Journal of Agricultural Science and Technology ›› 2025, Vol. 27 ›› Issue (6): 184-194.DOI: 10.13304/j.nykjdb.2023.0906
• BIO-MANUFACTURING & RESOURCE AND ECOLOGY • Previous Articles
Pengli SHI1,2,3(), Yanping LIU2,3, Jianying GUO2,3(
), Zhenqi YANG2,3, Jinsheng FAN4
Received:
2023-12-09
Accepted:
2024-03-28
Online:
2025-06-15
Published:
2025-06-23
Contact:
Jianying GUO
史鹏莉1,2,3(), 刘艳萍2,3, 郭建英2,3(
), 杨振奇2,3, 范进昇4
通讯作者:
郭建英
作者简介:
史鹏莉 E-mail:657988571@qq.com;
基金资助:
CLC Number:
Pengli SHI, Yanping LIU, Jianying GUO, Zhenqi YANG, Jinsheng FAN. Characteristics of Runoff and Sediment Yield of Different Treatment Modes of Dump Slope in Typical Grassland Mining Area[J]. Journal of Agricultural Science and Technology, 2025, 27(6): 184-194.
史鹏莉, 刘艳萍, 郭建英, 杨振奇, 范进昇. 典型草原矿区排土场边坡不同治理模式的径流产沙特征[J]. 中国农业科技导报, 2025, 27(6): 184-194.
处理Treatment | 坡度 Slope/(°) | 治理措施 Control measure | 措施类型 Measure type | 配置措施 Deposition measure |
---|---|---|---|---|
HC | 30 | 混草 Mixed grass | 植被措施 Vegetation measure | 1∶1混播紫花苜蓿与羊草 1∶1 mixed Medicago sativa and Leymus chinensis Tzvelev |
HCG | 30 | 混草+灌木 Mixed grass+shrub | 植被措施 Vegetation measure | 草灌结合种植:柠条种植株间行距为1 m×1 m,每穴2~3株,间隙1∶1撒播紫花苜蓿、羊草 Combination of grass and shrub planting : the row spacing between the plants of Caragana korshinskii is 1 m×1 m, 2~3 plants per hole, and the gap is 1∶1 broadcast sowing Medicago sativa and Leymus chinensis Tzvelev |
HCS | 30 | 混草+菱形网格整地 Mixed grass+diamond grid soil preparation | 植被措施+整地措施 Vegetation measure+soil preparation measure | 生物基可降解聚乳酸(Polylactic acid,PLA)沙袋沙障填充沙粒呈菱形布设,菱形边长为1 m,在沙幛间1∶1撒播紫花苜蓿、羊草 Biodegradable polylactic acid (PLA) sandbag sand barrier is filled with sand particles in a diamond shape, and the diamond side length is 1 m. Medicago sativa and Leymus chinensis Tzvelev are sown in the sand chamber at a ratio of 1∶1 |
HCP | 30 | 混草+品字形整地 Mixed grass+pin-shaped land preparation | 植被措施+整地措施 Vegetation measure+soil preparation measure | 聚氯乙烯(Polyvinyl chloride,PVC)桶呈品字形布设,水平间距0.75 m,垂直间距1 m,在PVC桶间1∶1撒播紫花苜蓿、羊草 Polyvinyl chloride (PVC) barrels were arranged in the shape of a glyph, with a horizontal spacing of 0.75 m and a vertical spacing of 1 m. Medicago sativa and Leymus chinensis Tzvelev were sown at a ratio of 1∶1 between PVC barrels |
HCH | 30 | 混草+行带状整地 Mixed grass+strip land preparation | 植被措施+整地措施 Vegetation measure+soil preparation measure | PVC管呈条状布设,PVC管间距1 m,在PVC管间 1∶1撒播紫花苜蓿、羊草 PVC pipes were arranged in strips, and the spacing between PVC pipes was 1 m. Medicago sativa and Leymus chinensis Tzvelev were sown in 1∶1 between PVC pipes |
CK | 30 | 无No | 对照Control | 无措施No measure |
Table 1 Basic situation of runoff plot
处理Treatment | 坡度 Slope/(°) | 治理措施 Control measure | 措施类型 Measure type | 配置措施 Deposition measure |
---|---|---|---|---|
HC | 30 | 混草 Mixed grass | 植被措施 Vegetation measure | 1∶1混播紫花苜蓿与羊草 1∶1 mixed Medicago sativa and Leymus chinensis Tzvelev |
HCG | 30 | 混草+灌木 Mixed grass+shrub | 植被措施 Vegetation measure | 草灌结合种植:柠条种植株间行距为1 m×1 m,每穴2~3株,间隙1∶1撒播紫花苜蓿、羊草 Combination of grass and shrub planting : the row spacing between the plants of Caragana korshinskii is 1 m×1 m, 2~3 plants per hole, and the gap is 1∶1 broadcast sowing Medicago sativa and Leymus chinensis Tzvelev |
HCS | 30 | 混草+菱形网格整地 Mixed grass+diamond grid soil preparation | 植被措施+整地措施 Vegetation measure+soil preparation measure | 生物基可降解聚乳酸(Polylactic acid,PLA)沙袋沙障填充沙粒呈菱形布设,菱形边长为1 m,在沙幛间1∶1撒播紫花苜蓿、羊草 Biodegradable polylactic acid (PLA) sandbag sand barrier is filled with sand particles in a diamond shape, and the diamond side length is 1 m. Medicago sativa and Leymus chinensis Tzvelev are sown in the sand chamber at a ratio of 1∶1 |
HCP | 30 | 混草+品字形整地 Mixed grass+pin-shaped land preparation | 植被措施+整地措施 Vegetation measure+soil preparation measure | 聚氯乙烯(Polyvinyl chloride,PVC)桶呈品字形布设,水平间距0.75 m,垂直间距1 m,在PVC桶间1∶1撒播紫花苜蓿、羊草 Polyvinyl chloride (PVC) barrels were arranged in the shape of a glyph, with a horizontal spacing of 0.75 m and a vertical spacing of 1 m. Medicago sativa and Leymus chinensis Tzvelev were sown at a ratio of 1∶1 between PVC barrels |
HCH | 30 | 混草+行带状整地 Mixed grass+strip land preparation | 植被措施+整地措施 Vegetation measure+soil preparation measure | PVC管呈条状布设,PVC管间距1 m,在PVC管间 1∶1撒播紫花苜蓿、羊草 PVC pipes were arranged in strips, and the spacing between PVC pipes was 1 m. Medicago sativa and Leymus chinensis Tzvelev were sown in 1∶1 between PVC pipes |
CK | 30 | 无No | 对照Control | 无措施No measure |
降雨类型 Rainfall type | 频次 Frequency | 参数 Parameter | 降雨历时 Rainfall duration/min | 降雨量 Rainfall/mm | 降雨强度 Rainfall intensity/(mm·h-1) | I30/ (mm·h-1) | 降雨侵蚀力R/ (mJ·mm·hm-2·h-1) |
---|---|---|---|---|---|---|---|
Ⅰ | 84 | 平均Mean | 251.05 | 7.05 | 1.89 | 6.85 | 46.62 |
最小值Min | 60 | 0.13 | 0.14 | 0.22 | 0.01 | ||
P25 | 120 | 3.21 | 0.85 | 2.88 | 1.58 | ||
中位数Median | 240 | 4.67 | 1.31 | 4.16 | 3.74 | ||
P75 | 360 | 7.26 | 2.30 | 7.84 | 14.51 | ||
最大值Max | 480 | 78.18 | 9.77 | 63.55 | 1 369.80 | ||
Ⅱ | 54 | 平均Mean | 761.11 | 11.11 | 0.88 | 6.98 | 33.14 |
最小值Min | 540 | 2.81 | 0.18 | 1.50 | 1.04 | ||
P25 | 600 | 5.67 | 0.55 | 3.18 | 3.79 | ||
中位数Median | 720 | 8.48 | 0.68 | 5.06 | 8.79 | ||
P75 | 900 | 12.88 | 1.13 | 8.25 | 29.12 | ||
最大值Max | 1 200 | 30.36 | 2.97 | 38.28 | 499.64 | ||
Ⅲ | 19 | 平均Mean | 1 762.11 | 20.21 | 0.70 | 7.63 | 43.19 |
最小值Min | 1 380 | 9.34 | 0.33 | 1.77 | 2.98 | ||
P25 | 1 500 | 15.69 | 0.50 | 4.18 | 11.99 | ||
中位数Median | 1 740 | 19.38 | 0.64 | 5.44 | 28.35 | ||
P75 | 1 980 | 24.95 | 0.85 | 11.95 | 67.56 | ||
最大值Max | 2 400 | 33.52 | 1.29 | 19.97 | 131.34 |
Table 2 Characteristics of different rainfall pattern indexes
降雨类型 Rainfall type | 频次 Frequency | 参数 Parameter | 降雨历时 Rainfall duration/min | 降雨量 Rainfall/mm | 降雨强度 Rainfall intensity/(mm·h-1) | I30/ (mm·h-1) | 降雨侵蚀力R/ (mJ·mm·hm-2·h-1) |
---|---|---|---|---|---|---|---|
Ⅰ | 84 | 平均Mean | 251.05 | 7.05 | 1.89 | 6.85 | 46.62 |
最小值Min | 60 | 0.13 | 0.14 | 0.22 | 0.01 | ||
P25 | 120 | 3.21 | 0.85 | 2.88 | 1.58 | ||
中位数Median | 240 | 4.67 | 1.31 | 4.16 | 3.74 | ||
P75 | 360 | 7.26 | 2.30 | 7.84 | 14.51 | ||
最大值Max | 480 | 78.18 | 9.77 | 63.55 | 1 369.80 | ||
Ⅱ | 54 | 平均Mean | 761.11 | 11.11 | 0.88 | 6.98 | 33.14 |
最小值Min | 540 | 2.81 | 0.18 | 1.50 | 1.04 | ||
P25 | 600 | 5.67 | 0.55 | 3.18 | 3.79 | ||
中位数Median | 720 | 8.48 | 0.68 | 5.06 | 8.79 | ||
P75 | 900 | 12.88 | 1.13 | 8.25 | 29.12 | ||
最大值Max | 1 200 | 30.36 | 2.97 | 38.28 | 499.64 | ||
Ⅲ | 19 | 平均Mean | 1 762.11 | 20.21 | 0.70 | 7.63 | 43.19 |
最小值Min | 1 380 | 9.34 | 0.33 | 1.77 | 2.98 | ||
P25 | 1 500 | 15.69 | 0.50 | 4.18 | 11.99 | ||
中位数Median | 1 740 | 19.38 | 0.64 | 5.44 | 28.35 | ||
P75 | 1 980 | 24.95 | 0.85 | 11.95 | 67.56 | ||
最大值Max | 2 400 | 33.52 | 1.29 | 19.97 | 131.34 |
Fig. 4 Cumulative runoff yield, sediment yield and runoff reduction rate, sediment reduction rate of runoff plots under different management modesNote:Different lowercase letters indicate significant differences between different treatments at P<0.05 level.
Fig. 5 Cumulative runoff and sediment yield of runoff plots under different rainfall patternsNote:Different lowercase letters indicate significant differences between different treatments at P<0.05 level.
年份Year | 径流量Runoff yield/L | 产沙量Sediment yield/G |
---|---|---|
2021 | 201.43±1.49 a | 828.03±3.73 a |
2022 | 35.35±0.78 b | 179.57±3.42 b |
2023 | 31.36±1.46 c | 115.18±2.63 c |
Table 3 Runoff and sediment yield in the study area from 2021 to 2023
年份Year | 径流量Runoff yield/L | 产沙量Sediment yield/G |
---|---|---|
2021 | 201.43±1.49 a | 828.03±3.73 a |
2022 | 35.35±0.78 b | 179.57±3.42 b |
2023 | 31.36±1.46 c | 115.18±2.63 c |
指标Index | 降雨历时Rainfall duration | 降雨强度Rainfall intensity | I30 | 降雨动能E | 降雨 侵蚀力R | 径流量Runoff yield | 产沙量Sediment yield |
---|---|---|---|---|---|---|---|
降雨量Rainfall | 0.88** | 0.20 | 0.87** | 0.99** | 0.92** | 0.80** | 0.82** |
降雨历时Rainfall duration | -0.10 | 0.66** | 0.83** | 0.71** | 0.57* | 0.67** | |
降雨强度Rainfall intensity | 0.40 | 0.23 | 0.25 | 0.28 | 0.18 | ||
最大30 min降雨强度I30 | 0.92** | 0.94** | 0.72** | 0.62* | |||
降雨动能E | . | 0.97** | 0.79** | 0.78** | |||
降雨侵蚀力R | 0.77** | 0.76** | |||||
径流量Runoff | 0.86** |
Table 4 Correlation analysis between runoff, sediment and rainfall characteristic parameters
指标Index | 降雨历时Rainfall duration | 降雨强度Rainfall intensity | I30 | 降雨动能E | 降雨 侵蚀力R | 径流量Runoff yield | 产沙量Sediment yield |
---|---|---|---|---|---|---|---|
降雨量Rainfall | 0.88** | 0.20 | 0.87** | 0.99** | 0.92** | 0.80** | 0.82** |
降雨历时Rainfall duration | -0.10 | 0.66** | 0.83** | 0.71** | 0.57* | 0.67** | |
降雨强度Rainfall intensity | 0.40 | 0.23 | 0.25 | 0.28 | 0.18 | ||
最大30 min降雨强度I30 | 0.92** | 0.94** | 0.72** | 0.62* | |||
降雨动能E | . | 0.97** | 0.79** | 0.78** | |||
降雨侵蚀力R | 0.77** | 0.76** | |||||
径流量Runoff | 0.86** |
处理Treatment | 指标 Index | 降雨量 Rainfall | 降雨历时 Rainfall duration | 降雨强度 Rain intensity | 最大30 min雨强I30 | 降雨动能E | 降雨侵蚀力R | 径流量 Runoff yield | 泥沙量 Sediment yield |
---|---|---|---|---|---|---|---|---|---|
HC | 径流量 Runoff yield | 0.85** | 0.70** | 0.18 | 0.74** | 0.86** | 0.82** | — | — |
产沙量 Sediment yield | 0.72** | 0.62* | 0.11 | 0.52* | 0.68** | 0.66** | 0.78** | ||
HCG | 径流量 Runoff yield | 0.80** | 0.64** | 0.21 | 0.73** | 0.82** | 0.80** | — | — |
产沙量 Sediment yield | 0.73** | 0.63* | 0.16 | 0.57* | 0.69** | 0.70** | 0.68** | — | |
HCS | 径流量 Runoff yield | 0.33 | 0.13 | 0.20 | 0.39 | 0.33 | 0.32 | — | — |
产沙量 Sediment yield | 0.61* | 0.35 | 0.24 | 0.57* | 0.64* | 0.71** | 0.54* | — | |
HCP | 径流量 Runoff yield | 0.64* | 0.31 | 0.43 | 0.63* | 0.63* | 0.61* | — | — |
产沙量 Sediment yield | 0.73** | 0.59* | 0.19 | 0.52* | 0.68** | 0.65** | 0.67** | — | |
HCH | 径流量 Runoff yield | 0.57* | 0.31 | 0.25 | 0.55* | 0.57* | 0.55* | — | — |
产沙量 Sediment yield | 0.78** | 0.68** | 0.16 | 0.54* | 0.76** | 0.69** | 0.42 | — | |
