Journal of Agricultural Science and Technology ›› 2022, Vol. 24 ›› Issue (7): 123-131.DOI: 10.13304/j.nykjdb.2021.1060
• ANIMAL AND PLANT HEALTH • Previous Articles Next Articles
Lingwei SUN(), Mengxian HE, Jianjun DAI, Caifeng WU, Defu ZHANG(
), Yuexia LIN(
)
Received:
2021-12-13
Accepted:
2022-01-21
Online:
2022-07-15
Published:
2022-08-15
Contact:
Defu ZHANG,Yuexia LIN
孙玲伟(), 何孟纤, 戴建军, 吴彩凤, 张德福(
), 林月霞(
)
通讯作者:
张德福,林月霞
作者简介:
孙玲伟 E-mail:sunlingwei1987@126.com
基金资助:
CLC Number:
Lingwei SUN, Mengxian HE, Jianjun DAI, Caifeng WU, Defu ZHANG, Yuexia LIN. Metabolomics in Neonatal Lambs of Hu-sheep with Intrauterine Growth Retardation[J]. Journal of Agricultural Science and Technology, 2022, 24(7): 123-131.
孙玲伟, 何孟纤, 戴建军, 吴彩凤, 张德福, 林月霞. 宫内生长受限湖羊新生羔羊的血浆代谢组学研究[J]. 中国农业科技导报, 2022, 24(7): 123-131.
Fig. 1 Representative 600 MHz 1H NMR spectra of plasma samples from NBW and IURG groupsNote:1—Low/very low density lipoprotein;2—Isovalerate;3—L-leucine;4—L-valine;5—3-hydroxybutyrate; 6—Lactate; 7—Alanine; 8—Acetate; 9—2-hydroxyisovalerate;10—N-acetylmannosamine;11—N-acetylcysteine;12—Glutamine;13—Acetone; 14—Ureidopropionic acid; 15—Citrate; 16—Carnosine;17—Isocitrate; 18—Creatine; 19—Malonate; 20—Glycerophosphocholine; 21—Choline; 22—O-phosphocholine; 23—?β?-glucose; 24—Betaine; 25—?α?-glucose; 26—Glycine; 27—Tyrosine; 28—1-methylhistidine; 29—3-methylhistidine; 30—Phenylalanine; 31—Urocanate; 32—Formate.
编号 No | 代谢物 Metabolites | NBW组 | IUGR组 | 分类 Classification |
---|---|---|---|---|
1 | 低密度脂蛋白/极低密度脂蛋白 LDL/VLDL | 71.81±14.71 | 99.19±24.08* | 脂类 Lipid |
2 | 异戊酸 Isovalerate | 19.38±4.01 | 13.84±4.34* | 脂类 Lipid |
3 | 亮氨酸 Leucine | 14.08±1.80 | 10.68±2.81* | 氨基酸 Amino acids |
4 | 缬氨酸 Valine | 13.80±2.55 | 9.44±2.13** | 氨基酸 Amino acids |
5 | 乳酸 Lactate | 77.45±11.94 | 50.46±7.22* | 糖类 Carbohydrate |
6 | 丙氨酸 Alanine | 16.21±1.42 | 10.36±2.51** | 氨基酸 Amino acids |
7 | 2-羟基异戊酸 2-hydroxyisovalerate | 10.43±2.20 | 14.19±1.07* | 脂类 Lipid |
8 | N-乙酰半胱氨酸 N-acetylcysteine | 23.14±1.92 | 14.60 ± 2.65* | 氨基酸 Amino acids |
9 | 甘油磷酸胆碱Glycerophosphocholine | 22.37±1.95 | 32.02±4.53* | 脂类 Lipid |
10 | 胆碱 Choline | 87.20±4.03 | 145.20±22.73* | 脂类 Lipid |
11 | 磷酸胆碱 Phosphocholine | 111.61±13.03 | 185.33±49.41** | 脂类 Lipid |
12 | 甜菜碱 Betaine | 102.09±6.57 | 192.78±6.26** | 糖类 Carbohydrate |
13 | β-葡萄糖 β-glucose | 87.56±10.36 | 61.47±4.95* | 糖类 Carbohydrate |
14 | α-葡萄糖 α-glucose | 50.75±4.94 | 31.79±3.61* | 糖类 Carbohydrate |
15 | 酪氨酸 Tyrosine | 2.28±0.22 | 1.02±0.20* | 氨基酸 Amino acids |
16 | 3-甲基组氨酸 3-methylhistidine | 1.74±0.27 | 0.86±0.19* | 氨基酸 Amino acids |
Table 1 Peak intensity of significantly changed metabolites between the two groups based on 1H-NMR
编号 No | 代谢物 Metabolites | NBW组 | IUGR组 | 分类 Classification |
---|---|---|---|---|
1 | 低密度脂蛋白/极低密度脂蛋白 LDL/VLDL | 71.81±14.71 | 99.19±24.08* | 脂类 Lipid |
2 | 异戊酸 Isovalerate | 19.38±4.01 | 13.84±4.34* | 脂类 Lipid |
3 | 亮氨酸 Leucine | 14.08±1.80 | 10.68±2.81* | 氨基酸 Amino acids |
4 | 缬氨酸 Valine | 13.80±2.55 | 9.44±2.13** | 氨基酸 Amino acids |
5 | 乳酸 Lactate | 77.45±11.94 | 50.46±7.22* | 糖类 Carbohydrate |
6 | 丙氨酸 Alanine | 16.21±1.42 | 10.36±2.51** | 氨基酸 Amino acids |
7 | 2-羟基异戊酸 2-hydroxyisovalerate | 10.43±2.20 | 14.19±1.07* | 脂类 Lipid |
8 | N-乙酰半胱氨酸 N-acetylcysteine | 23.14±1.92 | 14.60 ± 2.65* | 氨基酸 Amino acids |
