Journal of Agricultural Science and Technology ›› 2023, Vol. 25 ›› Issue (12): 103-110.DOI: 10.13304/j.nykjdb.2022.0035
• INTELLIGENT AGRICULTURE & AGRICULTURAL MACHINERY • Previous Articles
Pengju LIU1(), Pingzeng LIU1(
), Dalei ZHANG2, Yan ZHANG1, Hui LI1, Lining LIU1, Fangjun DING3
Received:
2022-01-13
Accepted:
2022-04-12
Online:
2023-12-15
Published:
2023-12-12
Contact:
Pingzeng LIU
刘鹏菊1(), 柳平增1(
), 张大磊2, 张艳1, 李辉1, 刘力宁1, 丁方军3
通讯作者:
柳平增
作者简介:
刘鹏菊 E-mail: 2841430017@qq.com;
基金资助:
CLC Number:
Pengju LIU, Pingzeng LIU, Dalei ZHANG, Yan ZHANG, Hui LI, Lining LIU, Fangjun DING. Ventilation Control Model of Cucumber in Facility Based on Environmental Factors[J]. Journal of Agricultural Science and Technology, 2023, 25(12): 103-110.
刘鹏菊, 柳平增, 张大磊, 张艳, 李辉, 刘力宁, 丁方军. 基于环境因子的设施黄瓜通风控制模型[J]. 中国农业科技导报, 2023, 25(12): 103-110.
指标 Index | Y | X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 | X9 |
---|---|---|---|---|---|---|---|---|---|---|
Y | 1 | |||||||||
X1 | 0.987 | 1 | ||||||||
X2 | -0.819 | -0.856 | 1 | |||||||
X3 | 0.738 | 0.756 | -0.704 | 1 | ||||||
X4 | -0.177 | -0.177 | -0.021 | 0.07 | 1 | |||||
X5 | 0.778 | 0.789 | -0.664 | 0.513 | -0.482 | 1 | ||||
X6 | -0.634 | -0.657 | 0.764 | -0.555 | -0.049 | -0.575 | 1 | |||
X7 | 0.295 | 0.297 | -0.306 | 0.271 | -0.051 | 0.281 | -0.269 | 1 | ||
X8 | 0.109 | 0.122 | -0.154 | 0.109 | -0.022 | 0.142 | -0.177 | -0.147 | 1 | |
X9 | 0.842 | 0.802 | -0.806 | 0.671 | -0.013 | 0.567 | -0.567 | 0.351 | 0.059 | 1 |
Table 1 Correlation analysis of environmental indicators
指标 Index | Y | X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 | X9 |
---|---|---|---|---|---|---|---|---|---|---|
Y | 1 | |||||||||
X1 | 0.987 | 1 | ||||||||
X2 | -0.819 | -0.856 | 1 | |||||||
X3 | 0.738 | 0.756 | -0.704 | 1 | ||||||
X4 | -0.177 | -0.177 | -0.021 | 0.07 | 1 | |||||
X5 | 0.778 | 0.789 | -0.664 | 0.513 | -0.482 | 1 | ||||
X6 | -0.634 | -0.657 | 0.764 | -0.555 | -0.049 | -0.575 | 1 | |||
X7 | 0.295 | 0.297 | -0.306 | 0.271 | -0.051 | 0.281 | -0.269 | 1 | ||
X8 | 0.109 | 0.122 | -0.154 | 0.109 | -0.022 | 0.142 | -0.177 | -0.147 | 1 | |
X9 | 0.842 | 0.802 | -0.806 | 0.671 | -0.013 | 0.567 | -0.567 | 0.351 | 0.059 | 1 |
风口开度Opening size/% | 回归自变量Regression independent variable | ||||||||
---|---|---|---|---|---|---|---|---|---|
X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 | X9 | |
0 | 20.388 | 5.084 | 11.127 | 1.510 | 14.771 | 12.126 | 1.308 | 1.385 | 3.542 |
25 | 15.705 | 22.809 | 5.077 | 13.338 | 6.074 | 20.151 | 1.423 | 1.523 | 7.074 |
50 | 14.171 | 5.278 | 10.296 | 2.985 | 2.357 | 4.846 | 1.116 | 1.177 | 2.380 |
75 | 3.551 | 6.218 | 1.835 | 2.801 | 2.902 | 5.543 | 1.110 | 1.108 | 2.275 |
100 | 5.978 | 8.135 | 2.024 | 3.564 | 5.510 | 6.482 | 1.054 | 1.076 | 2.605 |
Table 2 VIF of environment fact under different opening size
风口开度Opening size/% | 回归自变量Regression independent variable | ||||||||
---|---|---|---|---|---|---|---|---|---|
X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 | X9 | |
0 | 20.388 | 5.084 | 11.127 | 1.510 | 14.771 | 12.126 | 1.308 | 1.385 | 3.542 |