CK | 径流量 Runoff yield | 0.87** | 0.70** | 0.23 | 0.70** | 0.85** | 0.81** | — | — |
产沙量 Sediment yield | 0.84** | 0.66** | 0.20 | 0.65** | 0.82** | 0.80** | 0.95** | — |
Table 5 Correlation analysis between rainfall characteristic parameters and erosion characteristic parameters
处理Treatment | 指标 Index | 降雨量 Rainfall | 降雨历时 Rainfall duration | 降雨强度 Rain intensity | 最大30 min雨强I30 | 降雨动能E | 降雨侵蚀力R | 径流量 Runoff yield | 泥沙量 Sediment yield |
---|---|---|---|---|---|---|---|---|---|
HC | 径流量 Runoff yield | 0.85** | 0.70** | 0.18 | 0.74** | 0.86** | 0.82** | — | — |
产沙量 Sediment yield | 0.72** | 0.62* | 0.11 | 0.52* | 0.68** | 0.66** | 0.78** | ||
HCG | 径流量 Runoff yield | 0.80** | 0.64** | 0.21 | 0.73** | 0.82** | 0.80** | — | — |
产沙量 Sediment yield | 0.73** | 0.63* | 0.16 | 0.57* | 0.69** | 0.70** | 0.68** | — | |
HCS | 径流量 Runoff yield | 0.33 | 0.13 | 0.20 | 0.39 | 0.33 | 0.32 | — | — |
产沙量 Sediment yield | 0.61* | 0.35 | 0.24 | 0.57* | 0.64* | 0.71** | 0.54* | — | |
HCP | 径流量 Runoff yield | 0.64* | 0.31 | 0.43 | 0.63* | 0.63* | 0.61* | — | — |
产沙量 Sediment yield | 0.73** | 0.59* | 0.19 | 0.52* | 0.68** | 0.65** | 0.67** | — | |
HCH | 径流量 Runoff yield | 0.57* | 0.31 | 0.25 | 0.55* | 0.57* | 0.55* | — | — |
产沙量 Sediment yield | 0.78** | 0.68** | 0.16 | 0.54* | 0.76** | 0.69** | 0.42 | — | |
CK | 径流量 Runoff yield | 0.87** | 0.70** | 0.23 | 0.70** | 0.85** | 0.81** | — | — |
产沙量 Sediment yield | 0.84** | 0.66** | 0.20 | 0.65** | 0.82** | 0.80** | 0.95** | — |
1 | 张庆,刘璐瑶,徐雪,等.内蒙古草原家庭牧场可持续发展研究[J].草业学报,2021,30(9):168-181. |
ZHANG Q, LIU L Y, XU X, et al.. Sustainable development of family ranches in the Inner Mongolian grassland [J]. Acta Pratac. Sin., 2021,30(9):168-181. | |
2 | 翟娜.季节性轮牧和刈割对内蒙古典型草原土壤线虫的影响[D].呼和浩特:内蒙古师范大学,2019. |
ZHAI N. Effects of seasonal rotational grazing and mowing on soil nematodes in typical grasslands of Inner Mongolia [D]. Hohhot: Inner Mongolia Normal University, 2019. | |
3 | 杨天成,李晓佳.不同草地利用方式对内蒙古典型草原群落特征及草地健康的影响[J].草业科学,2022,39(5):841-849. |
YANG T C, LI X J. Effects of land use patterns on community characteristics and grassland health in Inner Mongolia [J]. Pratac. Sci., 2022,39(5):841-849. | |
4 | 魏忠义,白中科.露天矿大型排土场水蚀控制的径流分散概念及其分散措施[J].煤炭学报,2003,28(5):486-490. |
WEI Z Y, BAI Z K.The concept and measures of runoff-dispersing on water erosion control in the large dump of opencast mine [J]. J. China Coal Soc., 2003,28(5):486-490. | |
5 | 史倩华,李垚林,王文龙,等.不同植被措施对露天煤矿排土场边坡径流产沙影响[J].草地学报,2016,24(6):1263-1271. |
SHI Q H, LI Y L, WANG W L, et al.. Effects of different re-vegetation measures on runoff and sediment yielding of dump side slopes in open pit mine [J]. Acta Agrestia Sin., 2016, 24(6):1263-1271. | |
