Journal of Agricultural Science and Technology ›› 2024, Vol. 26 ›› Issue (7): 199-209.DOI: 10.13304/j.nykjdb.2022.1026
• BIO-MANUFACTURING & RESOURCE AND ECOLOGY • Previous Articles
Lingwei KONG1,2(), Kongtan WANG1,3, Liwen MAI1,4, Yupeng WU2, Xiongfei WANG5, Zhaobi WANG5, Jiacong LIN1,4(
), Qinfen LI1,4(
)
Received:
2022-11-24
Accepted:
2023-03-21
Online:
2024-07-15
Published:
2024-07-12
Contact:
Jiacong LIN,Qinfen LI
孔令玮1,2(), 王孔檀1,3, 麦力文1,4, 伍玉鹏2, 王熊飞5, 王朝弼5, 林嘉聪1,4(
), 李勤奋1,4(
)
通讯作者:
林嘉聪,李勤奋
作者简介:
孔令玮E-mail: klwdqy@163.com
基金资助:
CLC Number:
Lingwei KONG, Kongtan WANG, Liwen MAI, Yupeng WU, Xiongfei WANG, Zhaobi WANG, Jiacong LIN, Qinfen LI. Effects of Carbon Source with Different Bioavailability on Vermicomposting[J]. Journal of Agricultural Science and Technology, 2024, 26(7): 199-209.
孔令玮, 王孔檀, 麦力文, 伍玉鹏, 王熊飞, 王朝弼, 林嘉聪, 李勤奋. 不同生物利用度碳源对蚯蚓堆肥影响分析[J]. 中国农业科技导报, 2024, 26(7): 199-209.
指标 Index | 菠萝皮渣 Pineapple peel | 水稻秸秆 Rice straw | 番茄秸秆 Tomato straw | 牛粪 Cow manure |
---|---|---|---|---|
pH | 4.69±0.11 | 7.79±0.01 | 7.60±0.01 | 7.39±0.04 |
电导率Electrical conductivity/(mS·cm-1) | 3.93±0.03 | 3.62±0.04 | 1.91±0.01 | 1.98±0.01 |
总有机碳TOC/% | 37.52±0.23 | 36.41±0.11 | 42.51±0.32 | 41.12±0.21 |
全氮TN/% | 0.59±0.01 | 0.58±0.02 | 1.01±0.01 | 1.96±0.02 |
碳氮比C/N | 63.59 | 62.77 | 42.09 | 20.98 |
Table 1 Basic physical and chemical properties of compost base material
指标 Index | 菠萝皮渣 Pineapple peel | 水稻秸秆 Rice straw | 番茄秸秆 Tomato straw | 牛粪 Cow manure |
---|---|---|---|---|
pH | 4.69±0.11 | 7.79±0.01 | 7.60±0.01 | 7.39±0.04 |
电导率Electrical conductivity/(mS·cm-1) | 3.93±0.03 | 3.62±0.04 | 1.91±0.01 | 1.98±0.01 |
总有机碳TOC/% | 37.52±0.23 | 36.41±0.11 | 42.51±0.32 | 41.12±0.21 |
全氮TN/% | 0.59±0.01 | 0.58±0.02 | 1.01±0.01 | 1.96±0.02 |
碳氮比C/N | 63.59 | 62.77 | 42.09 | 20.98 |
指标 Index | 菠萝皮渣 Pineapple peel | 水稻秸秆 Rice straw | 番茄秸秆 Tomato straw | 牛粪 Cow manure |
---|---|---|---|---|
易利用有机碳含量LCP1 content/(g·kg-1) | 197.71±1.13 | 91.13±0.81 | 128.31±1.24 | 133.13±0.90 |
中等利用度有机碳含量LCP2 content/(g·kg-1) | 173.10±0.64 | 108.33±0.80 | 63.42±0.90 | 18.50±0.21 |
非活性有机碳含量RCP content/(g·kg-1) | 4.42±0.11 | 164.21±0.90 | 233.22±1.20 | 202.06±1.30 |
易利用碳素有效率ACC1/% | 52.69±0.31 | 25.05±0.24 | 30.20±0.60 | 32.30±0.11 |
中等利用碳素有效率ACC2/% | 46.13±0.22 | 29.78±0.30 | 14.92±0.20 | 18.54±0.33 |
碳素有效率ACC/% | 50.91±0.44 | 54.84±0.52 | 27.23±0.20 | 50.91±0.44 |
Table 2 Carbon content and efficiency of different bioavailability in compost base material
指标 Index | 菠萝皮渣 Pineapple peel | 水稻秸秆 Rice straw | 番茄秸秆 Tomato straw | 牛粪 Cow manure |
---|---|---|---|---|
易利用有机碳含量LCP1 content/(g·kg-1) | 197.71±1.13 | 91.13±0.81 | 128.31±1.24 | 133.13±0.90 |
中等利用度有机碳含量LCP2 content/(g·kg-1) | 173.10±0.64 | 108.33±0.80 | 63.42±0.90 | 18.50±0.21 |