25 | 15.705 | 22.809 | 5.077 | 13.338 | 6.074 | 20.151 | 1.423 | 1.523 | 7.074 |
50 | 14.171 | 5.278 | 10.296 | 2.985 | 2.357 | 4.846 | 1.116 | 1.177 | 2.380 |
75 | 3.551 | 6.218 | 1.835 | 2.801 | 2.902 | 5.543 | 1.110 | 1.108 | 2.275 |
100 | 5.978 | 8.135 | 2.024 | 3.564 | 5.510 | 6.482 | 1.054 | 1.076 | 2.605 |
风口开度Opening size/% | 变量名称 Variable | 非标准化系数Denormalization coefficient | 标准化系数Normalization coefficient | 显著性 Significance | |
---|---|---|---|---|---|
回归系数 Regression coefficient | 标准误差 Standard Error | ||||
0 | 常量Constant | 1.772 | 2.107 | — | 0.401 |
X1 | 0.560 | 0.043 | 0.557 | 0.000 | |
X3 | 0.105 | 0.011 | 0.311 | 0.000 | |
X5 | 0.412 | 0.063 | 0.231 | 0.000 | |
X6 | 0.036 | 0.006 | 0.204 | 0.000 | |
X9 | 0.026 | 0.002 | 0.253 | 0.000 | |
X2 | 0.071 | 0.010 | 0.157 | 0.000 | |
X4 | -0.313 | 0.057 | -0.065 | 0.000 | |
25 | 常量Constant | -4.117 | 0.979 | — | 0.000 |
X1 | 0.909 | 0.026 | 0.898 | 0.000 | |
X9 | 0.054 | 0.003 | 0.364 | 0.000 | |
X2 | 0.070 | 0.006 | 0.284 | 0.000 | |
50 | 常量Constant | -0.217 | 0.815 | — | 0.490 |
X1 | 0.799 | 0.013 | 0.800 | 0.000 | |
X9 | 0.085 | 0.003 | 0.305 | 0.000 | |
X2 | 0.102 | 0.007 | 0.241 | 0.000 | |
X5 | -0.061 | 0.008 | -0.130 | 0.000 | |
X4 | -0.077 | 0.012 | -0.058 | 0.000 | |
X8 | 0.003 | 0.001 | 0.033 | 0.000 | |
75 | 常量Constant | -0.799 | 0.651 | — | 0.220 |
X1 | 0.842 | 0.012 | 0.787 | 0.000 | |
X9 | 0.066 | 0.002 | 0.319 | 0.000 | |
X2 | 0.054 | 0.005 | 0.143 | 0.000 | |
X7 | -0.134 | 0.025 | -0.044 | 0.000 | |
X8 | -0.002 | 0.001 | -0.034 | 0.000 | |
X4 | -0.035 | 0.009 | -0.040 | 0.000 |
Table 3 Temperature prediction model coefficients based on different opening size
风口开度Opening size/% | 变量名称 Variable | 非标准化系数Denormalization coefficient | 标准化系数Normalization coefficient | 显著性 Significance | |
---|---|---|---|---|---|
回归系数 Regression coefficient | 标准误差 Standard Error | ||||
0 | 常量Constant | 1.772 | 2.107 | — | 0.401 |
X1 | 0.560 | 0.043 | 0.557 | 0.000 | |
X3 | 0.105 | 0.011 | 0.311 | 0.000 | |
X5 | 0.412 | 0.063 | 0.231 | 0.000 | |
X6 | 0.036 | 0.006 | 0.204 | 0.000 | |
X9 | 0.026 | 0.002 | 0.253 | 0.000 | |
X2 | 0.071 | 0.010 | 0.157 | 0.000 | |
X4 | -0.313 | 0.057 | -0.065 | 0.000 | |
25 | 常量Constant | -4.117 | 0.979 | — | 0.000 |
X1 | 0.909 | 0.026 | 0.898 | 0.000 | |
X9 | 0.054 | 0.003 | 0.364 | 0.000 | |
X2 | 0.070 | 0.006 | 0.284 | 0.000 | |
50 | 常量Constant | -0.217 | 0.815 | — | 0.490 |
X1 | 0.799 | 0.013 | 0.800 | 0.000 | |
X9 | 0.085 | 0.003 | 0.305 | 0.000 | |
X2 | 0.102 | 0.007 | 0.241 | 0.000 | |
X5 | -0.061 | 0.008 | -0.130 | 0.000 | |
X4 | -0.077 | 0.012 | -0.058 | 0.000 | |
X8 | 0.003 | 0.001 | 0.033 | 0.000 | |
75 | 常量Constant | -0.799 | 0.651 | — | 0.220 |
X1 | 0.842 | 0.012 | 0.787 | 0.000 | |
X9 | 0.066 | 0.002 | 0.319 | 0.000 | |
X2 | 0.054 | 0.005 | 0.143 | 0.000 | |
X7 | -0.134 | 0.025 | -0.044 | 0.000 | |
X8 | -0.002 | 0.001 | -0.034 | 0.000 | |
X4 | -0.035 | 0.009 | -0.040 | 0.000 |
风口开度Opening size/% | 变量名称 Variable | 非标准化系数Denormalization coefficient | 标准化系数Normalization coefficient | 显著性 Significance | |
