Journal of Agricultural Science and Technology ›› 2022, Vol. 24 ›› Issue (8): 87-98.DOI: 10.13304/j.nykjdb.2022.0100
• INTELLIGENT AGRICULTURE & AGRICULTURAL MACHINERY • Previous Articles Next Articles
Wenqi ZHANG1,2,3(), Sheng WU2,3, Xinyu GUO2,3, Weiliang WEN2,3, Xianju LU2,3, Chunjiang ZHAO2,3(
)
Received:
2022-02-11
Accepted:
2022-04-17
Online:
2022-08-15
Published:
2022-08-22
Contact:
Chunjiang ZHAO
张文麒1,2,3(), 吴升2,3, 郭新宇2,3, 温维亮2,3, 卢宪菊2,3, 赵春江2,3(
)
通讯作者:
赵春江
作者简介:
张文麒 E-mail:823271351@qq.com;
基金资助:
CLC Number:
Wenqi ZHANG, Sheng WU, Xinyu GUO, Weiliang WEN, Xianju LU, Chunjiang ZHAO. Evaluation of Plant Self-rotation Multi-view Reconstruction Technique in 3D Phenotype Acquisition of Wheat Plants[J]. Journal of Agricultural Science and Technology, 2022, 24(8): 87-98.
张文麒, 吴升, 郭新宇, 温维亮, 卢宪菊, 赵春江. 植株自旋转多视角重建技术在小麦植株三维表型获取中的应用评估[J]. 中国农业科技导报, 2022, 24(8): 87-98.
Fig. 6 Visualization of point clouds reconstructed by plant self-rotation and camera rotationA, B and C are Jimai 38 samples; D, E and F are Xinnong 979 samples. G, H and I are Xinmai 26 samples. The left point cloud is obtained by plant selt-rotation, and the right by camera rotation.
Fig. 7 Point cloud Hausdorff distance visualizationA: Plant point cloud; B: Leaf point cloud; C: Spike point cloud. Each row from left to right is the experimental subject of Jimai 38, Xinnong 979 and Xinmai 26, respectively
Fig. 9 Wheat reconstruction point cloud distance statistical resultsA and B are Xinnong 979 samples; C and D are Xinmai 26 samples; E and F are Jimai 38 samples
项目 Item | 植物旋转式 Plant self-rotation | 相机旋转式 Camera rotation | |
---|---|---|---|
相机数量 Camera number | 2 | 3 | |
组件成本 Component cost/yuan | 转台装置 Turntable unit | 443 | 34 500 |
相机 Camera | 12 800 | 19 200 | |
计算机 Computer | 5 000 | 5 000 | |
图像数量 Image number | 60 | 90 | |
图像大小 Image size/Mb | 1.54 | 6.00 | |
单个样本耗时 Reconstruction time per sample/s | 932 | 2 552 | |
重建效率/(s·幅-1) Reconstruction efficiency/(s·frame-1) | 15.53 | 28.36 |
Table 1 Comparison of cost and reconstruction efficiency of plant self-rotation shooting platform and camera rotation shooting platform
项目 Item | 植物旋转式 Plant self-rotation | 相机旋转式 Camera rotation | |
---|---|---|---|
相机数量 Camera number | 2 | 3 | |
组件成本 Component cost/yuan | 转台装置 Turntable unit | 443 | 34 500 |
相机 Camera | 12 800 | 19 200 | |
计算机 Computer | 5 000 | 5 000 | |
图像数量 Image number | 60 | 90 | |
图像大小 Image size/Mb | 1.54 | 6.00 | |
单个样本耗时 Reconstruction time per sample/s | 932 | 2 552 | |
重建效率/(s·幅-1) Reconstruction efficiency/(s·frame-1) | 15.53 | 28.36 |
1 | LI L, ZHANG Q, HUANG D. A review of imaging techniques for plant phenotyping [J]. Sensors (Basel), 2014, 14(11): 20078-20111. |
2 | PIERUSCHKA R, SCHURR U. Plant phenotyping: past, present, and future [J]. Plant Phenomics, 2019(3): 1-6. |