9 | 甘油磷酸胆碱Glycerophosphocholine | 22.37±1.95 | 32.02±4.53* | 脂类 Lipid |
10 | 胆碱 Choline | 87.20±4.03 | 145.20±22.73* | 脂类 Lipid |
11 | 磷酸胆碱 Phosphocholine | 111.61±13.03 | 185.33±49.41** | 脂类 Lipid |
12 | 甜菜碱 Betaine | 102.09±6.57 | 192.78±6.26** | 糖类 Carbohydrate |
13 | β-葡萄糖 β-glucose | 87.56±10.36 | 61.47±4.95* | 糖类 Carbohydrate |
14 | α-葡萄糖 α-glucose | 50.75±4.94 | 31.79±3.61* | 糖类 Carbohydrate |
15 | 酪氨酸 Tyrosine | 2.28±0.22 | 1.02±0.20* | 氨基酸 Amino acids |
16 | 3-甲基组氨酸 3-methylhistidine | 1.74±0.27 | 0.86±0.19* | 氨基酸 Amino acids |
1 | ROZANCE P J, ZASTOUPIL L, WESOLOWSKI S R, et al.. Skeletal muscle protein accretion rates and hindlimb growth are reduced in late gestation intrauterine growth-restricted fetal sheep [J]. J. Physiol., 2018, 596(1): 67-82. |
2 | SUN L W, ZHANG H, WANG Z Y, et al.. Dietary rumen-protected arginine and N-carbamylglutamate supplementation enhances fetal growth in underfed ewes [J]. Reprod. Fert. Dev., 2018, 30(8): 1116-1127. |
3 | ROSENBERG A. The IUGR newborn [J]. Semin. Perinatol., 2008, 32(3): 219-224. |
4 | ADITYA I, TAT V, SAWANA A, et al.. Use of doppler velocimetry in diagnosis and prognosis of intrauterine growth restriction (IUGR): a review [J]. J. Neonatal Perinatal Med., 2016, 9(2): 117-126. |
5 | HAN F, HU L, XUAN Y, et al.. Effects of high nutrient intake on the growth performance, intestinal morphology and immune function of neonatal intra-uterine growth-retarded pigs [J]. Brit. J. Nutr., 2013, 110(10): 1819-1827. |
6 | CONDE-AGUDELO A, PAPAGEORGHIOU A T, KENNEDY S H, et al.. Novel biomarkers for predicting intrauterine growth restriction: a systematic review and meta-analysis [J]. Brit. J. Obstet. Gynaec., 2013, 120: 681-694. |
7 | POWERS R. NMR metabolomics and drug discovery [J]. Magn. Reson. Chem., 2009, 47(S1): 2-11. |
8 | DESSI A, PUDDU M, OTTONELLO G, et al.. Metabolomics and fetal-neonatal nutrition: between “not enough” and “too much” [J]. Molecules, 2013, 18(10): 11724-11732. |
9 | SANZ-CORTÉS M, CARBAJO R J, FATIMA C, et al.. Metabolomic profile of umbilical cord blood plasma from early and late intrauterine growth restricted (IUGR) neonates with and without signs of brain vasodilation [J/OL]. PLoS One, 2013, 8(12): e80121 [2022-01-11]. . |
10 | KUIPER-MAKRIS C, ZANETTI D, VOHLEN C, et al.. Mendelian randomization and experimental IUGR reveal the adverse effect of low birth weight on lung structure and function [J/OL]. Sci. Rep., 2020, 10(1): 22395 [2022-01-09]. . |
11 | LOUIS E, BERVOETS L, REEKMANS G, et al.. Phenotyping human blood plasma by 1H-NMR: a robust protocol based on metabolite spiking and its evaluation in breast cancer [J]. Metabolomics, 2015, 11(1): 225-236. |
12 | TAO W, KANG S, CHU Q, et al.. Automics: an integrated platform for NMR-based metabonomics spectral processing and data analysis [J/OL]. BMC Bioinform., 2009, 10(1):83 [2022-01-09] . . |
13 | 张晓威,王学举,魏瑗,等.选择性胎儿宫内生长受限与代谢异常的关系——基于气相色谱-飞行时间质谱的脐血代谢组学研究[J]. 中国生育健康杂志, 2017, 28(5): 421-426. |
ZHAGN X W, WANG X J, WEI Y, et al.. Study on the relationship between selective intrauterine growth restriction (sIUGR) and metabolic disorder—metabonomics study of cord blood based on gas chromatography time-of-flight mass spectrometry (GC-TOF/MS) [J]. Chin. J. Reprod. Health, 2017, 28(5):421-426. | |