---|---|---|---|---|---|
回归系数 Regression coefficient | 标准误差 Standard Error | ||||
100 | 常量Constant | -3.319 | 0.400 | — | 0.000 |
X1 | 0.763 | 0.019 | 0.707 | 0.000 | |
X9 | 0.075 | 0.003 | 0.308 | 0.000 | |
X5 | 0.138 | 0.018 | 0.109 | 0.000 | |
X2 | 0.076 | 0.010 | 0.156 | 0.000 | |
X6 | -0.042 | 0.007 | -0.105 | 0.000 |
Table 3 Temperature prediction model coefficients based on different tuyere openings
风口开度Opening size/% | 变量名称 Variable | 非标准化系数Denormalization coefficient | 标准化系数Normalization coefficient | 显著性 Significance | |
---|---|---|---|---|---|
回归系数 Regression coefficient | 标准误差 Standard Error | ||||
100 | 常量Constant | -3.319 | 0.400 | — | 0.000 |
X1 | 0.763 | 0.019 | 0.707 | 0.000 | |
X9 | 0.075 | 0.003 | 0.308 | 0.000 | |
X5 | 0.138 | 0.018 | 0.109 | 0.000 | |
X2 | 0.076 | 0.010 | 0.156 | 0.000 | |
X6 | -0.042 | 0.007 | -0.105 | 0.000 |
主成分 Principal component | 特征值 Eigenvalue | 贡献率 Contribution/% | 累计贡献率 Cumulative contribution/% |
---|---|---|---|
P1 | 5.751 | 95.845 | 95.845 |
P2 | 0.221 | 3.688 | 99.530 |
P3 | 0.019 | 0.312 | 99.842 |
P4 | 0.007 | 0.110 | 99.952 |
P5 | 0.006 | 0.048 | 100.00 |
P6 | 5.431e-6 | 9.052e-5 | 100.00 |
Table 5 Growth index and contribution value of cucumber
主成分 Principal component | 特征值 Eigenvalue | 贡献率 Contribution/% | 累计贡献率 Cumulative contribution/% |
---|---|---|---|
P1 | 5.751 | 95.845 | 95.845 |
P2 | 0.221 | 3.688 | 99.530 |
P3 | 0.019 | 0.312 | 99.842 |
P4 | 0.007 | 0.110 | 99.952 |
P5 | 0.006 | 0.048 | 100.00 |
P6 | 5.431e-6 | 9.052e-5 | 100.00 |
因变量Dependent variable | 自变量Variable | 估计值Estimate | 标准误差Std. Error | 显著性Significance |
---|---|---|---|---|
黄瓜长势 Cucumber growth | 常数项Intercept | -4.48 | 1.024 275 8 | P<0.001 |
X10 | 0.952 | 0.018 762 4 | P<0.001 | |
X11 | 0.043 | 0.007 364 2 | P<0.001 | |
X12 | 0.060 | 0.013 774 9 | P<0.001 |
Table 6 Analysis of greenhouse cucumber growth model based on Lasso regression
因变量Dependent variable | 自变量Variable | 估计值Estimate | 标准误差Std. Error | 显著性Significance |
---|---|---|---|---|
黄瓜长势 Cucumber growth | 常数项Intercept | -4.48 | 1.024 275 8 | P<0.001 |
X10 | 0.952 | 0.018 762 4 | P<0.001 | |
X11 | 0.043 | 0.007 364 2 | P<0.001 | |
X12 | 0.060 | 0.013 774 9 | P<0.001 |
1 | 程陈,董朝阳,黎贞发,等.日光温室芹菜外观形态及干物质积累分配模拟模型[J].农业工程学报,2021,37(10):142-151. |
CHENG C, DONG C Y, LI Z F, et al.. Simulation model of external morphology and dry matter accumulation and distribution of celery in solar greenhouse [J].Trans. Chin. Soc. Agric. Eng., 2021,37(10):142-151. | |
2 | JHA U C, BOHRA A, JHA R. Breeding approaches and genomics technologies to increase crop yield under low-temperature stress [J]. Plant Cell Rep., 2017,36:1-35. |
3 | 张川,张亨年,闫浩芳,等.微喷灌结合滴灌对温室高温环境和作物生长生理特性的影响[J].农业工程学报,2018,34(20): 83-89. |
ZHNAG C, ZHANG H N, YAN H F, et al.. Effects of micro-sprinkler irrigation combined with drip irrigation on greenhouse high temperature environment and crop growth physiological characteristics [J]. Trans. Chin. Soc. Agric. Eng., 2018,34(20): 83-89. | |
4 | 徐立鸿,苏远平,梁毓明.面向控制的温室系统小气候环境模型要求与现状[J].农业工程学报,2013,29(19):1-15. |