3 | 彭永彬,谢先芝.表型组学在水稻研究中的应用[J].中国水稻科学,2020,34(4):300-306. |
PENG Y B, XIE X Z. Application of phenomics in rice research [J]. Chin. J. Rice Sci., 2020, 34(4): 300-306. | |
4 | 程超华,唐蜻,邓灿辉,等.表型组学及多组学联合分析在植物种质资源精准鉴定中的应用 [J].分子植物育种,2020,18(8):2747-2753. |
CHENG C H, TANG Q, DENG C H, et al.. Application of phenomics and multiomics joint analysis in accurate identification of plant germplasm resources [J]. Mol. Plant Breeding, 2020, 18(8): 2747-2753 | |
5 | 穆金虎,陈玉泽,冯慧,等.作物育种学领域新的革命:高通量的表型组学时代[J].植物科学学报,2016,34(6):962-971. |
MU J H, CHEN Y Z, FENG H, et al.. A new revolution in crop breeding : the era of high-throughput phenomics [J]. Plant Sci. J., 2016, 34(6): 962-971. | |
6 | 卢少志,杨蒙,杨万能,等.田间作物表型检测平台设计与试验[J].华中农业大学学报,2021,40(4):209-218. |
LU S Z, YANG M, TANG W N, et al.. Design and experiment of a platform for detecting phenotype of field crop [J]. J. Huazhong Agric. Univ., 2021, 40(4): 209-218. | |
7 | 郭庆华,吴芳芳,庞树鑫,等.Crop 3D—基于激光雷达技术的作物高通量三维表型测量平台[J].中国科学:生命科学,2016,46(10):1210-1221. |
GUO Q H, WU F F, PANG S X, et al.. Crop 3D: a platform based on LiDAR for 3D high-throughput crop phenotyping [J]. Sci. Sin.: Vitae, 2016, 46(10): 1210-1221. | |
8 | SHIFERAW B, SMALE M, BRAUM H J, et al.. Crops that feed the world 10. past successes and future challenges to the role played by wheat in global food security [J]. Food Security, 2013, 5(3): 291-317. |
9 | 刘守阳,金时超,郭庆华,等.基于数字化植物表型平台(D3P)的田间小麦冠层光截获算法开发[J].智慧农业,2020,2(1):87-98. |
LIU S Y, JIN S C, GUO Q H, et al.. An algorithm for estimating field wheat canopy lightinterception based on digital plant phenotyping platform [J]. Smart Agric., 2020, 2(1): 87-98. | |
10 | WATANABE K, GUO W, ARAI K, et al.. High-throughput phenotyping of sorghum plant height using an unmanned aerial vehicle and its application to genomic prediction modeling [J/OL]. Front. Plant Sci., 2017, 8: 421 [2022-06-22]. . |
11 | 王传宇,郭新宇,杜建军,等.基于时间序列图像的玉米植株干旱胁迫表型检测方法[J].农业工程学报,2016,32(21):189-195. |
WANG C Y, GUO X Y, DU J J, et al.. Maize plant drought stress phenotype testing method based on time-series images [J]. Trans. Chin. Soc. Agric. Eng., 2016, 32(21): 189-195. | |
12 | 黄林生,邵松,卢宪菊,等.基于卷积神经网络的生菜多光谱图像分割与配准[J].农业机械学报,2021,52(09):186-194. |
HUANG L S, SHAO S, LU X J, et al.. Segmentation and registration of lettuce multispectral image based on convolutional neural network [J]. Trans. Chin. Soc. Agric. Mach., 2021, 52(09): 186-194. | |
13 | CHOUDHURY S, BASHYAM S, QIU Y, et al.. Holistic and component plant phenotyping using temporal image sequence [J]. Plant Methods, 2018, 14(1): 1-21. |
14 | PAULUS S. Measuring crops in 3D: using geometry for plant phenotyping [J]. Plant Methods, 2019, 15(1): 1-13. |
15 | 劳彩莲,杨瀚,李鹏,等.基于消费级深度相机的玉米植株三维重建[J].农业机械学报,2019,50(7):222-228. |