6 | 王彤彤.露天煤矿排土场植被恢复植物筛选及土壤适应性研究[D].呼和浩特:内蒙古农业大学,2022. |
WANG T T. Study on plant selection and adaptability of plants to soil on restoration in open pit coal mine waste dump [D]. Hohhot: Inner Mongolia Agricultural University, 2022. | |
7 | 王尚义,石瑛,牛俊杰,等.煤矸石山不同植被恢复模式对土壤养分的影响:以山西省河东矿区1号煤矸石山为例[J].地理学报,2013,68(3):372-379. |
WANG S Y, SHI Y, NIU J J,et al..Influence of vegetation restoration models on soil nutrient of coal gangue pile:a case study of No.1 Coal Gangue Pile in Hedong,Shanxi [J]. Acta Geogr. Sin., 2013,68(3):372-379. | |
8 | 薛东明,郭小平,张晓霞.干旱矿区排土场不同边坡生态修复模式下减流减沙效益[J].水土保持学报,2021,35(6):15-21, 30. |
XUE D M, GUO X P, ZHANG X X.Runoff and sediment reduction under different slope ecological restoration modes of waste dump in arid mining area [J]. J. Soil Water Conserv., 2021,35(6):15-21, 30. | |
9 | 郭建英,李锦荣,何京丽,等.典型草原煤矿排土场边坡不同治理措施次降雨水蚀过程分析[J].水土保持研究,2017,24(5):1-5, 13. |
GUO J Y, LI J R, HE J L,et al..Analysis on water erosion process caused by secondly rainfall under different slope treatment measures at dump site in typical steppe [J]. Res. Soil Water Conserv., 2017,24(5):1-5, 13. | |
10 | 田秀民,马春霞,鲁旭东,等.微地形重塑对大型排土场平台水沙及植被的影响[J].水土保持研究,2021,28(3):74-82. |
TIAN X M, MA C X, LU X D, et al.. Impact of microtopographic reconstruction on runoff and sediment yield and vegetation of large waste dump platform [J]. Res. Soil Water Conserv., 2021,28(3):74-82. | |
11 | 苏银萍.改良剂及肥料对短毛蓼修复Mn污染土壤效率的影响[D].桂林:广西师范大学,2014. |
SU Y P. Effects of the amendments and fertilizer on the repair efficiency of polygonum pubescens Blume in Mn contaminated soils [D]. Guilin: Guangxi Normal University, 2014. | |
12 | 候月卿,赵立欣,孟海波,等.生物炭和腐植酸类对猪粪堆肥重金属的钝化效果[J].农业工程学报,2014,30(11):205-215. |
HOU Y Q, ZHAO L X, MENG H B, et al.. Passivating effect of biochar and humic acid materials on heavy metals during composting of pig manure [J]. Trans. Chin. Soc. Agric. Eng., 2014,30(11):205-215. | |
13 | 李政,胡桂清,瞿涛,等.伊犁河谷不同管理草地产流产沙对降雨与土壤类型的响应[J].水土保持研究,2022,29(5):62-69. |
LI Z, HU G Q, QU T, et al..Responses of runoff and sediment yield to rainfall,soil types under different managed grasslands in Yili valley [J]. Res. Soil Water Conserv., 2022,29(5):62-69. | |
14 | 杜映妮,周怡雯,李朝霞,等.丹江口库区不同降雨类型下典型植被措施的水土保持效应[J].水土保持学报,2023,37(2):51-57, 66. |
DU Y N, ZHOU Y W, LI C X, et al.. Effects of typical vegetation measures on soil and water conservation under different rainfall regimes in Danjiangkou reservoir area [J]. J. Soil Water Conserv., 2023,37(2):51-57, 66. | |
15 | 李勉,姚文艺,史学建.淤地坝拦沙减蚀作用与泥沙沉积特征研究[J].水土保持研究,2005,12(5):107-111. |
LI M, YAO W Y, SHI X J. Study on the effect of silt dams for conserving soil and water and its sedimentation characteristic [J]. Res. Soil Water Conserv., 2005,12(5):107-111. | |
