Journal of Agricultural Science and Technology ›› 2024, Vol. 26 ›› Issue (7): 210-222.DOI: 10.13304/j.nykjdb.2022.1053
• INNOVATIVE METHODS AND TECHNOLOGIES • Previous Articles
Kunhong JIANG1(), Zhenying XU2, Zhenzhen GUO1, Lin BAI1, Xiaoxia HAO1, Dongmei JIANG1(
), Shixiu QIU2(
)
Received:
2022-12-05
Accepted:
2023-04-13
Online:
2024-07-15
Published:
2024-07-12
Contact:
Dongmei JIANG,Shixiu QIU
姜坤宏1(), 许祯莹2, 郭真真1, 白林1, 郝晓霞1, 姜冬梅1(
), 邱时秀2(
)
通讯作者:
姜冬梅,邱时秀
作者简介:
姜坤宏 E-mail:2020302149@stu.sicau.edu.cn
基金资助:
CLC Number:
Kunhong JIANG, Zhenying XU, Zhenzhen GUO, Lin BAI, Xiaoxia HAO, Dongmei JIANG, Shixiu QIU. Principles of Microbial Electrochemical Technology and Its Application in the Recycling of Livestock and Poultry Wastes[J]. Journal of Agricultural Science and Technology, 2024, 26(7): 210-222.
姜坤宏, 许祯莹, 郭真真, 白林, 郝晓霞, 姜冬梅, 邱时秀. 微生物电化学技术原理及其在畜禽废弃物资源化领域的应用研究进展[J]. 中国农业科技导报, 2024, 26(7): 210-222.
基质 Substance | 前处理 Pretreatment | 电极材料 Electrode material(+/-) | MFC总体积 Total volume of MFC/mL | MFC电压 MFC voltage /mV | 外阻 External resistance/Ω | 功率密度 Power density | 库伦效率 Coulombic efficiency /% | 参考文献 Reference |
---|---|---|---|---|---|---|---|---|
牛粪 Cow manure | 无 None | 石墨板/空气 阴极 Graphite plate/air cathode | 125(单室) 125 (One chamber) | 1.48(闭路) 1.48 (Closed circuit) | 4 600 | 0.34 mW·m-2 | 0.22 | [ |
猪场废水 Swine wastewater | 无 None | 碳布/空气阴极 Carbon cloth/air cathode | 28(单室) 28 (One chamber) | 357(开路) 357 (Open circuit) | 1 000 | 261 mW·m-2 | 8 | [ |
牛粪 Cow manure | 超声波 Supersonic wave | 石墨棒 Graphite rod | 1 700(双室) 1 700 (Dual-chamber) | 212(闭路) 212 (Closed circuit) | 1 000 | 29.9~102.0 mW·m-2 | 5~12 | [ |
猪粪 Swine manure | 优化有机负载率和外阻 Optimize organic loading rate and external resistance | 石墨棒+石墨粒 Graphite rod+graphite particle | 730(双室) 730 (Dual-chamber) | 无 None | 6~200 | 1.8~5.5 mW·m-3 | 15~77 | [ |
牛粪 Cow manure | 阳极接种活性污泥或生活污水 Anode inoculated activated sludge or domestic sewage | 石墨纤维/ 活性炭 Graphite fiber/activated carbon | 25(单室) 25 (One chamber) | 429~577 (闭路) 429~577 (Closed circuit) | 1 000 | 910~1 259 mW·m-2 | 40~69 | [ |
猪粪 Swine manure | 阳极室悬浮/固定接种污泥 Anode chamber suspended / fixed inoculated activated sludge | 碳布 Carbon cloth | 150(双室) 150 (Dual-chamber) | 340~485 (开路) 340~485 (Open circuit) | 100 | 16~39 mW·m-3 | 22.8~23.8 | [ |
猪粪 Swine manure | MFC结构改良 MFC structure improvement | 石墨棒+石墨粒 Graphite rod+graphite particle | 5 000(双室) 5 000 (Dual-chamber) | 42~632(开路) 425~632 (Open circuit) | 30 | 2~20 mW·m-3 | 5~24 | [ |
Table 1 Operation parameters of MFCs for treatment of several livestock and poultry wastes
基质 Substance | 前处理 Pretreatment | 电极材料 Electrode material(+/-) | MFC总体积 Total volume of MFC/mL | MFC电压 MFC voltage /mV | 外阻 External resistance/Ω | 功率密度 Power density | 库伦效率 Coulombic efficiency /% | 参考文献 Reference |
---|---|---|---|---|---|---|---|---|
牛粪 Cow manure | 无 None | 石墨板/空气 阴极 Graphite plate/air cathode | 125(单室) 125 (One chamber) | 1.48(闭路) 1.48 (Closed circuit) | 4 600 | 0.34 mW·m-2 | 0.22 | [ |
猪场废水 Swine wastewater | 无 None | 碳布/空气阴极 Carbon cloth/air cathode | 28(单室) 28 (One chamber) | 357(开路) 357 (Open circuit) | 1 000 | 261 mW·m-2 | 8 | [ |
牛粪 Cow manure | 超声波 Supersonic wave | 石墨棒 Graphite rod | 1 700(双室) 1 700 (Dual-chamber) | 212(闭路) 212 (Closed circuit) | 1 000 | 29.9~102.0 mW·m-2 | 5~12 | [ |
猪粪 Swine manure | 优化有机负载率和外阻 Optimize organic loading rate and external resistance | 石墨棒+石墨粒 Graphite rod+graphite particle | 730(双室) 730 (Dual-chamber) | 无 None | 6~200 | 1.8~5.5 mW·m-3 | 15~77 | [ |
牛粪 Cow manure | 阳极接种活性污泥或生活污水 Anode inoculated activated sludge or domestic sewage | 石墨纤维/ 活性炭 Graphite fiber/activated carbon | 25(单室) 25 (One chamber) | 429~577 (闭路) 429~577 (Closed circuit) | 1 000 | 910~1 259 mW·m-2 | 40~69 | [ |