非活性有机碳含量RCP content/(g·kg-1) | 4.42±0.11 | 164.21±0.90 | 233.22±1.20 | 202.06±1.30 |
易利用碳素有效率ACC1/% | 52.69±0.31 | 25.05±0.24 | 30.20±0.60 | 32.30±0.11 |
中等利用碳素有效率ACC2/% | 46.13±0.22 | 29.78±0.30 | 14.92±0.20 | 18.54±0.33 |
碳素有效率ACC/% | 50.91±0.44 | 54.84±0.52 | 27.23±0.20 | 50.91±0.44 |
处理 Treatment | 易利用有机碳含量 LCP1 content/% | 中等利用度有机碳含量 LCP2 content/% | 非活性有机碳含量 RCP content/% |
---|---|---|---|
PCM | 41.51 | 30.96 | 27.53 |
RCM | 29.05 | 23.64 | 47.31 |
TCM | 31.10 | 16.42 | 52.48 |
CM | 32.37 | 18.54 | 49.13 |
Table 3 Carbon proportion of different treatment groups
处理 Treatment | 易利用有机碳含量 LCP1 content/% | 中等利用度有机碳含量 LCP2 content/% | 非活性有机碳含量 RCP content/% |
---|---|---|---|
PCM | 41.51 | 30.96 | 27.53 |
RCM | 29.05 | 23.64 | 47.31 |
TCM | 31.10 | 16.42 | 52.48 |
CM | 32.37 | 18.54 | 49.13 |
类别Type | 指标Index | 时间Time/d | CM | PCM | RCM | TCM |
---|---|---|---|---|---|---|
蚯蚓繁殖Earthworm propagation | 总数 Total number | 0 | 15 β | 15 α | 15 β | 15 β |
60 | 93±11.01 αc | 19±7.02 αd | 344±11.21 αb | 385±11.02 αa | ||
幼蚓数 Number of juvenile earthworms | 0 | — | — | — | — | |
60 | 81±3.54 c | 6±0.21 d | 336±5.17 b | 375±4.21 a | ||
成蚓数 Number of adult earthworms | 0 | 15 α | 15 α | 15 α | 15 α | |
60 | 12±0.58 αa | 14±2.12 αa | 8±2.30 βb | 10±2.83 βb | ||
蚓茧数 Cocoon number | 60 | 46±0.21 b | 27±3.54 c | 37±6.01 b | 61±8.49 a | |
总增数量 Total increment | 60 | 78±0.07 c | 4±0.03 d | 329±0.04 b | 370±1.12 a | |
日增数量 Daily incremental number | 60 | 1.30 c | 0.07 d | 5.72 b | 6.41 a | |
蚯蚓生长 Earthworm growth | 总质量 Total mass/g | 0 | 4.00±0.03 βa | 4.00±0.02 βa | 3.90±0.01 βa | 4.10±0.04 βa |
60 | 6.50±0.82 αb | 7.90±0.88 αb | 15.50±3.31 αa | 16.10±0.13 αa | ||
幼蚓质量 Mass of juvenile earthworms/g | 0 | — | — | — | — | |
60 | 1.73±0.53 b | 0.06±0.01 c | 10.90±1.74 a | 11.00±0.31 a | ||
成蚓质量 Mass of adult earthworms/g | 0 | 4.05±0.12 αa | 4.01±0.02 βa | 3.90±0.05 αa | 4.10±0.11 αa | |
60 | 4.80±0.29 αb | 7.80±0.79 αa | 4.50±0.61 αb | 5.10±0.18 αb | ||
单只幼蚓质量/g Mass of single juvenile earthworm/g | 0 | — | — | — | — | |
60 | 0.02±0.003 a | 0.01±0.001 a | 0.03±0.003 a | 0.03±0.005 b | ||
单只成蚓质量 Mass of single adult earthworm/g | 0 | 0.27±0.03 βa | 0.27±0.02 βa | 0.26±0.02 βa | 0.27±0.01 βa | |
60 | 0.40±0.04 αb | 0.60±0.02 αa | 0.60±0.16 αa | 0.50±0.09 αb | ||
总增质量 Gross mass gain/g | 60 | 2.61±0.97 b | 3.91±0.88 c | 11.60±3.45 a | 12.32±0.34 a | |
日增质量 Daily incremental mass gain/(g·d-1) | 60 | 0.04±0.01 c | 0.07±0.01 b | 0.19±0.02 a | 0.21±0.03 a |
Table 4 Effect of earthworm growth and reproduction
类别Type | 指标Index | 时间Time/d | CM | PCM | RCM | TCM |
---|---|---|---|---|---|---|
蚯蚓繁殖Earthworm propagation | 总数 Total number | 0 | 15 β | 15 α | 15 β | 15 β |