XU L H, SU Y P, LIANG S M. Requirement and current situation of control-oriented microclimate environmental model in greenhouse system [J]. Trans.Chin. Soc. Agric. Eng., 2013,29(19):1-15. | |
5 | 袁洪波,李莉,王俊衡,等.基于温度积分算法的温室环境控制方法[J].农业工程学报,2015,31(11):221-227. |
YUAN H B, LI L, WANG J H, et al.. Control method for greenhouse climate based on temperature integration [J]. Trans. Chin. Soc. Agric. Eng., 2015,31(11): 221-227. | |
6 | WANG L, WANG B, ZHU M. Multi-model adaptive fuzzy control system based on switch mechanism in a greenhouse [J]. Appl. Eng. Agric.,2020,36:549-556. |
7 | SUN W, KONG F, ZHANG J, et al.. Greenhouse intelligent control system based on indoor and outdoor environmental data fusion [J/OL]. IOP Conf. Seri.: Earth and Environ. Sci., 440(4):042073 [2023-06-16]. . |
8 | CHENG Y. Research on intelligent control of agricultural greenhouse based on fuzzy PID control [J]. J. Environ. Eng.Sci.,2020,15(3):1-6. |
9 | BERSANI C, FOSSA M, PRIARONE A, et al.. Model predictive control versus traditional relay control in a high energy efficiency greenhouse [J]. Energies,2021,14(11):1-21. |
10 | HAMIDANE H, FAIZ S E, LACHHAB A, et al.. Constrained discrete model predictive control of a greenhouse relative humidity [C/OL]// E3S Web of Conferences, 2021, 229: 01001 [2023-06-16]. . |
11 | 吴曼玲,陈一飞,李琦,等.基于灰色预测的温室地源热泵系统温度变频调控及验证[J].农业工程学报,2016,32(16): 183-187. |
WU M L, CHEN Y F, LI Q, et al.. Frequency transformation and its validation of ground source heat pump system based on grey prediction of greenhouse temperature [J]. Trans. Chin. Soc. Agric. Eng., 2016,32(16):183-187. | |
12 | SONG Y E, MOON A, AN S Y, et al.. Prediction of smart greenhouse temperature-humidity based on multi-dimensional LSTMs [J]. J. Korean Soc. Precision Eng., 2019,36(3):239-246. |
13 | 温永菁,李春,薛庆禹,等.基于逐步回归与BP神经网络的日光温室温湿度预测模型对比分析[J].中国农学通报,2018,34:115-125. |
WEN Y J, LI C, XUE Q Y, et al.. Temperature and humidity prediction models in solar greenhouse:comparative analysis based on stepwise regression and BP neural network [J]. Chin. Agric. Sci. Bull., 2018,34:115-125. | |
14 | 秦琳琳,马娇,黄云梦,等.基于积温理论的温室温度混杂系统预测控制[J].农业机械学报,2018,49:347-355. |
QIN L L, MA J, HUANG Y M, et al.. Predictive control of greenhouse temperature hybrid system based on crop temperature integration theory [J].Trans. Chin. Soc. Agric. Mach., 2018,49:347-355. | |
15 | ZHANG X, GAO L, ZHAO Z Y, et al.. Modeling and analysis of greenhouse environmental factors in north China based on path analysis and stepwise regression [J]. Semin-Cienc Agrar., 41(6):2587-2596 2020, 41(6):2587-2596. |
16 | 陈俐均,杜尚丰,李嘉鹏,等.温室环境温度预测自适应机理模型参数在线识别方法[J].农业工程学报,2017, |
33(S1):315-321. CHEN L J, DU S F, LI J P, et al.. Online identification method of parameters for greenhouse temperature prediction self-adapting mechanism model [J]. Trans. Chin. Soc. Agric. Eng., 2017,33(S1):315-321. | |
17 | 张观山,李天华,侯加林.考虑动态吸收率的玻璃温室覆盖层温度预测模型[J].农业工程学报,2020,36:201-211. |
ZHANG G S, LI T H, HOU J L. Model for predicting the temperature of glass greenhouse cover considering dynamic absorptivity [J]. Trans. Chin. Soc. Agric. Eng.,2020,36(5): 201-211. | |