猪粪 Swine manure | 阳极室悬浮/固定接种污泥 Anode chamber suspended / fixed inoculated activated sludge | 碳布 Carbon cloth | 150(双室) 150 (Dual-chamber) | 340~485 (开路) 340~485 (Open circuit) | 100 | 16~39 mW·m-3 | 22.8~23.8 | [ |
猪粪 Swine manure | MFC结构改良 MFC structure improvement | 石墨棒+石墨粒 Graphite rod+graphite particle | 5 000(双室) 5 000 (Dual-chamber) | 42~632(开路) 425~632 (Open circuit) | 30 | 2~20 mW·m-3 | 5~24 | [ |
基质 Substrate | 特殊处理 Special treatment | 电极材料 Electrode material (+/-) | MEC总体积 Total volume of MFC/mL | 外电源电压 External power supply voltage /mV | 化学需氧量去除率 Chemical oxygen demand removal rate /% | 阴极产物 Cathodal products | 产物回 收率 Product recovery rate/% | 参考文献 Reference |
---|---|---|---|---|---|---|---|---|
猪粪 Swine manure | 温度和电压 Temperature and voltage | 石墨毡 Graphite felt | 500(单室) 500 (one chamber) | 0.1~0.9 | 8~28 | 甲烷 Methane | — | [ |
添加KH2PO4 Adding KH2PO4 | 碳毡/不锈钢 Carbon felt/stainless steel | 1 800(三室) 1 800 (3 chamber) | 0.3 | 21~34 | 磷酸盐、氨气 Phosphate, Ammonia | 38.9,13.6 | [ | |
疏水膜和pH Hydrophobic membrane and pH | 碳毡/不锈钢 Carbon felt/stainless steel | 1 000(双室) 1 000 (dual-chamber) | 0.2 | 85 | 铵盐 Ammonium salt | 73~89 | [ | |
长期运行 Long-term operation | 石墨毡/不锈钢 Graphite felt/ stainless steel | 16 000(双室) 16 000 (dual-chamber) | 1.0 | — | 氢气 Hydrogen | — | [ | |
沼渣 Fermented sludge | 容积和电压 Volume and voltage | 石墨毡/不锈钢 Graphite felt/ stainless steel | 100~1 000(双室) 100~1 000 (dual-chamber) | 0.6~1.4 | — | 氨气 Ammonia | 42~53 | [ |
猪场废水 Swine wastewater | 无 None | 碳毡/泡沫镍 Carbon felt/nickel foam | 1 500(双室) 1 500 (dual-chamber) | 0.4~1.2 | 95~98 | 氢气 Hydrogen | 74.24 | [ |
Table 2 Operation parameters of MECs for treatment of several livestock and poultry wastes
基质 Substrate | 特殊处理 Special treatment | 电极材料 Electrode material (+/-) | MEC总体积 Total volume of MFC/mL | 外电源电压 External power supply voltage /mV | 化学需氧量去除率 Chemical oxygen demand removal rate /% | 阴极产物 Cathodal products | 产物回 收率 Product recovery rate/% | 参考文献 Reference |
---|---|---|---|---|---|---|---|---|
猪粪 Swine manure | 温度和电压 Temperature and voltage | 石墨毡 Graphite felt | 500(单室) 500 (one chamber) | 0.1~0.9 | 8~28 | 甲烷 Methane | — | [ |
添加KH2PO4 Adding KH2PO4 | 碳毡/不锈钢 Carbon felt/stainless steel | 1 800(三室) 1 800 (3 chamber) | 0.3 | 21~34 | 磷酸盐、氨气 Phosphate, Ammonia | 38.9,13.6 | [ | |
疏水膜和pH Hydrophobic membrane and pH | 碳毡/不锈钢 Carbon felt/stainless steel | 1 000(双室) 1 000 (dual-chamber) | 0.2 | 85 | 铵盐 Ammonium salt | 73~89 | [ | |
长期运行 Long-term operation | 石墨毡/不锈钢 Graphite felt/ stainless steel | 16 000(双室) 16 000 (dual-chamber) | 1.0 | — | 氢气 Hydrogen | — | [ | |
沼渣 Fermented sludge | 容积和电压 Volume and voltage | 石墨毡/不锈钢 Graphite felt/ stainless steel | 100~1 000(双室) 100~1 000 (dual-chamber) | 0.6~1.4 | — | 氨气 Ammonia | 42~53 | [ |
猪场废水 Swine wastewater | 无 None | 碳毡/泡沫镍 Carbon felt/nickel foam | 1 500(双室) 1 500 (dual-chamber) | 0.4~1.2 | 95~98 | 氢气 Hydrogen | 74.24 | [ |
电场类型 Type of electric field | 电场方向 Field direction | 添加剂 Additive | 堆体最高 温度 Maximum temperature of heap/℃ | 三维荧光光谱区域Ⅲ(富里酸类)相对面积 Emission-excitation matrix region Ⅲ (fulvic acids) relative area | 三维荧光光谱区域Ⅴ(腐殖酸类)相对面积 Emission-excitation matrix region Ⅴ (humic acids) relative area | 种子发芽指数 Germination index/% | 累计排放量 Cumulative emissions/ (mol·kg-1 DW) | 参考文献 Reference | |||
---|---|---|---|---|---|---|---|---|---|---|---|
氨气 Ammonia gas | 甲烷 Methane | 氧化 亚氮 Nitrous oxide | |||||||||
— | — | — | 58 | 83 | 219 | 99 | — | 1.6 | 0.898 | [ | |
2 V直流电 2 V direct current | 水平 Horizontal | — | 65 | 80 | 363 | 138 | — | 0.2 | 0.005 | [ | |
— | — | 生物炭 Biochar | 68 | 150~200 | 370 | 108 | — | — | — | [ | |