60 | 93±11.01 αc | 19±7.02 αd | 344±11.21 αb | 385±11.02 αa | ||
幼蚓数 Number of juvenile earthworms | 0 | — | — | — | — | |
60 | 81±3.54 c | 6±0.21 d | 336±5.17 b | 375±4.21 a | ||
成蚓数 Number of adult earthworms | 0 | 15 α | 15 α | 15 α | 15 α | |
60 | 12±0.58 αa | 14±2.12 αa | 8±2.30 βb | 10±2.83 βb | ||
蚓茧数 Cocoon number | 60 | 46±0.21 b | 27±3.54 c | 37±6.01 b | 61±8.49 a | |
总增数量 Total increment | 60 | 78±0.07 c | 4±0.03 d | 329±0.04 b | 370±1.12 a | |
日增数量 Daily incremental number | 60 | 1.30 c | 0.07 d | 5.72 b | 6.41 a | |
蚯蚓生长 Earthworm growth | 总质量 Total mass/g | 0 | 4.00±0.03 βa | 4.00±0.02 βa | 3.90±0.01 βa | 4.10±0.04 βa |
60 | 6.50±0.82 αb | 7.90±0.88 αb | 15.50±3.31 αa | 16.10±0.13 αa | ||
幼蚓质量 Mass of juvenile earthworms/g | 0 | — | — | — | — | |
60 | 1.73±0.53 b | 0.06±0.01 c | 10.90±1.74 a | 11.00±0.31 a | ||
成蚓质量 Mass of adult earthworms/g | 0 | 4.05±0.12 αa | 4.01±0.02 βa | 3.90±0.05 αa | 4.10±0.11 αa | |
60 | 4.80±0.29 αb | 7.80±0.79 αa | 4.50±0.61 αb | 5.10±0.18 αb | ||
单只幼蚓质量/g Mass of single juvenile earthworm/g | 0 | — | — | — | — | |
60 | 0.02±0.003 a | 0.01±0.001 a | 0.03±0.003 a | 0.03±0.005 b | ||
单只成蚓质量 Mass of single adult earthworm/g | 0 | 0.27±0.03 βa | 0.27±0.02 βa | 0.26±0.02 βa | 0.27±0.01 βa | |
60 | 0.40±0.04 αb | 0.60±0.02 αa | 0.60±0.16 αa | 0.50±0.09 αb | ||
总增质量 Gross mass gain/g | 60 | 2.61±0.97 b | 3.91±0.88 c | 11.60±3.45 a | 12.32±0.34 a | |
日增质量 Daily incremental mass gain/(g·d-1) | 60 | 0.04±0.01 c | 0.07±0.01 b | 0.19±0.02 a | 0.21±0.03 a |
Fig. 1 Basic physicochemical properties of vermicompostNote:Different lowercase letters indicate significant differences between different treatments of same time at P<0.05level; ** indicates significant difference between different times of same treatment at P<0.01 level.
Fig. 2 Carbon and nitrogen conversion and sequestration effect of vermicompostNote:Different lowercase letters indicate significant differences between different treatments of same time at the P<0.05level; ** indicates significant difference between different times of same treatment at P<0.01 level.
Fig. 3 Correlation analysis between different raw material carbon fractions and earthworm growth and reproductionNote:LCP1—Labile carbon pool Ⅰ; LCP2—Labile carbon pool Ⅱ; RCP—Recalcitrant carbon pool.
Fig. 4 Correlation analysis between carbon fraction of different raw materials and carbon and nitrogen changesNote:LCP1—Labile carbon pool Ⅱ; LCP2—Labile carbon pool Ⅱ; RCP—Recalcitrant carbon pool; NH4+-N—Ammonium nitrogen; NO3--N—Nitrate nitrogen; TOC—Total organic carbon; TN—Total nitrogen; HS—Humus; HA—Humic acid; FA—Fulvic acid; FRTOC—TOC fixed rate;FRTN—TN fixed rate.