LAO C L, YANG H, LI P, et al.. 3D Reconstruction of maize plants based on consumer depth camera [J]. Trans. Chin. Soc. Agric. Mach., 2019, 50(7): 222-228. | |
16 | 翟晓晓,邵杰,张吴明,等.基于移动LiDAR点云的树木三维重建[J].中国农业信息,2019,31(5):84-89. |
ZHAI X X, SHAO J, ZHANG W M, et al. Three-dimensional reconstruction of trees using mobile laser scanning point clouds [J]. China Agric. Inform., 2019, 31(5): 84-89. | |
17 | 周静静,郭新宇,吴升,等.基于多视角图像的植物三维重建研究进展[J].中国农业科技导报,2019,21(2):9-18. |
ZHOU J J, GUO X Y, WU S, et al. Research progress on plant three-dimensional reconstruction based on multi-view images [J]. J. Agric. Sci. Technol., 2019, 21(2): 9-18. | |
18 | WESTOBY M J, BRASINGTON J, GLASSER N F, et al.. ‘Structure-from-Motion’ photogrammetry: a low-cost, effective tool for geoscience applications [J]. Geomorphology, 2012, 179: 300-314. |
19 | GOESELE M, SNAVELY N, CURLESS B, et al.. Multi-view stereo for community photo collections [C]// Proceedings of the 2007 IEEE 11th International Conference on Computer Vision, October 14-21, 2007. Rio de Janeiro, Brazil: IEEE, 2007: 1-8. |
20 | LOWE D G. Distinctive image features from scale-invariant keypoints [J]. Int J. Computer Vision, 2004, 60(2): 91-110. |
21 | SCHONBERGER J L, FRAHM J M. Structure-from-motion revisited [C]// Proceedings of the IEEE conference on computer vision and pattern recognition. Las Vegas, NV, USA: IEEE 2016: 4104-4113. |
22 | WU S, WEN W, WANG Y, et al.. MVS-Pheno: a portable and low-cost phenotyping platform for maize shoots using multiview stereo 3D reconstruction [J/OL]. Plant Phenomics, 2020, 2020:1848437 [2022-06-22]. . |
23 | LIU S, ACOSTA-GAMBOA L M, HUANG X, et al.. Novel low cost 3D surface model reconstruction system for plant phenotyping [J/OL]. J. Imaging, 2017, 3(3): 39 [2022-06-22].. |
24 | ROSSI R, LEOLINI C, COSTAFREDA-AUMEDES S, et al.. Performances evaluation of a low-cost platform for high-resolution plant phenotyping [J/OL]. Sensors, 2020, 20(11): 3150 [2022-06-22]. . |
25 | WANG Y, WEN W, WU S, et al.. Maize plant phenotyping: comparing 3D laser scanning, multi-view stereo reconstruction, and 3D digitizing estimates [J/OL]. Remote Sens., 2019, 11(1): 63 [2022-06-22]. . |
26 | MOULON P, MONASSE P, PERROT R, et al.. Openmvg: Open multiple view geometry [C]// Proceedings of the International Workshop on Reproducible Research in Pattern Recognition. Cham: Springer, 2016: 60-74. |
27 | ANDREW V, GOLDBERG, SAGI H, et al. OpenMVS: multi-view stereo reconstruction library[EB/OL]. [2021-06-17]. . |
28 | ZHANG Y, TENG P, SHIMIZU Y, et al.. Estimating 3D leaf and stem shape of nursery paprika plants by a novel multi-camera photography system [J/OL]. Sensors, 2016, 16(6): 874 [2022-06-22].. |