2 V直流电 2 V direct current | 水平 Horizontal | 生物炭 Biochar | 71 | 150~200 | 665 | 138 | — | — | — | [ | |
5 V交流电 5 V alternating current | 水平 Horizontal | — | 91 | 150~200 | 430 | 141 | — | — | — | [ | |
10 V 直流电 10 V direct current | 垂直 Vertical | — | 72 | 175~200 | 300 | 128 | 0.06 | — | 0.010~0.013 | [ |
Table 3 Effects of several electric-field assisted on greenhouse gas emissions and maturity of chicken manure aerobic compost
电场类型 Type of electric field | 电场方向 Field direction | 添加剂 Additive | 堆体最高 温度 Maximum temperature of heap/℃ | 三维荧光光谱区域Ⅲ(富里酸类)相对面积 Emission-excitation matrix region Ⅲ (fulvic acids) relative area | 三维荧光光谱区域Ⅴ(腐殖酸类)相对面积 Emission-excitation matrix region Ⅴ (humic acids) relative area | 种子发芽指数 Germination index/% | 累计排放量 Cumulative emissions/ (mol·kg-1 DW) | 参考文献 Reference | |||
---|---|---|---|---|---|---|---|---|---|---|---|
氨气 Ammonia gas | 甲烷 Methane | 氧化 亚氮 Nitrous oxide | |||||||||
— | — | — | 58 | 83 | 219 | 99 | — | 1.6 | 0.898 | [ | |
2 V直流电 2 V direct current | 水平 Horizontal | — | 65 | 80 | 363 | 138 | — | 0.2 | 0.005 | [ | |
— | — | 生物炭 Biochar | 68 | 150~200 | 370 | 108 | — | — | — | [ | |
2 V直流电 2 V direct current | 水平 Horizontal | 生物炭 Biochar | 71 | 150~200 | 665 | 138 | — | — | — | [ | |
5 V交流电 5 V alternating current | 水平 Horizontal | — | 91 | 150~200 | 430 | 141 | — | — | — | [ | |
10 V 直流电 10 V direct current | 垂直 Vertical | — | 72 | 175~200 | 300 | 128 | 0.06 | — | 0.010~0.013 | [ |
1 | LOVLEY D R, HOLMES D E. Electromicrobiology: the ecophysiology of phylogenetically diverse electroactive microorganisms [J]. Nat. Rev. Microbiol., 2022, 20(1): 5-19. |
2 | KOCH C, HARNISCH F. Is there a specific ecological niche for electroactive microorganisms? [J]. Chem. Electron. Chem., 2016, 3(9): 1282-1295. |
3 | LOVLEY D R, PHILLIPS E J. Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese [J]. Appl. Environ. Microbiol., 1988, 54(6): 1472-1480. |
4 | LOVLEY D R, GIOVANNONI S J, WHITE D C, et al.. Geobacter metallireducens gen. nov. sp. nov., a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals [J]. Arch. Microbiol., 1993, 159(4): 336-344. |
5 | LOVLEY D R, UEKI T, ZHANG T, et al.. Geobacter: the microbe electric’s physiology, ecology, and practical applications [J]. Adv. Microb. Physiol., 2011, 59: 1-100. |
6 | LEMAIRE O N, MEJEAN V, IOBBI-NIVOL C. The shewanella genus: ubiquitous organisms sustaining and preserving aquatic ecosystems [J]. FEMS Microbiol. Rev., 2020, 44(2): 155-170. |
7 | SCHRÖDER U, HARNISCH F, ANGENENT L T. Microbial electrochemistry and technology: terminology and classification [J]. Energ. Environ. Sci., 2015, 8(2): 513-519. |
8 | CAO B C, ZHAO Z P, PENG L L, et al.. Silver nanoparticles boost charge-extraction efficiency in shewanella microbial fuel cells [J]. Science, 2021, 373(6561): 1336-1340. |
9 | LOGAN B E, CALL D, CHENG S, et al.. Microbial electrolysis cells for high yield hydrogen gas production from organic matter [J]. Environ. Sci. Technol., 2008, 42(23): 8630-8640. |
10 | KORTH B, HARNISCH F. Spotlight on the energy harvest of electroactive microorganisms: the impact of the applied anode potential [J/OL]. Front. Microbiol., 2019, 10: 1352 [2022-11-03]. . |
11 | MOLLAEI M, TIMMERS P H A, SUAREZ-DIEZ M, et al.. Comparative proteomics of geobacter sulfurreducens PCA(T) in response to acetate, formate and/or hydrogen as electron donor [J]. Environ. Microbiol., 2021, 23(1): 299-315. |
12 | SEGURA D, MAHADEVAN R, JUAREZ K, et al.. Computational and experimental analysis of redundancy in the central metabolism of geobacter sulfurreducens [J/OL]. PLoS Comput. Biol., 2008, 4(2): e36[2022-11-03]. . |