参数 Parameter | 成蚓质量 Mass of adult earthworms | 幼蚓质量 Mass of young earthworms | 成蚓数 Number of adult earthworms | 幼蚓数 Number of young earthworms | TOC固定率 Fixed rate of TOC | TN固定率Fixed rate of TN |
---|---|---|---|---|---|---|
总有机碳TOC | 0.65 | 1.26 | 1.42 | 1.28 | 1.52 | 1.31 |
全氮TN | 0.67 | 0.42 | 0.70 | 0.43 | 0.43 | 0.42 |
易利用有机碳LCP1 | 1.24 | 1.31 | 1.37 | 1.32 | 1.32 | 1.36 |
中等利用有机LCP2 | 0.99 | 1.14 | 0.95 | 1.14 | 1.12 | 1.15 |
难利用有机碳RCP | 1.05 | 1.56 | 0.84 | 1.56 | 1.52 | 1.56 |
碳素活度AC | 1.12 | 0.43 | 0.89 | 0.43 | 0.26 | 0.43 |
易利用碳素活度AC1 | 1.15 | 0.32 | 0.95 | 0.32 | 0.32 | 0.33 |
中等利用碳素活度AC2 | 1.09 | 0.29 | 0.85 | 0.29 | 0.29 | 0.29 |
碳素有效率ACC | 1.09 | 0.16 | 0.87 | 0.16 | 0.15 | 0.16 |
易利用碳素有效率ACC1 | 1.15 | 0.13 | 1.17 | 0.13 | 0.13 | 0.13 |
中等利用碳素有效率ACC2 | 0.96 | 0.13 | 0.90 | 0.13 | 0.13 | 0.13 |
活性有机碳LCP | 1.13 | 1.45 | 0.95 | 1.44 | 1.42 | 1.46 |
活性有机碳/全氮LCP/TN | 0.84 | 1.37 | 0.85 | 1.37 | 1.36 | 1.36 |
易利用有机碳/全氮 LCP1/TN | 0.81 | 1.13 | 1.11 | 1.13 | 1.17 | 1.15 |
中等利用有机碳/全氮LCP2/TN | 0.82 | 1.01 | 0.84 | 1.01 | 0.98 | 0.99 |
难利用有机碳/全氮RCP/TN | 1.07 | 1.52 | 0.95 | 1.52 | 1.50 | 1.49 |
Table 5 VIP value of raw materiali carbon components
参数 Parameter | 成蚓质量 Mass of adult earthworms | 幼蚓质量 Mass of young earthworms | 成蚓数 Number of adult earthworms | 幼蚓数 Number of young earthworms | TOC固定率 Fixed rate of TOC | TN固定率Fixed rate of TN |
---|---|---|---|---|---|---|
总有机碳TOC | 0.65 | 1.26 | 1.42 | 1.28 | 1.52 | 1.31 |
全氮TN | 0.67 | 0.42 | 0.70 | 0.43 | 0.43 | 0.42 |
易利用有机碳LCP1 | 1.24 | 1.31 | 1.37 | 1.32 | 1.32 | 1.36 |
中等利用有机LCP2 | 0.99 | 1.14 | 0.95 | 1.14 | 1.12 | 1.15 |
难利用有机碳RCP | 1.05 | 1.56 | 0.84 | 1.56 | 1.52 | 1.56 |
碳素活度AC | 1.12 | 0.43 | 0.89 | 0.43 | 0.26 | 0.43 |
易利用碳素活度AC1 | 1.15 | 0.32 | 0.95 | 0.32 | 0.32 | 0.33 |
中等利用碳素活度AC2 | 1.09 | 0.29 | 0.85 | 0.29 | 0.29 | 0.29 |
碳素有效率ACC | 1.09 | 0.16 | 0.87 | 0.16 | 0.15 | 0.16 |
易利用碳素有效率ACC1 | 1.15 | 0.13 | 1.17 | 0.13 | 0.13 | 0.13 |
中等利用碳素有效率ACC2 | 0.96 | 0.13 | 0.90 | 0.13 | 0.13 | 0.13 |
活性有机碳LCP | 1.13 | 1.45 | 0.95 | 1.44 | 1.42 | 1.46 |
活性有机碳/全氮LCP/TN | 0.84 | 1.37 | 0.85 | 1.37 | 1.36 | 1.36 |
易利用有机碳/全氮 LCP1/TN | 0.81 | 1.13 | 1.11 | 1.13 | 1.17 | 1.15 |
中等利用有机碳/全氮LCP2/TN | 0.82 | 1.01 | 0.84 | 1.01 | 0.98 | 0.99 |
难利用有机碳/全氮RCP/TN | 1.07 | 1.52 | 0.95 | 1.52 | 1.50 | 1.49 |
1 | 孙振钧. 蚯蚓养殖实用技术[M]. 北京: 中国科学技术出版社, 2018: 1-4. |
2 | BHAT S A, SINGH J. Earthworms as organic waste managers and biofertilizer producers [J]. Waste Biomass Valoriz., 2018, 9:1073-1086. |
3 | 林嘉聪, 刘志刚, 袁巧霞, 等. 蚯蚓分离方法与设备的研究现状[J]. 中国农业科技导报, 2017, 19(2): 103-109. |
LIN J C, LIU Z G, YUAN Q X, et al.. Research progress on earthworm separating methods and devices [J]. J. Agric. Sci. Technol., 2017, 19(2): 103-109. | |
4 | 李贺, 郭海滨, 魏雅冬. 农作物秸秆及食用菌菌渣等农业废弃物资源化利用现状分析[J]. 现代农业研究, 2022, 28(5): 17-19. |
LI H, GUO H B, WEI Y D. Analysis on the resource utilization of agricultural waste such as crop straw and edible fungus residue [J]. Mod. Agric. Res., 2022, 28(5): 17-19. | |