16 | 武志强,付福林,张锐.川掌沟流域治沟骨干工程建设的重大作用[J].中国水土保持,2000(6):41-42. |
WU Z Q, FU F L, ZHANG R. The important role of key dam construction in Chuanzhanggou watershed [J]. Soil Water Conserv. China, 2000(6):41-42. | |
17 | 曾茂林,朱小勇,康玲玲,等.水土流失区淤地坝的拦泥减蚀作用及发展前景[J].水土保持研究,1999,6(2):126-133. |
ZENG M L, ZHU X Y, KANG L L, et al.. Effects of sediment reduction and erosion control and development prospects of warping dam in water and soil loss areas [J]. Res.Soil Water Conserv., 1999,6(2):126-133. | |
18 | 李景宗,刘立斌.近期黄河潼关以上地区淤地坝拦沙量初步分析[J].人民黄河,2018,40(1):1-6. |
LI J Z, LIU L B. Analysis on the sediment retaining amount by warping dams above Tongguan section of the Yellow River in recent years [J]. Yellow River, 2018,40(1):1-6. | |
19 | 杨振奇,郭建英,秦富仓,等.天然降雨条件下裸露砒砂岩区人工植被的减流减沙效应[J].水土保持研究,2022,29(1):100-104, 112. |
YANG Z Q, GUO J Y, QIN F C, et al.. Effects of artificial vegetation on runoff and sediment reduction by in exposed feldspathic sandstone region under natural rainfall [J]. Res. Soil Water Conserv., 2022,29(1):100-104, 112. | |
20 | 曹美晨,辛艳,任正龑,等.半干旱黄土丘陵沟壑区不同土地利用坡面的降雨侵蚀特征[J].泥沙研究, 2022,47(6):43-50. |
CAO M C, XIN Y, REN Z Y, et al.. Characteristics of rainfall erosion on different land use slopes in semi-arid loess hilly and gully region [J]. J. Sediment Res., 2022,47(6):43-50. | |
21 | 陈洋,张海东,于东升,等.南方红壤区植被结构类型与降雨模式对林下水土流失的影响[J].农业工程学报,2020,36(5):150-157. |
CHEN Y, ZHANG H D, YU D S, et al.. Effects of vegetation structure types and rainfall patterns on soil and water loss of understory vegetation in red soil areas of South China [J]. Trans. Chin. Soc. Agric. Eng., 2020,36(5):150-157. | |
22 | 杨波,王文龙,郭明明,等.矿区排土场边坡不同植被配置模式的控蚀效益研究[J].土壤学报,2019,56(6):1347-1358. |
YANG B, WANG W L, GUO M M, et al.. Erosion-controlling effects of revegetation on slope of refuse dump in mining area relative to vegetation pattern [J]. Acta Pedol. Sin., 2019,56(6):1347-1358. | |
23 | 李鹏飞.基于无人机遥感的排土(矸)场立地对植被盖度影响研究[D].北京:北京林业大学, 2020. |
LI P F. Influence study of sites on vegetation coverage in dumps and gangue fields based on UAV remote sensing technology [D]. Beijing: Beijing Forestry University, 2020. | |
24 | MAITI S K. Bioreclamation of coalmine overburden dumps:with special empasis on micronutrients and heavy metals accumulation in tree species [J]. Environ. Monit. Assess., 2007,125(1/2/3):111-122. |
25 | 郭建英,何京丽,李锦荣,等.典型草原大型露天煤矿排土场边坡水蚀控制效果[J].农业工程学报,2015,31(3):296-303. |
GUO J Y, HE J L, LI J R, et al.. Effects of different measures on water erosion control of dump slope at opencast coal mine in typical steppe [J]. Trans. Chin.Soc. Agric. Eng., 2015,31(3):296-303. | |