14 | 范杰,鄢友娥,刘岩松,等.尼古丁暴露孕鼠血代谢组学研究[J].环境与健康杂志, 2015, 32(11): 948-952. |
FAN J, YAN Y E, LIU Y S, et al.. Study on maternal blood metabonomics in pregnant rats exposed to nicotine [J]. J. Environ. Health, 2015, 32(11): 948-952. | |
15 | IAKUBETS O I, FAFULA R V, VOROBETS D Z, et al.. Arginase and NO-synthase pathways of L-arginine metabolism in peripheral blood lymphocytes of patients with ovarian cancer [J]. Ukr. Biokhim. Zh., 2013, 85(5): 105-113. |
16 | LEDUC L, DELVIN E, OUELLET A, et al.. Oxidized low-density lipoproteins in cord blood from neonates with intra-uterine growth restriction [J]. Eur. J. Obstet. Gynecol. Reprod. Biol., 2011, 156(1): 46-49. |
17 | 李博.日粮中添加胆碱对宫内发育迟缓猪肌肉组织代谢的影响[D].南京: 南京农业大学, 2015. |
LI B. Effects of choline on muscle metabolism in intrauterine growth retardation pigs [D]. Nanjing: Nanjing Agricultural University, 2015. | |
18 | BAHADO-SINGH R O, AKOLEKAR R, MANDAL R, et al. Metabolomic analysis for first-trimester down syndrome prediction [J/OL]. Am. J. Obstet. Gynecol., 2013, 208(5):e1371.e8 [2022-01-11]. . |
19 | BAJORIA R, SOORANNA S R, WARD S, et al.. Placental transport rather than maternal concentration of amino acids regulates fetal growth in monochorionic twins: implications for fetal origin hypothesis [J]. Am. J. Obstet. Gynecol., 2001, 185(5): 1239-1246. |
20 | 林刚.宫内生长受限猪胎盘磷酸戊糖途径受损及其营养调控的研究[D]. 北京: 中国农业大学, 2014. |
LIN G. Impaired placental pentose phosphate pathway of IUGR fetal pig and its nutritional regulation [D]. Beijng: China Agricultural University, 2014. | |
21 | DARMAUN D, ROIG J C, AUESTAD N, et al.. Glutamine metabolism in very low birth weight infants [J]. Pediatr. Res., 1997, 41(3): 391-396. |
22 | FOWDEN A L, APATU R S, SILVER M. The glucogenic capacity of the fetal pig: developmental regulation by cortisol [J]. Exp. Physiol., 1995, 80(3): 457-467. |
23 | DAVIS T A, FIOROTTO M L, BURRIN D G, et al.. Stimulation of protein synthesis by both insulin and amino acids is unique to skeletal muscle in neonatal pigs [J]. Am. J. Physiol. Endocrinol. Metab., 2002, 282(4): 880-890. |
24 | XU H D, WANG J S, LI M H, et al.. 1H-NMR based metabolomics approach to study the toxic effects of herbicide butachlor on goldfish (Carassius auratus) [J]. Aquat. Toxicol., 2014, 159: 69-80. |
25 | MARTYNYUK A E, SEUBERT C N, YAROTSKYY V, et al.. Halogenated derivatives of aromatic amino acids exhibit balanced antiglutamatergic actions: potential applications for the treatment of neurological and neuropsychiatric disorders [J]. Recent. Pat. CNS Drug. Discov., 2006, 1(3): 261-270. |
26 | RAO D R, DEODHAR A D, HARIHARAN K. Histidine metabolism in experimental protein malnutrition in rats [J]. Biochem. J., 1965, 97(1): 311-317. |
27 | MIODOVNIK M, LAVIN J P, GIMMON Z, et al.. The use of amniotic fluid 3-methyl histidine to creatinine molar ratio for the diagnosis of intrauterine growth retardation [J]. Obstet. Gynecol., 1982, 60(3): 288-293. |
28 | SUN L W, ZHANG H, FAN Y X, et al.. Metabolomic profiling in umbilical venous plasma reveals effects of dietary rumen-protected arginine or N-carbamylglutamate supplementation in nutrient-restricted Hu sheep during pregnancy [J]. Reprod. Domest. Anim., 2017, 52(3): 376-388. |