5 | RAZA S T, WU J P, RENE E R, et al.. Reuse of agricultural wastes, manure, and biochar as an organic amendment: a review on its implications for vermicomposting technology [J]. J. Cleaner Prod., 2022, 360(8): 1-14. |
6 | 郎跃深, 郑方强. 蚯蚓养殖关键技术与应用[M].北京:科学技术文献出版社, 2015:10-11. |
7 | YU X L, LI X L, REN C Q, et al.. Co-composting with cow dung and subsequent vermicomposting improve compost quality of spent mushroom [J/OL]. Bioresour. Technol., 2022, 358:127386 [2022-10-20]. . |
8 | YADAV A, GARG V K. Biotransformation of bakery industry sludge into valuable product using vermicomposting [J/OL]. Bioresour. Technol., 2019, 274:023 [2022-10-20]. . |
9 | 张智, 李双来, 陈云峰, 等. 蚯蚓堆肥模式的环境效益评价[J]. 中国土壤与肥料, 2022(8): 198-204. |
ZHANG Z, LI S L, CHEN Y F, et al.. Environmental benefits evaluation of vermicomposting [J]. Soil Fert. Sci., 2022(8): 198-204. | |
10 | 董炜华, 殷秀琴, 辛树权. 赤子爱胜蚓对不同猪粪和秸秆的分解作用[J]. 生态学杂志, 2012, 31(12): 3109-3115. |
DONG W H, YIN X Q, XIN S Q. Roles of Eisenia foetida in decomposing different kinds pig dung and crop straw [J]. Chin. J. Ecol., 2012, 31(12):3109-3115. | |
11 | 牛德真. 好氧堆肥与蚯蚓堆肥对农业废弃物降解效果研究[D]. 邯郸: 河北工程大学, 2022. |
NIU D Z. Study on the degradation effect of aerobic compost and vermicompost on agricultural waste [D]. Handan: Hebei University of Engineering, 2022. | |
12 | WANG G, TU Q P, DONG D, et al.. Spectroscopic evidence for biochar amendment promoting humic acid synthesis and intensifying humification during composting [J]. J. Hazardous Materials, 2014, 280: 409-416. |
13 | GUO H H, GU J, WANG X J, et al.. Beneficial effects of bacterial agent/bentonite on nitrogen transformation and microbial community dynamics during aerobic composting of pig manure [J/OL]. Bioresour. Technol., 2020, 298: 122384 [2022-10-20]. . |
14 | DEVI C, KHWAIRAKPAM M. Bioconversion of Lantana camara by vermicomposting with two different earthworm species in monoculture [J/OL]. Bioresour. Technol., 2020, 296: 122308 [2022-10-20]. . |
15 | CHE J G, LIN W F, YE J, et al.. Insights into compositional changes of dissolved organic matter during a full-scale vermicomposting of cow dung by combined spectroscopic and electrochemical techniques [J/OL]. Bioresour. Technol., 2020, 301:122757 [2022-10-20]. . |
16 | 刘鹏. 利用蚯蚓对不同配比牛粪和玉米秸秆堆肥效果的影响[J]. 中国畜禽种业, 2022, 18(6): 37-39. |
17 | QU S, ZHANG L J, ZHANG X, et al.. Biochar combined with gypsum reduces both nitrogen and carbon losses during agricultural waste composting and enhances overall compost quality by regulating microbial activities and functions [J/OL]. Bioresour. Technol., 2020, 314:123781 [2022-10-20]. . |
18 | 刘科, 韦秀丽, 郭萧, 等. 利用乡村有机废弃物进行蚯蚓养殖的种类筛选及配比优化研究[J]. 中国沼气, 2022, 40(4): 50-54. |
LIU K, WEI X L, GUO X, et al.. Study on the species selection and proportion optimization of earthworms culture using rural organic waste [J]. China Biogas, 2022, 40(4): 50-54. | |
19 | 徐雪东. 四种饵料及配比对蚯蚓生长繁殖及堆肥质量的影响[D]. 杨凌: 西北农林科技大学, 2020. |
XU X D. Effects of four kinds of bait and batio on growth and reproduction of earthworms and quality of compost [D]. Yangling: Northwest A&F University, 2020. | |