18 | JUNG D H, KIM H J, KIM J Y, et al.. Model predictive control via output feedback neural network for improved Multi-window greenhouse ventilation control [J/OL]. Sensors, 2020,20(6):1756 [2023-06-16]. . |
19 | 秦琳琳,马国旗,储著东,等.基于灰色预测模型的温室温湿度系统建模与控制[J].农业工程学报,2016,32(S1):233-241. |
QIN L L, MA G Q, CHU Z D, et al.. Molding and control of greenhouse temperature-humidity system based on grey prediction model [J]. Trans. Chin. Soc. Agric. Eng.,2016,32(S1):233-241. | |
20 | SUMARUDIN A, ISMANTOHADI E, PUSPANINGRUM A,et al.. Implementation irrigation system using support vector machine for precision agriculture based on IoT [J/OL]. IOP Conf. Ser.: Mater. Sci. Eng., 2021,1098:032098 [2023-06-16]. . |
21 | KANEDA Y, IBAYASHI H, OISHI N,et al.. Greenhouse environmental control system based on SW-SVR [J]. Procedia Computer Sci., 2015,08(249):860-869. |
22 | 刘浩,孙景生,段爱旺,等.基于AutoCAD软件确定番茄与青椒叶面积的简易方法[J].中国农学通报,2009,25(5):287-293. |
LIU H, SUN J S, DUAN A W, et al.. Simple model for tomato and green pepper leaf area based on auto CAD software [J]. Chin. Agric. Sci. Bull.,2009,25(5):287-293. | |
23 | WOLD S, ESBENSEN K, GELADI P. Principal component analysis [J].Chemom. Intell. Lab. Systs.,1987,2:37-52. |
24 | 张红梅,金海军,丁小涛,等.有机肥无机肥配施对温室黄瓜生长、产量和品质的影响[J].植物营养与肥料学报,2014, 20(1): 247-253. |
ZHANG H M, JIN H J, DING X T, et al.. Effects of application of organic and inorganic fertilizers on the growth,yield and quality of cucumber in greenhouse [J]. Plant Nutr. Fert. Sci.,2014,20(1): 247-253. | |
25 | THOMPSON B. Stepwise regression and stepwise discriminant analysis need not apply here: a guidelines editorial [J]. Edu. Psychol. Measure., 1995,55(4):525-534. |
26 | REID S, TIBSHIRANI R, FRIEDMAN J. A Study of error variance estimation in Lasso regression [J]. Statistica Sinica,2016(1):453-457. |
27 | 陶惠林,徐良骥,冯海宽,等.基于无人机数码影像的冬小麦株高和生物量估算[J].农业工程学报,2019,35(19):107-116. |
TAO H L, XU L J, FENG H K, et al.. Estimation of plantheight and biomass of winter wheat based on UAV digita image [J]. Trans. Chin. Soc. Agric. Eng., 2019,35(19): 107-116. | |
28 | HAIR J, BLACK W, BABIN B, et al.. Advanced Diagnostics for Multiple Regression: A Supplement to Multivariate Data Analysis [M]. Upper Saddle River, NJ: Pearson Prentice Hall, 2010:87-93. |
[1] | Fengxia BIAN, Kaige LIU, Xinmin RONG. Development and Verification of Prediction Model for Grape Downy Mildew Based on Machine Learning [J]. Journal of Agricultural Science and Technology, 2023, 25(8): 126-137. |
[2] | Jing ZHANG, Simeng GUO, Yingchun HAN, Yaping LEI, Fangfang XING, Wenli DU, Yabing LI, Lu FENG. Estimation of Cotton Yield Based on Unmanned Aerial Vehicle RGB Images [J]. Journal of Agricultural Science and Technology, 2022, 24(11): 112-120. |
[3] | Yuanyuan DING, Xi’ao WANG, Ce LIU, Shuju LI, Zhihui CHENG. Establishment of Comprehensive Evaluation and Prediction Equation for Cucumber Wet-cold Tolerance at Seedling Stage [J]. Journal of Agricultural Science and Technology, 2022, 24(11): 87-96. |