13 | UEKI T, LOVLEY D R. Genome-wide gene regulation of biosynthesis and energy generation by a novel transcriptional repressor in geobacter species [J]. Nucl. Acids Res., 2010, 38(3): 810-821. |
14 | ESTEVE-NUNEZ A, NUNEZ C, LOVLEY D R. Preferential reduction of FeIII over fumarate by geobacter sulfurreducens [J]. J. Bacteriol., 2004, 186(9): 2897-2899. |
15 | CALL D F, LOGAN B E. Lactate oxidation coupled to iron or electrode reduction by geobacter sulfurreducens PCA [J]. Appl. Environ. Microbiol., 2011, 77(24): 8791-8794. |
16 | UEKI T. Key enzymes for anaerobic lactate metabolism in geobacter sulfurreducens [J/OL]. Appl. Environ. Microbiol., 2021, 87(2):e01968-20 [2022-11-03]. . |
17 | SUMMERS Z M, UEKI T, ISMAIL W, et al.. Laboratory evolution of geobacter sulfurreducens for enhanced growth on lactate via a single-base-pair substitution in a transcriptional regulator [J]. ISME J., 2012, 6(5): 975-983. |
18 | NEALSON K H, SCOTT J. Ecophysiology of the Genus Shewanella [M]. German: Springer, 2006: 1133-1151. |
19 | SERRES M H, RILEY M. Genomic analysis of carbon source metabolism of shewanella oneidensis MR-1: predictions versus experiments [J]. J. Bacteriol., 2006, 188(13): 4601-4609. |
20 | TANG Y J, HWANG J S, WEMMER D E, et al.. Shewanella oneidensis MR-1 fluxome under various oxygen conditions [J]. Appl. Environ. Microbiol., 2007, 73(3): 718-729. |
21 | PINCHUK G E, RODIONOV D A, YANG C, et al.. Genomic reconstruction of shewanella oneidensis MR-1 metabolism reveals a previously uncharacterized machinery for lactate utilization [J]. Proc. Natl. Acad. Sci. USA, 2009, 106(8): 2874-2879. |
22 | BRUTINEL E D, GRALNICK J A. Preferential utilization of D-lactate by shewanella oneidensis [J]. Appl. Environ. Microbiol., 2012, 78(23): 8474-8476. |
23 | PINCHUK G E, GEYDEBREKHT O V, HILL E A, et al.. Pyruvate and lactate metabolism by shewanella oneidensis MR-1 under fermentation, oxygen limitation, and fumarate respiration conditions [J]. Appl. Environ. Microbiol., 2011, 77(23): 8234-8240. |
24 | HUNT K A, FLYNN J M, NARANJO B, et al.. Substrate-level phosphorylation is the primary source of energy conservation during anaerobic respiration of shewanella oneidensis strain MR-1 [J]. J. Bacteriol., 2010, 192(13): 3345-3351. |
25 | KANE A L, BRUTINEL E D, JOO H, et al.. Formate metabolism in shewanella oneidensis generates proton motive force and prevents growth without an electron acceptor [J]. J. Bacteriol., 2016, 198(8): 1337-1346. |
26 | KOUZUMA A, KASAI T, HIROSE A, et al.. Catabolic and regulatory systems in shewanella oneidensis MR-1 involved in electricity generation in microbial fuel cells [J/OL]. Front. Microbiol., 2015, 6: 609 [2022-11-03]. . |
27 | KANE A L, SZABO R E, GRALNICK J A. Engineering cooperation in an anaerobic coculture [J/OL]. Appl. Environ. Microbiol., 2021, 87(11): e02852-20 [2022-11-03]. . |
28 | RICHTER K, SCHICKLBERGER M, GESCHER J. Dissimilatory reduction of extracellular electron acceptors in anaerobic respiration [J]. Appl. Environ. Microbiol., 2012, 78(4): 913-921. |
29 | TROJAN D, SCHREIBER L, BJERG J T, et al.. A taxonomic framework for cable bacteria and proposal of the candidate genera electrothrix and electronema [J]. Syst. Appl. Microbiol., 2016, 39(5): 297-306. |
30 | STRYCHARZ-GLAVEN S M, TENDER L M. Study of the mechanism of catalytic activity of G. sulfurreducens biofilm anodes during biofilm growth [J]. ChemSusChem, 2012, 5(6): 1106-1118. |
31 | BONANNI P S, SCHROTT G D, ROBUSCHI L, et al.. Charge accumulation and electron transfer kinetics in geobacter sulfurreducens biofilms [J]. Energ. Environ. Sci., 2012, 5(3): 6188-6195. |