20 | ROVIRA P, VALLEJO V R. Mineralization of carbon and nitrogen from plant debris, as affected by debris size and depth of burial [J]. Soil Biol. Biochem., 2002, 34(3): 327-339. |
21 | 沈宏, 曹志洪. 长期施肥对不同农田生态系统土壤有效碳库及碳素有效率的影响[J]. 热带亚热带土壤科学, 1998, 7(1): 1-5. |
SHEN H, CAO Z H. Effect of long-term fertilization on soil available carbon pool and available ratio of soil carbon under different agroecosystems [J]. Trop. Subtrop. Soil Sci., 1998, 7(1): 1-5. | |
22 | 田有国,李季,沈其荣,等. 有机肥料: [S].北京:中国标准出版社,2021. |
23 | 李金津, 史静怡, 文婷, 等. 不同四环素浓度对好氧堆肥和蚯蚓堆肥过程影响的对比研究[J]. 环境科学学报, 2022, 42(4): 259-267. |
LI J J, SHI J Y, WEN T, et al.. Comparative study on the effects of tetracycline content on aerobic composting and vermicomposting processes [J]. Acta Sci. Circumstantiae, 2022, 42(4): 259-267. | |
24 | GONG X Q, ZHANG Z T, WANG H. Effects of Gleditsia sinensis pod powder, coconut shell biochar and rice husk biochar as additives on bacterial communities and compost quality during vermicomposting of pig manure and wheat straw [J/OL]. J. Environ. Manage., 2021, 295:113136 [2022-10-20]. . |
25 | 刘媛媛, 徐智, 陈卓君, 等. 外源添加磷石膏对堆肥碳组分及腐殖质品质的影响[J]. 农业环境科学学报, 2018, 37(11): 2483-2490. |
LIU Y Y, XU Z, CHEN Z J, et al.. Effects of phosphogypsum addition on carbon fractions and humus quality during composting [J]. J. Agro⁃Environ. Sci., 2018, 37(11): 2483-2490. | |
26 | 史雅静, 徐明, 王振宇, 等. 蚯蚓对菇渣中纤维素和木质素生物转化的研究[J]. 环境科学学报, 2020, 40(5): 1779-1785. |
SHI Y J, XU M, WANG Z Y, et al.. Biotransformation of lignocellulose in mushroom residue by earthworm [J]. Acta Sci. Circumstantiae, 2020, 40(5): 1779-1785. | |
27 | 李加龙, 罗纯良, 吕恒, 等. 2002—2018年滇池外海蓝藻水华暴发时空变化特征及其驱动因子分析[J]. 生态学报, 2023, 43(2): 878-891. |
LI J L, LUO C L, LYU H, et al.. Spatio-temporal variation and driving factirs of algal bloom at lake Dianchi during 2002—2018 [J]. Acta Ecol. Sin., 2023, 43(2): 878-891. | |
28 | 周强, 袁明昊, 曾彬, 等. ICP-MS法结合OPLS-DA鉴别6种鹿茸[J]. 中药, 2022, 44(10): 3229-3233. |
ZHOU Q, YUAN M H, ZENG B, et al.. Identification of six kinds of Cervi Cornu Pantotrichum by ICP-MS combined with OPLS-DA [J]. Chin. Trad. Patent Med., 2022, 44(10):3229-3233. | |
29 | RAMOS R F, SANTANA N A, ANDRADE N D, et al.. Vermicomposting of cow manure: effect of time on earthworm biomass and chemical, physical, and biological properties of vermicompost [J/OL]. Bioresour. Technol., 2022, 345:126572 [2022-10-20]. . |
30 | 龚小强. 外源添加物对园林绿化废弃物蚯蚓堆肥影响研究[D]. 北京: 北京林业大学, 2019. |
GONG X Q. Study on the effect of exogenous additives on vermicomposting of green waste [D]. Beijing: Beijing Forestry University, 2019. | |
31 | 张威. 蚯蚓处理不同畜禽粪和秸秆组合试验研究[D]. 长春:东北师范大学, 2008. |
ZHANG W. Study on treatment of earthworm to different combinations of livestock manure and stalk [D]. Changchun: Northeast Normal University, 2008. | |
32 | 解新宇, 史明子, 魏自民, 等. 堆肥腐殖化: 非生物学与生物学调控机制概述[J]. 生物技术通报, 2022, 38(5): 29-35. |
XIE X Y, SHI M Z, WEI Z M, et al.. Compost humification: an overview of abiotic and biological regulatory mechanisms [J]. Biotech. Bull., 2022, 38(5): 29-35. | |
