›› 2013, Vol. 15 ›› Issue (4): 176-182.DOI: 10.3969/j.issn.10080864.2013.04.27

Previous Articles    

Application Progress on Data Mining in Field of Fishery Production

HU Jing, YANG Ningsheng, OUYANG Haiying*, SUN Yingze, CHEN Baisong   

  1. (Research Center of Information and Economy, Chinese Academy of Fishery Sciences, Beijing 100141, China)
  • Online:2013-08-15 Published:2013-08-18

数据挖掘技术在渔业生产中的应用进展

胡婧,杨宁生,欧阳海鹰*,孙英泽,陈柏松   

  1. (中国水产科学研究院信息与经济研究中心, 北京 100141)
  • 通讯作者: 欧阳海鹰,研究员,硕士,研究方向为渔业信息分析方法。Email:ouyang@cafs.ac.cn
  • 作者简介:胡婧|助理研究员|硕士|研究方向为数据挖掘技术应用|机器学习算法研究。Email:huj@cafs.ac.cn。
  • 基金资助:

    中央级公益性科研院所基本科研业务费专项(2010C005)资助。

Abstract:

Fishery is in the period of rapid development with large accumulation of fisheries production data in China. How to effectively analyze these data and find the knowledge behind becomes an important topic for present study. Data mining is helpful to dig out potential law and knowledge from huge amounts of data. This paper introduces neural networks, decision trees and clustering etc. common data mining methods,and reviews the internal and external application progress in the fields of fishery production factors and fishery production process. The paper also prospects the development direction of this technology in fishery production. Under the premise of relatively matured development of informatization in fishery industry, data mining technology might be applied to various links of fishery production and provide effective decision support for its development.

Key words: fishery production, data mining, application progress

摘要:

我国渔业正处于高速发展时期,渔业生产数据大量积累,如何有效分析利用这些数据并发现数据背后隐藏的知识成为当前需要研究的重要问题。数据挖掘技术正是一类可从海量数据中发掘潜在规律与知识的技术。介绍了神经网络、决策树、聚类等常用数据挖掘算法,并分别从渔业生产要素和渔业生产过程两方面综述了国内外的应用进展,并对该技术在渔业生产中的发展方向进行了展望。分析认为,在渔业信息化发展相对成熟的前提下,数据挖掘技术可应用于多个渔业生产环节,为渔业生产发展提供有效的决策支持。

关键词: 渔业生产;数据挖掘;应用进展

CLC Number: