Journal of Agricultural Science and Technology ›› 2019, Vol. 21 ›› Issue (9): 90-96.DOI: 10.13304/j.nykjdb.2018.0574

Previous Articles     Next Articles

Research on the Estimation Model of Scophthalmus maximus Weight Based on Depth Image

TIAN Jie1,2, YANG Xinting1,2*, XU Daming2, SUN Chuanheng2, LIN Kai2, ZHOU Chao2   

  1. 1.College of Information Technology, Shanghai Ocean University, Shanghai 20000; 2.Key Laboratory of Information Technology, Ministry of Agriculture and Rural Affairs; Beijing Agricultural IOT Engineering Technology Research Center, National Agricultural Information Engineering Research Center,  Beijing 100097, China
  • Received:2018-09-25 Online:2019-09-15 Published:2018-12-11

基于深度图像的大菱鲆体重估测模型研究

田洁1,2,杨信廷1,2*,徐大明2,孙传恒2,吝凯2,周超2   

  1. 1.上海海洋大学信息学院,  上海 201306; 2.国家农业信息化工程技术研究中心, 农业农村部信息技术重点试验室, 北京市农业物联网工程技术研究中心, 北京 100097
  • 通讯作者: *通信作者:杨信廷,研究员,主要从事农产品及食品质量安全管理与溯源技术研究。E-mail:nercitaznxtb@163.com
  • 作者简介:田洁,硕士研究生,主要从事水产品决策系统开发。E-mail: tianjie.vip@qq.com。
  • 基金资助:
    国家重点研发计划项目(2017YFD0701705)资助。

Abstract: In order to carry out non-destructive estimation of the weight of Scophthalmus maximus, a weight estimation model was proposed based on depth image. The method firstly performed image preprocessing on the depeth image, extracted the target feature by using the growth data-mapping model, then combined the grid search optimization support vector regression (GS-SVR) algorithm to realize the weight estimation of Scophthalmus maximus. The estimated results were compared with the actual measured results. Experiment showed the optimal fit (R2) was 0.990 1, The root mean square error (RMSE) was 0.029 7. The model had the characteristics of simple and flexible, high estimation accuracy and easy implementation,which has a good application prospect.

Key words: Scophthalmus maximus, depth image, data-mapping model, weight estimation

摘要: 为了对大菱鲆体重进行无损估测,提出了一种基于深度图像的大菱鲆体重估测模型。该方法首先对大菱鲆深度图像进行图像预处理,提取出深度信息与生长数据进行映射建模,拟合出目标特征,并结合网格搜索优化支持向量回归(GS-SVR)算法,实现大菱鲆体重估测。估测结果与实际测量结果进行对比,两者的决定系数(R2)达到0.990 1,均方根误差(RMSE)为0.029 7。该模型具有简单灵活、估测精度高和易于实现等特点,同时具有很好的应用前景。

关键词: 大菱鲆, 深度图像, 映射模型, 体重估测