33 | 师恩慧. 蚯蚓在秸秆堆制过程中对氮代谢的影响[D]. 长春: 吉林大学, 2022. |
SHI E H. The effect of Eisenia fetida on nitrogen metabolism during corn straw composting [D]. Changchun: Jilin University, 2022. | |
34 | ZHONG H Y, YANG S, ZHU L, et al.. Effect of microplastics in sludge impacts on the vermicomposting [J/OL]. Bioresour. Technol., 2021, 326: 124777[2022-10-20]. . |
35 | 韩相龙. 饵料配比与调理剂对蚯蚓生长繁殖与堆肥质量的影响[D]. 杨凌: 西北农林科技大学, 2019. |
HAN X L. Effect of feeding ratio and conditioning agent on growth and reproduction of earthworm and vermicomposting quality [D]. Yangling: Northwest A&F University, 2019. | |
36 | JAIN M S, JAMBHULKAR R, AJAY S. Biochar amendment for batch composting of nitrogen rich organic waste: Effect on degradation kinetics, composting physics and nutritional properties [J]. Bioresour. Technol., 2018, 253: 204-213. |
37 | KHAN M B, CUI X Q, JILANI G, et al.. Eisenia fetida and biochar synergistically alleviate the heavy metals content during valorization of biosolids via enhancing vermicompost quality [J]. Sci. Total Environ., 2019, 684(9): 597-609. |
38 | 马建林. 蚯蚓与微型生物的协同作用对堆肥过程的影响[D]. 兰州: 兰州交通大学, 2021. |
MA J L. The synergistic effect of earthworm and microbiota on vermicomposting process [D]. Lanzhou: Lanzhou Jiaotong University, 2021. | |
39 | 蔡琳琳. 园林绿化废弃物蚯蚓堆肥腐熟过程控制及氮转化机制研究[D]. 北京: 北京林业大学, 2021. |
CAI L L. Mechanism in green waste vermicomposting study on decomposing process control and nitrogen conversion [D]. Beijing: Beijing Forestry University, 2021 | |
40 | HUANG K, XIA H, ZHANG Y Y, et al.. Elimination of antibiotic resistance genes and human pathogenic bacteria by earthworms during vermicomposting of dewatered sludge by metagenomic analysis [J/OL]. Bioresour. Technol., 2020, 297:122451 [2022-10-20]. . |
41 | CHEN Y X, ZHANG Y, SHI X, et al.. The contribution of earthworms to carbon mineralization during vermicomposting of maize stover and cow dung [J/OL]. Bioresour. Technol., 2022, 364:128283 [2023-10-20]. . |
42 | CAI S Y, LIU M, ZHANG Y, et al.. Molecular transformation of dissolved organic matter and formation pathway of humic substances in dredged sludge under aerobic composting [J/OL]. Bioresour. Technol., 2022, 364: 128141 [2023-10-20]. . |
[1] | Fengfeng LIU, Ming WU, Yinghui ZHOU, Yong WU, Jiashu TIAN, Jiayang XU, Zicheng XU, Jiewang HE. Effects of Combined Application of Auxin and Molybdenum on Physiological Metabolism and Quality of Upper Leaves of Flue-cured Tobacco [J]. Journal of Agricultural Science and Technology, 2024, 26(2): 208-215. |
[2] | Jingjuan GAO, Chenyu ZHU, Yuqin KE, Chaoyuan ZHENG, Chunying LI, Wenqing LI. Effects of Organic Fertilizer Application Period on Carbon and Nitrogen Metabolism in Flue-cured Tobacco Under Tobacco-Rice Rotation [J]. Journal of Agricultural Science and Technology, 2023, 25(9): 157-165. |
[3] | Xingsheng YIN, Lingfeng BAO, Yongyu PU, Jiali SUN, Qing ZHANG, Haiping LI, Mingying YANG, Yueping LIN, Huaixin WANG, Yonghong HE, Peiwen YANG. Effects of Chemical Fertilizer Reduction Combined with Bio-organic Fertilization on Tobacco Soil Characteristics and Tobacco Bacterial Wilt Control [J]. Journal of Agricultural Science and Technology, 2023, 25(7): 122-131. |