[4] | WANG Chuanxu, WANG Kang, CHEN Lin, LI Xue, ZHANG Hongwei. Research and Realization of Granary Temperature Field Prediction Model Based on Kriging Interpolation and BP Neural Network [J]. Journal of Agricultural Science and Technology, 2021, 23(9): 96-102. |
[5] | SU Yumeng§, ZHANG Xuting§, Terigele, TIAN Min, SHANG Xiaorui, LI Guojing, WANG Ruigang*. Identification of microRNAs in Caragana intermedia Kuang by High Throughput Sequencing Under Drought Stress [J]. Journal of Agricultural Science and Technology, 2021, 23(3): 51-57. |
[6] | LIU Huan, YANG Yanjie, SHI Yuliang, LI Min, XING Manman. Analysis and Prediction on the Annual Temperature and Humidity Change of Solar Greenhouse in Jiaodong Area [J]. Journal of Agricultural Science and Technology, 2021, 23(12): 136-144. |
[7] | LIU Zhe, YUAG Donggen, WANG EN. Automatic Counting Method of Wheat Grain Based on Improved Bayes Matting Algorithm [J]. Journal of Agricultural Science and Technology, 2020, 22(8): 75-82. |
[8] |
LI Xiaowei1,WU Baoguo1*,SU Xiaohui1,CHEN Yuling1,PENG Yiqin2,YU Yonghui2, FAN Xiaohu2.
Study on Estimation Model of Eucalyptus Accumulation in Guangxi Based on Decision Tree Integrated Learning
[J]. Journal of Agricultural Science and Technology, 2020, 22(6): 81-90.
|
[9] | YANG Xuecheng, HUANG Runxia, ZHOU Qing, XU Mingfeng, TANG Qiming, SU Zhiyao*. Association of Bryophytes with Site Factors and Indicator Species in Agroforestry Ecotone of East Guangdong [J]. Journal of Agricultural Science and Technology, 2020, 22(4): 177-186. |
[10] | ZHANG Xingwei, CHEN Chao*, TIAN Shan, FU Lin. Prediction of Apple Initial Flowering Period Based on Machine Learning [J]. Journal of Agricultural Science and Technology, 2020, 22(10): 93-100. |
[11] | CHEN Yuling1, WU Baoguo1*, CUI Yan 2, WEI Yanjun3. Research and Application of Prediction Model of Subcompartment Volume for Larix principis-rupprechtii Mayr. Based on Back Propagation Neural Network [J]. Journal of Agricultural Science and Technology, 2019, 21(7): 82-93. |
[12] | TANG Jun, HE Banghua, TANG Li, WEN Yadong, CHEN Wen, FU Liang, ZHOU Bing*. Mining Inherent Law of Cut Tobacco Drying Process Based on Large Data [J]. Journal of Agricultural Science and Technology, 2019, 21(12): 94-101. |
[13] | GAO Wei1, GAO Lei2, ZHOU Yong3, WANG Lihe1, NIU Wenxue1, ZHAO Yonglai1, LIU Wenzhi3*. Design of Aquaculture Water Quality Control Management System Based on ZigBee [J]. Journal of Agricultural Science and Technology, 2018, 20(7): 74-82. |
[14] | ZHAO Rongrong1, SHAO Huifang1*, FAN Lei2, ZHANG Manman3, WANG Shanshan1, CHEN Fangquan1, LIU Zhihong1, NIU Guiyan1, HAO Haohao4, XU Zicheng1. Relationship Analasis between Chemical Compositions and Sensory Quality of in Drying Process [J]. Journal of Agricultural Science and Technology, 2017, 19(2): 93-102. |
[15] | FAN Yating, LIU Sheng*. Predicting the Content of Benzene Alcohol Extract of Acacia by Multi-Model Method [J]. Journal of Agricultural Science and Technology, 2017, 19(2): 131-138. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||