32 | SHI L, RICHARDSON D J, WANG Z, et al.. The roles of outer membrane cytochromes of shewanella and geobacter in extracellular electron transfer [J]. Environ. Microbiol. Rep., 2009, 1(4): 220-227. |
33 | XU S, JANGIR Y, EL-NAGGAR M Y. Disentangling the roles of free and cytochrome-bound flavins in extracellular electron transport from shewanella oneidensis MR-1 [J]. Electrochimica Acta, 2016, 198: 49-55. |
34 | UEKI T. Cytochromes in extracellular electron transfer in geobacter [J/OL]. Appl. Environ. Microb., 2021, 87(10).e03109-20 [2022-11-03]. . |
35 | SHI L, DONG H L, REGUERA G, et al.. Extracellular electron transfer mechanisms between microorganisms and minerals [J]. Nat. Rev. Mircobiol., 2016, 14(10): 651-662. |
36 | KRACKE F, VASSILEV I, KROMER J O. Microbial electron transport and energy conservation-the foundation for optimizing bioelectrochemical systems [J/OL]. Front. Microbiol., 2015, 6: 575 [2022-11-03]. . |
37 | EDWARDS M J, WHITE G F, BUTT J N, et al.. The crystal structure of a biological insulated transmembrane molecular wire [J]. Cell, 2020, 181(3): 665-673. |
38 | LOVLEY D R. Electrically conductive pili: biological function and potential applications in electronics [J]. Curr. Opin. Electrochem., 2017, 4(1): 190-198. |
39 | LOVLEY D R, WALKER D J F. Geobacter protein nanowires [J/OL]. Front. Microbiol., 2019, 10: 2078 [2022-11-03]. . |
40 | THIRUMURTHY M A, JONES A K. Geobacter cytochrome omcZs binds riboflavin: implications for extracellular electron transfer [J/OL]. Nanotechnology, 2020, 31(12): 124001 [2022-11-03]. . |
41 | GU Y Q, SRIKANTH V, SALAZAR-MORALES A I, et al.. Structure of geobacter pili reveals secretory rather than nanowire behaviour [J]. Nature, 2021, 597(7876): 430-434. |
42 | UEKI T, LEANG C, INOUE K, et al.. Identification of multicomponent histidine-aspartate phosphorelay system controlling flagellar and motility gene expression in geobacter species [J]. J. Biol. Chem., 2012, 287(14): 10958-10966. |
43 | LIU X, ZHUO S Y, JING X Y, et al.. Flagella act as geobacter biofilm scaffolds to stabilize biofilm and facilitate extracellular electron transfer [J/OL]. Biosens. Bioelectron., 2019, 146: 111748 [2022-11-03]. . |
44 | LIU X, JING X Y, YE Y, et al.. Bacterial vesicles mediate extracellular electron transfer [J]. Environ. Sci. Technol. Lett., 2020, 7(1): 27-34. |
45 | ZHANG B, CHENG H Y, WANG A J. Extracellular electron transfer through visible light induced excited-state outer membrane C-type cytochromes of Geobacter sulfurreducens [J/OL]. Bioelectrochemistry, 2021, 138: 107683 [2022-11-03]. . |
46 | HUANG L, TANG J, CHEN M, et al.. Two modes of riboflavin-mediated extracellular electron transfer in geobacter uraniireducens [J/OL]. Front. Microbiol., 2018, 9: 2886 [2022-11-03]. . |
47 | ZHUANG Z, YANG G, ZHUANG L. Exopolysaccharides matrix affects the process of extracellular electron transfer in electroactive biofilm [J/OL]. Sci. Total Environ., 2022, 806(Pt 3): 150713 [2022-11-03]. . |
48 | GORBY Y A, YANINA S, MCLEAN J S, et al.. Electrically conductive bacterial nanowires produced by shewanella oneidensis strain MR-1 and other microorganisms [J]. Proc. Natl. Acad. Sci. USA, 2006, 103(30): 11358-11363. |
49 | GORGEL M, ULSTRUP J J, BOGGILD A, et al.. High-resolution structure of a type IV pilin from the metal-reducing bacterium shewanella oneidensis [J/OL]. BMC Struct. Biol., 2015, 15(1): 4 [2022-11-03]. . |
50 | MARSILI E, BARON D B, SHIKHARE I D, et al.. Shewanella secretes flavins that mediate extracellular electron transfer [J]. Proc. Natl. Acad. Sci. USA, 2008, 105(10): 3968-3973. |
51 | COURSOLLE D, BARON D B, BOND D R, et al.. The mtr respiratory pathway is essential for reducing flavins and electrodes in shewanella oneidensis [J]. J. Bacteriol., 2010, 192(2): 467-474. |
52 | KOTLOSKI N J, GRALNICK J A. Flavin electron shuttles dominate extracellular electron transfer by shewanella oneidensis [J/OL]. MBio, 2013, 4(1): e00553-12 [2022-11-03]. . |
53 | VON CANSTEIN H, OGAWA J, SHIMIZU S, et al.. Secretion of flavins by shewanella species and their role in extracellular electron transfer [J]. Appl. Environ. Mircob., 2008, 74(3): 615-623. |
54 | COVINGTON E D, GELBMANN C B, KOTLOSKI N J, et al.. An essential role for ushA in processing of extracellular flavin electron shuttles by shewanella oneidensis [J]. Mol. Microbiol., 2010, 78(2): 519-532. |
55 | YANG Y, DING Y, HU Y, et al.. Enhancing bidirectional electron transfer of shewanella oneidensis by a synthetic flavin pathway [J]. ACS Synth. Biol., 2015, 4(7): 815-823. |
56 | CHENG Z H, XIONG J R, MIN D, et al.. Promoting bidirectional extracellular electron transfer of shewanella oneidensis MR-1 for hexavalent chromium reduction via elevating intracellular cAMP level [J]. Biotechnol. Bioeng., 2020, 117(5): 1294-1303. |
57 | EDEL M, STURM G, STURM-RICHTER K, et al.. Extracellular riboflavin induces anaerobic biofilm formation in shewanella oneidensis [J/OL]. Biotechnol. Biofuels., 2021, 14(1): 130 [2022-11-03]. . |
58 | KEES E D, PENDLETON A R, PAQUETE C M, et al.. Secreted flavin cofactors for anaerobic respiration of fumarate and urocanate by shewanella oneidensis: cost and role [J/OL]. Appl. Environ. Microbiol., 2019, 85(16): e00852-19 [2022-11-03]. . |
59 | SUN W N, LIN Z F, YU Q Z, et al.. Promoting extracellular electron transfer of shewanella oneidensis MR-1 by optimizing the periplasmic cytochrome c network [J/OL]. Front. Microbiol., 2021, 12: 727709 [2022-11-03]. . |
60 | ZHANG Y T, ZHANG Y, PENG L. Electrochemical fluorescence microscopy reveals insignificant long-range extracellular electron transfer in shewanella oneidensis anodic processes [J/OL]. Electrochim. Acta, 2021, 398:139305 [2022-11-03]. . |
61 | JIANG D, JIANG K, LI R, et al.. Influence of different inoculation densities of black soldier fly larvae (hermetia illucens) on heavy metal immobilization in swine manure [J]. Environ. Sci. Pollut. Res., 2022, 29(36): 54378-54390. |
62 | GIRARD M, NIKIEMA J, BRZEZINSKI R, et al.. A review of the environmental pollution originating from the piggery industry and of the available mitigation technologies: towards the simultaneous biofiltration of swine slurry and methane [J]. Can. J. Civil. Eng., 2009, 36(12): 1946-1957. |
63 | POACH M E, HUNT P G, REDDY G B, et al.. Swine wastewater treatment by marsh-pond-marsh constructed wetlands under varying nitrogen loads [J]. Ecol. Eng., 2004, 23(3): 165-175. |
64 | YOKOYAMA H, OHMORI H, ISHIDA M, et al.. Treatment of cow-waste slurry by a microbial fuel cell and the properties of the treated slurry as a liquid manure [J]. Anim. Sci. J., 2006, 77(6): 634-638. |
65 | MIN B, KIM J, OH S, et al.. Electricity generation from swine wastewater using microbial fuel cells [J]. Water Res., 2005, 39(20): 4961-4968. |
66 | SHEN J G, WANG C X, LIU Y P, et al.. Effect of ultrasonic pretreatment of the dairy manure on the electricity generation of microbial fuel cell [J]. Biochem. Eng. J., 2018, 129: 44-49. |
67 | MOLOGNONI D, PUIG S, BALAGUER M D, et al.. Multiparametric control for enhanced biofilm selection in microbial fuel cells [J]. J. Chem. Techonl. Biot, 2016, 91(6): 1720-1727. |
68 | XIE B, GONG W, DING A, et al.. Microbial community composition and electricity generation in cattle manure slurry treatment using microbial fuel cells: effects of inoculum addition [J]. Environ. Sci. Pollut. Res., 2017, 24(29): 23226-23235. |
69 | WU J Y, LAY C H, CHIA S R, et al.. Economic potential of bioremediation using immobilized microalgae-based microbial fuel cells [J]. Clean Technol. Environ., 2021, 23(8): 2251-2264. |
70 | VILAJELIU-PONS A, PUIG S, POUS N, et al.. Microbiome characterization of MFCs used for the treatment of swine manure [J]. J. Hazard. Mater., 2015, 288: 60-68. |
71 | WU X Y, SONG T S, ZHU X J, et al.. Construction and operation of microbial fuel cell with chlorella vulgaris biocathode for electricity generation [J]. Appl. Biochem. Biotechnol., 2013, 171(8): 2082-2092. |
72 | PREMIER G C, KIM J R, MICHIE I, et al.. Automatic control of load increases power and efficiency in a microbial fuel cell [J]. J. Power Sources, 2011, 196(4): 2013-2019. |
73 | SLEUTELS T H, DARUS L, HAMELERS H V, et al.. Effect of operational parameters on coulombic efficiency in bioelectrochemical systems [J]. Bioresour. Technol., 2011, 102(24): 11172-11176. |
74 | SRIVASTAVA R K, BODDULA R, POTHU R. Microbial fuel cells: technologically advanced devices and approach for sustainable/renewable energy development [J/OL]. Energy Convers. Manage., 2022, 13:100160 [2022-11-03]. . |
75 | SHRIVASTAVA A, SHARMA R K. Lignocellulosic biomass based microbial fuel cells: performance and applications [J/OL]. J. Clean. Prod., 2022, 361: 132269 [2022-11-03]. . |
76 | PARVIN Y, MONEM K M, BIRIA D. Application of a membrane-less air cathode microbial fuel cell to treat municipal waste composting leachate [J/OL]. J. Environ. Manage., 2023, 325: 116538 [2022-11-03].. |
77 | MA J C, ZHANG J, ZHANG Y Z, et al.. Progress on anodic modification materials and future development directions in microbial fuel cells [J/OL]. J. Power Sources, 2023, 556: 232486 [2022-11-03]. . |
78 | JECHALKE S, HEUER H, SIEMENS J, et al.. Fate and effects of veterinary antibiotics in soil [J]. Trends Microbiol., 2014, 22(9): 536-545. |
79 | CHEN J, WANG T T, ZHANG K, et al.. The fate of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) from livestock wastewater (dominated by quinolone antibiotics) treated by microbial fuel cell (MFC) [J/OL]. Ecotoxicol. Environ. Saf., 2021, 218: 112267 [2022-11-03]. . |
80 | ONDON B S, LI S, ZHOU Q, et al.. Simultaneous removal and high tolerance of norfloxacin with electricity generation in microbial fuel cell and its antibiotic resistance genes quantification [J/OL]. Bioresour. Technol., 2020, 304: 122984[2022-11-03]. . |
81 | TOPCU S, TASKAN E. Effect of the tetracycline antibiotics on performance and microbial community of microbial fuel cell [J]. Bioproc. Biosyst. Eng., 2021, 44(3): 595-605. |
82 | LONG S, ZHAO L, CHEN J C, et al.. Tetracycline inhibition and transformation in microbial fuel cell systems: performance, transformation intermediates, and microbial community structure [J/OL]. Bioresour. Technol., 2021, 322: 124534 [2022-11-03]. . |
83 | ZHANG Y F, ANGELIDAKI I. Microbial electrolysis cells turning to be versatile technology: recent advances and future challenges [J]. Water Res., 2014, 56: 11-25. |
84 | YU J, KIM S, KWON O S. Effect of applied voltage and temperature on methane production and microbial community in microbial electrochemical anaerobic digestion systems treating swine manure [J]. J. Microbiol. Biotechn., 2019, 46(7): 911-923. |
85 | CERRILLO M, BURGOS L, NOGUEROL J, et al.. Ammonium and phosphate recovery in a three chambered microbial electrolysis cell: towards obtaining struvite from livestock manure [J/OL]. Processes, 2021, 9(11):1916 [2022-11-03] .. |
86 | ZOU L, WANG C, ZHAO X, et al.. Enhanced anaerobic digestion of swine manure via a coupled microbial electrolysis cell [J/OL]. Bioresour. Technol., 2021, 340: 125619 [2022-11-03]. . |
87 | CERRILLO M, OLIVERAS J, VINAS M, et al.. Comparative assessment of raw and digested pig slurry treatment in bioelectrochemical systems [J]. Bioelectrochemistry, 2016, 110: 69-78. |
88 | CERRILLO M, BURGOS L, SERRANO-FINETTI E, et al.. Hydrophobic membranes for ammonia recovery from digestates in microbial electrolysis cells: assessment of different configurations [J/OL]. J. Environ. Chem. Eng., 2021, 9(4):105289[2022-11-03]. . |
89 | SAN-MARTÍN M I, SOTRES A, ALONSO R M, et al.. Assessing anodic microbial populations and membrane ageing in a pilot microbial electrolysis cell [J]. Int. J. Hydrogen. Energ., 2019, 44(32): 17304-17315. |
90 | SAN-MARTÍN M I, MATEOS R, ESCAPA A, et al.. Understanding nitrogen recovery from wastewater with a high nitrogen concentration using microbial electrolysis cells [J]. J. Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng., 2019, 54(5): 472-477. |
91 | SHEN R X, JIANG Y, GE Z, et al.. Microbial electrolysis treatment of post-hydrothermal liquefaction wastewater with hydrogen generation [J]. Appl. Energ., 2018, 212: 509-515. |
92 | YILMAZEL Y D, DURAN M. Biohydrogen production from cattle manure and its mixtures with renewable feedstock by hyperthermophilic caldicellulosiruptor bescii [J/OL]. J. Clean. Prod., 2021, 292:125969 [2022-11-03]. . |
93 | DING L K, LIN H J, ZAMALLOA C, et al.. Simultaneous phosphorus recovery, sulfide removal, and biogas production improvement in electrochemically assisted anaerobic digestion of dairy manure [J/OL]. Sci. Total Environ., 2021, 777:146226[2022-11-03]. . |
94 | TANG J, LI X, ZHAO W, et al.. Electric field induces electron flow to simultaneously enhance the maturity of aerobic composting and mitigate greenhouse gas emissions [J]. Bioresour. Technol., 2019, 279: 234-242. |
95 | CAO Y B, WANG X, ZHANG X Y, et al.. An electric field immobilizes heavy metals through promoting combination with humic substances during composting [J/OL]. Bioresour. Technol., 2021, 330: 124996 [2022-11-03]. . |
96 | TANG J H, LI X, CUI P, et al.. Nitrification plays a key role in N2O emission in electric-field assisted aerobic composting [J/OL]. Bioresource Technol., 2020, 297:122470 [2022-11-03]. . |
97 | FU T, SHANGGUAN H Y, WU J X, et al.. Insight into the synergistic effects of conductive biochar for accelerating maturation during electric field-assisted aerobic composting [J/OL]. Bioresour. Technol., 2021, 337:125359 [2022-11-03].. |
98 | CAO Y, WANG X, ZHANG X Y, et al.. The effects of electric field assisted composting on ammonia and nitrous oxide emissions varied with different electrolytes [J/OL]. Bioresour. Technol., 2022, 344: 126194 [2022-11-03]. . |
99 | FU T, SHANGGUAN H, SHEN C, et al.. Moisture migration driven by the electric field causes the directional differentiation of compost maturity [J/OL]. Sci. Total Environ., 2022, 811: 152415 [2022-11-03]. . |
100 | FU T, TANG J, WU J, et al.. Alternating electric field enables hyperthermophilic composting of organic solid wastes [J/OL]. Sci. Total Environ., 2022, 828: 154439 [2022-11-03]. . |
101 | FU T, SHANGGUAN H Y, WEI J R, et al.. In-situ electrolytic oxygen is a feasible replacement for conventional aeration during aerobic composting [J/OL]. J. Hazard. Mater., 2022, 426: 127846 [2022-11-03]. . |
[1] | Lu LIU, Xiuping TAO, Jianchao SONG, Bin SHANG, Wenqian XU, Hongmin DONG, Yangyang CAI. Bench-scale Study on Operation Effect and Power Generation Performance Treatment of Dairy Farms Wastewater by Microbial Fuel Cell [J]. Journal of Agricultural Science and Technology, 2022, 24(4): 134-143. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||