[4] | Yunxin SHEN, Zhufeng SHI, Tianhua HAN, Xudong ZHOU, Biao HE, Wenshan ZHAO, Qiang HE, Bin MA, Qibin CHEN, Peiwen YANG. Responses of Soil Microbial Diversity to Input of Organic Carbon Source Materials [J]. Journal of Agricultural Science and Technology, 2023, 25(10): 221-233. |
[5] | Yu SU, Shaoli HUANG. Effects of Bio-organic Fertilizer on Flue-cured Tobacco Photosynthetic Characteristics and Rhizosphere Soil Microorganism [J]. Journal of Agricultural Science and Technology, 2022, 24(1): 164-171. |
[6] | YI Miao1,2§, WANG Jianguo2§, YIN Jin1, GUO Feng2, ZHANG Jialei2, TANG Zhaohui2, LI Xinguo2,3*, WAN Shubo2,3*. Impact of Nitrogen and Calcium Application on Growth and Physiological Characteristics of Peanut in Flowering Stage [J]. Journal of Agricultural Science and Technology, 2021, 23(4): 164-172. |
[7] | BAO Zhijuan, JIN Rong, YANG Jinqing, ZHANG Qi, ZHU Yongli, ZHAO Zhengxiong*. Effects of Pb and Zn Combination on Antioxidant Enzymes and Carbon-nitrogen Metabolism of Flue-cured Tobacco [J]. Journal of Agricultural Science and Technology, 2021, 23(2): 65-72. |
[8] | LI Yifan, ZHAO Songchao, LIU Boyuan, ZHAO Mingqin*. Influence of Harvesting Time on Key Enzyme Activity in Carbon and Nitrogen Metabolism and Chemical Composition of Cigars [J]. Journal of Agricultural Science and Technology, 2019, 21(3): 126-132. |
[9] | WU Feiyue1, SHEN Yan2, YANG Zhenzhi2, YU Qiwei2, HUANG Huagang1,2*, MA Ming3*, JIA Hongfang1. Influence of Different Fertilization on Carbon and Nitrogen Metabolism and Gene Expression in Middle Leaves of Flue-cured Tobacco [J]. Journal of Agricultural Science and Technology, 2018, 20(10): 21-28. |
[10] | LI Ran1,2, ZHAO Lixin1, MENG Haibo1, ZHOU Haibin1, WANG Jian1, SHEN Yujun1*. Research Progress of Heavy Metal Immobilization and Its Mechanism During Composting [J]. Journal of Agricultural Science and Technology, 2018, 20(1): 121-129. |
[11] |
WANG Yuan1, XU Jiayang2, REN Zhiguang1, SHAO Huifang1, HUANG Wuxing1, XU Zicheng1*.
Effects of Flumetralin on Carbon and Nitrogen Metabolism and Leaf Ultrastructure of Flue-cured Tobacco
|
[12] | GE Guo\|feng1,2, WANG Shu\|hui2, LIU Wei\|qun1*. Effects of Nitrogen Fertilizer on Activities of Key Enzymes of Carbon and Nitrogen Metabolism of Different Flue\|cured Tobacco Varieties [J]. , 2014, 16(1): 59-64. |
[13] | LIN Wen-na, LI Liang, WANG Rui, HAN Yun-lei, DAI Shu-xian, PING Shu-zhen, JIN Wu. Research Progress on Carbon Catabolite Repression Control in Bacteria [J]. , 2011, 13(2): 46-52. |
[14] | WANG Wei-sheng1, SHAN Xiao-quan2. Studies on Predicting Bioavailability of Light Rare Earth Elements by Different Extracts [J]. , 2009, 11(5): 119-124. |
[15] | WU Chun-yong, WEI Yan-yan, FENG Ying, YANG Xiao-e. Research Progress on Zinc Bioavailability and Zinc Biofortification through Soil-plant system [J]. , 2009, 11(2): 23-29. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||