0.27 | 0.08 | 0.26 |
季极端最低气温均值 Average seasonal extreme minimum temperature | -0.40** | -0.48** | -0.33* | -0.37** | -0.18 | 0.15 |
季降水量均值 Mean seasonal precipitation | -0.06 | 0.41** | -0.19 | -0.12 | 0.08 | 0.31* |
季日照时数均值 Average seasonal sunshine hours | 0.08 | 0.53** | -0.17 | -0.13 | 0.32* | 0.54** |
季极端最高气温均值 Average seasonal extreme maximum temperature | 0.09 | -0.26 | -0.12 | -0.06 | 0.37** | 0.35** |
气候因子 Climatic factor | 鲜皮产量 Fresh skin yield | 纤维产量 Fibre yield |
---|---|---|
季平均气温 Average seasonal temperature | -0.59** | -0.54** |
季极端最高气温均值 Average seasonal extreme maximum temperature | -0.52** | -0.51** |
季极端最低气温均值 Average seasonal extreme minimum temperature | -0.61** | -0.55** |
季降水量均值 Mean seasonal precipitation | 0.10 | 0.08 |
季日照时数均值 Average seasonal sunshine hours | -0.42** | -0.46** |
季相对湿度均值 Average seasonal relative humidity | 0.03 | 0.10 |
Table 3 Correlation analysis between climatic factors and ramie yield
气候因子 Climatic factor | 鲜皮产量 Fresh skin yield | 纤维产量 Fibre yield |
---|---|---|
季平均气温 Average seasonal temperature | -0.59** | -0.54** |
季极端最高气温均值 Average seasonal extreme maximum temperature | -0.52** | -0.51** |
季极端最低气温均值 Average seasonal extreme minimum temperature | -0.61** | -0.55** |
季降水量均值 Mean seasonal precipitation | 0.10 | 0.08 |
季日照时数均值 Average seasonal sunshine hours | -0.42** | -0.46** |
季相对湿度均值 Average seasonal relative humidity | 0.03 | 0.10 |
模型Model | MSE | RMSE | MBE | MAE | MAPE/% |
---|---|---|---|---|---|
BP | 1.93 | 1.39 | -0.23 | 1.06 | 12.61 |
SSA-BP | 1.33 | 1.15 | -0.21 | 0.89 | 10.73 |
Table 4 Error analysis of two models for Fibre yield of ramie
模型Model | MSE | RMSE | MBE | MAE | MAPE/% |
---|---|---|---|---|---|
BP | 1.93 | 1.39 | -0.23 | 1.06 | 12.61 |
SSA-BP | 1.33 | 1.15 | -0.21 | 0.89 | 10.73 |
模型Model | MSE | RMSE | MBE | MAE | MAPE/% |
---|---|---|---|---|---|
BP | 1.32 | 1.15 | -0.20 | 0.83 | 12.10 |
SSA-BP | 0.94 | 0.97 | -0.05 | 0.77 | 11.43 |
Table 5 Error analysis of the two models in predicting the yield of fresh skin of ramie
模型Model | MSE | RMSE | MBE | MAE | MAPE/% |
---|---|---|---|---|---|
BP | 1.32 | 1.15 | -0.20 | 0.83 | 12.10 |
SSA-BP | 0.94 | 0.97 | -0.05 | 0.77 | 11.43 |
1 | 杨洁, 唐昀, 申香英, 等. 我国苎麻产业现状与振兴发展[J]. 中国麻业科学, 2022, 44(4): 253-256. |
YANG J, TANG Y, SHEN X Y, et al.. Current situation and development of ramie industry in China [J]. Plant Fiber Sci. China, 2022, 44(4): 253-256. | |
2 | 付虹雨, 崔国贤, 李绪孟, 等. 基于无人机遥感图像的苎麻产量估测研究[J]. 作物学报, 2020, 46(9): 1448-1455. |
FU H Y, CUI G X, LI X M, et al.. Estimation of ramie yield based on UAV remote sensing image [J]. Acta Agron. Sin., 2020, 46(9): 1448-1455. | |
3 | 王辉, 付虹雨, 王继龙, 等. 基于多元回归和BP神经网络的苎麻产量估测模型比较研究[J]. 中国麻业科学, 2020, 42(5): 227-238. |
WANG H, FU H Y, WANG J L, et al.. Comparative study of ramie yield estimation models based on multiple regression and BP neural network [J]. Plant Fiber Sci. China, 2020, 42(5): 227-238. | |
4 | 王辉, 白玉超, 付虹雨, 等. 3个苎麻品种三年间产量及其构成因子的变化研究[J]. 中国麻业科学, 2020, 42(2): 76-82. |
WANG H, BAI Y C, FU H Y, et al.. Study on changes of yield and component factors of three ramie varieties in three years [J]. Plant Fiber Sci. China, 2020, 42(2): 76-82. | |
5 | 于珍珍, 邹华芬, 于德水, 等. 融合田间水热因子的甘蔗产量GA-BP预测模型[J]. 农业机械学报, 2022, 53(10): 277-283. |
YU Z Z, ZOU H F, YU D S, et al.. GA-BP prediction model of sugarcane yield with field hydrothermal factors [J]. Trans. Chin. Soc. Agric. Mach., 2022, 53(10): 277-283. | |