29 | 高峰.妊娠后期限饲母羊对其胎儿生长发育及出生后羔羊补偿生长的影响[D].呼和浩特: 内蒙古农业大学, 2006. |
GAO F. Effect of maternal undernutrition during late pregnancy on ovine fetal development and subsequent compensatory of postnatal lambs [D]. Hohhot: Inner Mongolia Agricultural University, 2006. | |
30 | SUN L W, ZHANG H Y, WU L, et al.. (1)H-Nuclear magnetic resonance-based plasma metabolic profiling of dairy cows with clinical and subclinical ketosis [J]. J. Dairy Sci., 2014, 97(3): 1552-1562. |
31 | ZADROZNA M, GAWLIK M, NOWAK B, et al.. Antioxidants activities and concentration of selenium, zinc and copper in preterm and IUGR human placentas [J]. J. Trace Elem. Med. Biol., 2009, 23(2): 144-148. |
32 | 张崇志,刘迎春,高峰,等.妊娠后期营养限饲对蒙古绵羊胎儿肝脏生长发育及抗氧化能力的影响[J].畜牧兽医学报, 2013, 44(8):1263-1268. |
ZHANG C Z, LIU Y C, GAO F, et al.. Effects of maternal undernutrition during late pregnancy on growth, development and anti-oxidation capability of mongolia ovine fetal liver [J]. Acta Vet. Et. Zootech. Sin., 2013, 44(8): 1263-1268. | |
33 | HEIN O V, HRING R, SCHILLING A, et al.. N-acetylcysteine decreases lactate signal intensities in liver tissue and improves liver function in septic shock patients, as shown by magnetic resonance spectroscopy: extended case report [J]. Crit. Care, 2004, 8(2): 66-71. |
34 | XU D X, CHEN Y H, HUA W, et al.. Effect of N-acetylcysteine on lipopolysaccharide-induced intra-uterine fetal death and intra-uterine growth retardation in mice [J]. Toxicol. Sci., 2005, 88(2): 525-533. |
35 | LEVER M, SLOW S. The clinical significance of betaine, an osmolyte with a key role in methyl group metabolism [J]. Clin. Biochem., 2010, 43(9): 732-744. |
[1] | YUAN Jincheng, MENG Yaxuan, SUN Yingqi, ZHAO Xinyue, WANG Fengxia, LIU Yinghui. Application of Metabolome-based Genome-wide Association Study in Plant [J]. Journal of Agricultural Science and Technology, 2021, 23(9): 12-18. |
[2] | LIU Lijia, XU Zhiqiang, HE Jia, DING Yongle, SUN Jutao. Study on Metabolic Difference of Resistance to Black Shot in Tobacco Induced by Trichoderma harzianum [J]. Journal of Agricultural Science and Technology, 2021, 23(8): 91-105. |
[3] | WU Wenliang1,2, LIN Yong1, HUANG Hao2, LIU Zhonghua1*, HUANG Jianan1. Application Progress of Metabolomics in Tea Quality and Pharmacological Research [J]. Journal of Agricultural Science and Technology, 2018, 20(10): 44-54. |
[4] | WANG Qingyu, ZHANG Jianmei, ZHAO Yazhou, PENG Wenjun*. Influence of Bee Venom on Endogenous Metabolism of Sprague-Dawley Rats Using LC-MS/MS [J]. Journal of Agricultural Science and Technology, 2018, 20(10): 146-153. |
[5] | LEI Gang, HUANG Yingjin*. Application Progress of Metabolomics in Rice Research [J]. Journal of Agricultural Science and Technology, 2017, 19(7): 27-35. |
[6] | CHEN Shou-song1, LIN Hong-zheng1,2, SUN Yun1,2*, JIN Xin-yi1,2, HU Juan1, ZHOU Zi-wei1. Research Progress on Terpenoids and Metabolic Regulation in Oolong Tea [J]. Journal of Agricultural Science and Technology, 2016, 18(5): 72-80. |
[7] | CHEN Qing, YAO Li, WANG Cheng\|hong, DENG Shi\|kai, CHU Cui\|wei, HE Jian*. Isolation and Characterization of Acetochlor\|degrading Strain Sphingomonas sp. DC\|6 and Preliminary Studies on its Metabolic Pathway [J]. , 2013, 15(5): 67-74. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||