29 | LU X, ONO E, LU S, et al.. Reconstruction method and optimum range of camera-shooting angle for 3D plant modeling using a multi-camera photography system [J]. Plant Methods, 2020, 16(1): 1-16. |
[1] | LI Shuxin, ZHANG Hao, ZHENG Housheng, ZHENG Peihe, PANG Shifeng, XU Shiquan. Transcriptome Analysis of Phenotypic Differences Between Ermaya and Changbo of Forest Cultivated Panax ginseng [J]. Journal of Agricultural Science and Technology, 2021, 23(9): 56-68. |
[2] | LIU Zhongxiang, YANG Yanzhong, WANG Xiaojuan, LIAN Xiaorong, ZHOU Wenqi, HE Haijun, ZHOU Yuqian, KOU Sirong. Phenotypic Identification and Combining Ability Effect Analysis of Mutants by Fast Neutron Irradiation [J]. Journal of Agricultural Science and Technology, 2021, 23(6): 184-194. |
[3] | WU Dan1, YE Junli1, WANG Kang1, GENG Zedong1, FU Jingbo1, LIU Lingbo2, YANG Wanneng1*. Three-dimension Reconstruction Method Based on Silhouette for Pot Rice [J]. Journal of Agricultural Science and Technology, 2020, 22(9): 87-95. |
[4] | ZHOU Jingjing1,2,3, GUO Xinyu2,3, WU Sheng2,3, DU Jianjun2,3,ZHAO Chunjiang2,3*. Research Progress on Plant Three-dimensional Reconstruction Based on Multi-view Images [J]. Journal of Agricultural Science and Technology, 2019, 21(2): 9-18. |
[5] | WANG Kaiyue, CHEN Fangquan, HUANG Wuxing*. Research Advance on Drought Stress Response Mechanism in Plants [J]. Journal of Agricultural Science and Technology, 2019, 21(2): 19-25. |
[6] | YU Zetao1,2, WEN Weiliang1,2, GUO Xinyu1,2*, WANG Yongjian1,2, QIAN Tingting3. Morphological Changes of Maize Plants at Late Grain Filling Stages Based on 3D Point Cloud [J]. Journal of Agricultural Science and Technology, 2018, 20(12): 59-66. |
[7] | PAN Xiaodi1,2, ZHANG Ying1,2, SHAO Meng1,2, MA Liming1,2, GUO Xinyu1,2*. Research Progress on Adaptive Responses of Crop Root Structure to Drought Stress [J]. Journal of Agricultural Science and Technology, 2017, 19(2): 51-58. |
[8] | YUAN Jie1,2, DU Jian-jun2, GUO Xin-yu2*. Research Progress on Maize Plant Phenotype Detection Based on Visible Image [J]. Journal of Agricultural Science and Technology, 2016, 18(6): 90-96. |
[9] | WEN Wei-liang1,2, WANG Yong-jian1,2, XU Tong-yu3*, YANG Tao3, GUO Xin-yu1,2, ZHU Hong-yu4, DONG Cheng-yu4. Geometric Modeling of Maize Ear based on Three-dimensional Point Cloud [J]. Journal of Agricultural Science and Technology, 2016, 18(5): 88-93. |
[10] | SHAO Meng1,2, ZHANG Ying1,2, GUO Xin-yu1,2*. Research Progress on Phenotype of Transport Tissue of Ear and Kernel in Maize [J]. Journal of Agricultural Science and Technology, 2016, 18(3): 38-45. |
[11] | WANG Yong\|jian1,2, WEN Wei\|liang2, GUO Xin\|yu2, ZHAO Chun\|jiang2*. Three\|dimensional Reconstruction of Plant Leaf Blade Based on Point Cloud Data [J]. , 2014, 16(5): 83-89. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||