6 | 张文婧, 赵锦, 崔文倩, 等. 气候平均态和极端态变化对东北玉米气象产量的影响[J]. 中国农业科学, 2023, 56(10): 1859-1870. |
ZHANG W J, ZHAO J, CUI W Q, et al.. Effects of climate mean and extreme changes on meteorological yield of maize in Northeast China [J]. Sci. Agric. Sin., 2019, 56(10): 1859-1870. | |
7 | 刘焕才, 史书琦, 李曼, 等. 疏勒河流域中游地区玉米性状及单产的影响因子研究[J]. 干旱区地理 2023, 46(9): 1453-1466. |
LIU H C, SHI S Q, LI M, et al.. Study on influencing factors of maize character and yield in Middle reaches of Shule River Basin [J]. Arid Land Geography 2023, 46(9): 1453-1466. | |
8 | 刘头明, 汤清明, 朱四元, 等. 长江流域5个地区间苎麻产量差异的气候影响因素分析[J]. 安徽农业科学, 2011, 39(25): 15559-15562+15734. |
LIU T M, TANG Q M, ZHU S Y, et al.. Analysis of climatic factors affecting the difference of ramie yield in five regions in the Yangtze River Basin [J]. J. Anhui Agric. Sci., 2011, 39(25): 15559-15562, 15734. | |
9 | MELILLO J M, RICHMOND T C, YOHE G W. Climate change impacts in the United States [R].The Third National Climate Assessment, 2014. |
10 | 唐俊, 赵成萍, 周新志, 等. 基于EVI-RBF的玉米长势监测及产量预测[J]. 江苏农业学报, 2020, 36(3): 577-583. |
TANG J, ZHAO C P, ZHOU X Z, et al.. Maize growth monitoring and yield prediction based on EVI-RBF [J]. Jiangsu J. Agric. Sci., 2019, 36(3): 577-583. | |
11 | 徐敏, 吴洪颜, 张佩, 等. 基于气候适宜度的江苏水稻气候年景预测方法[J]. 气象, 2018, 44(9): 1200-1207. |
XU M, WU H Y, ZHANG P, et al.. Annual climate prediction method for Jiangsu rice based on climate suitability [J]. Meteorol. Monthly, 2018, 44(9): 1200-1207. | |
12 | 刘振洋, 赵家松, 胡仁傑, 等. 基于关联规则与多元线性回归的云南省甘蔗产量预测模型[J]. 广东农业科学, 2022, 49(12): 160-166. |
LIU Z Y, ZHAO J S, HU R J, et al.. Sugarcane yield prediction model based on association rules and multiple linear regression in Yunnan Province [J]. Guangdong Agric. Sci., 2022, 49(12): 160-166. | |
13 | XUE J K, SHEN B. A novel swarm intelligence optimization approach: sparrow search algorithm [J]. Syst. Sci. Control Eng., 2020, 8(1): 22-34. |
14 | E A P, D. B. D, Narendra K, et al.. A comprehensive investigation of Genotype-Environment interaction effects on seed cotton yield contributing traits in Gossypium hirsutum L. using multivariate analysis and artificial neural network [J/OL]. Computers Electron. Agric., 2023, 211:107966 [2023-09-06]. . |
15 | SONG S, XIONG X, WU X, et al.. Modeling the SOFC by BP neural network algorithm [J]. Int. J. Hydrogen Energy, 2021, 46(38): 65-77. |
16 | 娄高中, 谭毅, 白二虎. 主成分分析与改进PSO-BP神经网络的下沉系数预测[J]. 测绘科学, 2023, 48(2): 124-130, 147. |
LOU G Z, TAN Y, BAI E H. Principal component analysis and subsidence coefficient prediction of improved PSO-BP neural network [J]. Sci. Survey. Map., 2023, 48(2): 124-130, 147. | |
17 | 郭倩, 魏嘉豪, 张健, 等. 基于无人机多光谱影像和随机森林的蔬菜识别[J]. 中国农业科技导报, 2023, 25(2): 99-110. |
GUO Q, WEI J H, ZHANG J, et al.. Vegetable recognition based on UAV multi-spectral image and random forest [J]. J. Agric. Sci. Technol., 2023, 25(2): 99-110. | |
18 | 薛建凯. 一种新型的群智能优化技术的研究与应用[D]. 上海: 东华大学, 2020. |
XUE J K. Research and application of a new swarm intelligence optimization technology [D]. Shanghai: Donghua University, 2020. | |
19 | 顾清华, 姜秉佼, 常朝朝, 等. 求解大规模优化问题的改进麻雀搜索算法[J]. 控制与决策, 2023, 38(7): 1960-1968. |
GU Q H, JIANG B J, CHANG C C, et al.. An improved Sparrow search algorithm for large-scale optimization problems [J]. Control Decision, 2023, 38(7): 1960-1968. | |
20 | 胡建华, 黄宇龙, 张坚, 等. 基于麻雀搜索算法优化双隐含层BP神经网络的张力减径钢管壁厚预测[J]. 塑性工程学报, 2022, 29(8): 145-151. |
HU J H, HUANG Y L, ZHANG J, et al.. Prediction of wall thickness of tension reduced steel pipe by double-hidden layer BP neural network based on sparrow search algorithm [J]. J. Plasticity Eng., 2022, 29(8): 145-151. | |
21 | 刘头明, 汤清明, 朱四元, 等. 6个不同生态区域苎麻产量及环境影响因素分析[J]. 耕作与栽培, 2011, No.178(1): 30-32. |
LIU T M, TANG Q M, ZHU S Y, et al.. Analysis of ramie yield and environmental impact factors in six different ecological regions[J]. Tillage Cultivation, 2011, 178(1): 30-32. | |
22 | 袁晋琰, 吴春燕, 阮启亮, 等. 分宜气象因子对苎麻生长的影响及种植区域的划分[J]. 中国麻业科学, 2013, 35(4): 210-213, 218. |
YUAN J Y, WU C Y, RUAN Q L, et al. Influence of meteorological factors on ramie growth and division of planting area [J]. Plant Fiber Sci. China, 2013, 35(4): 210-213+218. | |
23 | 崔兴华, 靳晟, 姚芷馨, 等. 基于麻雀搜索算法和广义回归神经网络的玉米产量预测[J]. 数学的实践与认识, 2022, 52(7): 88-96. |
CUI X H, JIN S, YAO Z X, et al.. Maize yield prediction based on sparrow search algorithm and generalized regression neural network [J]. Math. Practice Theory, 2022, 52(7): 88-96. |
[1] | Xin XU, Zhaowu MA, Shuping XIONG, Xinming MA, Tao CHENG, Haiyang LI, Jinpeng ZHAO. Wheat Yield Forecast in Henan Province Based on Climate Year Type [J]. Journal of Agricultural Science and Technology, 2022, 24(2): 136-144. |
[2] | WANG Chuanxu, WANG Kang, CHEN Lin, LI Xue, ZHANG Hongwei. Research and Realization of Granary Temperature Field Prediction Model Based on Kriging Interpolation and BP Neural Network [J]. Journal of Agricultural Science and Technology, 2021, 23(9): 96-102. |
[3] | CHEN Haoyu, YANG Guang, HAN Xueying, LIU Xin, LIU Feng, WANG Ning. Hyperspectral Inversion of Soil Organic Matter Content Based on Continuous Wavelet Transform [J]. Journal of Agricultural Science and Technology, 2021, 23(5): 132-142. |
[4] | YU Yang, ZHANG Jue, TIAN Haiqing, WANG Di, WANG Ke, ZHANG Hongqi. Detection Method for Tenderness of Chilled Fresh Lamb Based on Hyperspectral Imaging Technology [J]. Journal of Agricultural Science and Technology, 2021, 23(12): 101-108. |
[5] | LUO Jianjun 1, YANG Hongyun 2*, LU Yan1, YI Wenlong 2, SUN Aizhen1. Identification of Nitrogen Nutrition in Rice Based on BP Neural Network Optimized by Genetic Algorithms [J]. Journal of Agricultural Science and Technology, 2020, 22(8): 83-92. |
[6] | CHEN Yuling1, WU Baoguo1*, CUI Yan 2, WEI Yanjun3. Research and Application of Prediction Model of Subcompartment Volume for Larix principis-rupprechtii Mayr. Based on Back Propagation Neural Network [J]. Journal of Agricultural Science and Technology, 2019, 21(7): 82-93. |
[7] | LIU Jinrong, LIN Jianhui*, LI Tingting. Identification of Leaf Disease Grade Based on Convolutional Neural Network [J]. Journal of Agricultural Science and Technology, 2018, 20(6): 55-61. |
[8] | WANG Yu\|jun1,2, ZHOU Ji\|heng1,2*, ZHANG Yi\|yang2, LI Qiang2, HU Zhi\|ming3, S. Correlation Analysis Between Climatic Factor and Chemical Components of Flue\|cured Tobacco Leaves in Baoshan Yunnan Province [J]. , 2014, 16(2): 109-115. |
[9] | LIU Guo-min, ZOU Meng, LIU Mu-hua| LI Jing . Pilot Studies on Computer Vision Technique for Testing |Exterior Quality of Navel Orange [J]. , 2008, 10(4): 100-104. |
[10] | Huang Chunyan Gu Chengyu Zhu Chuanying Zhang Zengmin Zhang Yunhua Guo Mei. Integrated Control of Corn Borer in North one Generation [J]. , 1999, 1(1): 49-51. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||