26 | 秦伟,左长清,晏清洪,等.红壤裸露坡地次降雨土壤侵蚀规律[J].农业工程学报,2015,31(2):124-132. |
QIN W, ZUO C Q, YAN Q H, et al.. Regularity of individual rainfall soil erosion in bare slope land of red soil [J]. Trans. Chin. Soc. Agric. Eng., 2015,31(2):124-132. | |
27 | 邓羽松,丁树文,刘辰明,等.鄂东南花岗岩崩岗崩壁土壤水分特征研究[J].水土保持学报,2015,29(4):132-137. |
DENG Y S, DING S W, LIU C M, et al.. Soil moisture characteristics of collapsing gully wall in granite area of southeastern Hubei [J]. J. Soil Water Conserv., 2015,29(4):132-137. | |
28 | 游微,樊军,魏修彬,等.粗质地土壤坡度和前期含水量对土壤侵蚀的影响[J].水土保持学报,2017,31(4):18-24. |
YOU W, FAN J, WEI X B, et al.. Effect of soil slope and antecedent soil water content on soil erosion in coarse texture soil [J]. J. Soil Water Conserv., 2017,31(4):18-24. | |
29 | 邵奕铭,高光耀,刘见波,等.自然降雨下黄土丘陵区草灌植物垂直覆盖结构的减流减沙效应[J].生态学报,2022,42(1):322-331. |
SHAO Y M, GAO G Y, LIU J B, et al.. Effects of vertical cover structure of grass and shrub on reducing runoff and soil loss under natural rainfall in the loess hilly region [J]. Acta Ecol. Sin., 2022,42(1):322-331. | |
30 | 张哲,方政,董智,等.鲁中南山区侵蚀性降雨及典型作物对坡面产流产沙影响研究[J].西南大学学报(自然科学版),2024,46(1):69-76. |
ZHANG Z, FANG Z, DONG Z, et al.. Effects of erosive rainfall and typical crops on slope runoff and sediment yield in mountainous area of central-south of Shandong province [J]. J. Southwest Univ. (Nat. Sci.), 2024,46(1):69-76. | |
31 | 张春霞,董智,高波,等.侵蚀性雨型分类及不同植被类型对棕壤坡面土壤侵蚀的影响[J].水土保持研究,2023,30(2):36-41, 49. |
ZHANG C X, DONG Z, GAO B, et al.. Effects of erosive rainfall patterns and different vegetation types on soil erosion in slope with brown soil [J]. Res. Soil Water Conserv., 2023,30(2):36-41, 49. |
[1] | Haixia LIU, Yinhui ZHANG, Lei ZHUANG, Mengjiao GUO, Li ZHAO, Meijuan WU, Jian HOU, Tian LI, Hongxia LIU, Xueyong ZHANG, Chenyang HAO. Discovering of Candidate Genes for Wheat SDS-Sedimentation Value Using Association Study and Development of KASP Marker [J]. Journal of Agricultural Science and Technology, 2024, 26(12): 18-29. |
[2] | Meixia LIANG, Xinqiang ZHANG, Bingqing LIN. Simulation of Sediment Reduction Effect Under Different Scenarios in Red Soil Erosion Watershed in South China [J]. Journal of Agricultural Science and Technology, 2024, 26(10): 177-185. |
[3] | Lijuan ZHANG, Yukun QIN, Huihuang CHENG, Yongqi LI, Haihua LUO. Research on Characteristics of Nitrogen and Phosphorus Loss from Surface Runoff of Cotton Field in Northern Jiangxi Province of Poyang Lake Region [J]. Journal of Agricultural Science and Technology, 2022, 24(6): 166-175. |
[4] | FU Rongtao, CHEN Cheng, WANG Jian, CHEN Xuejuan, LU Daihua*. Control Conditions and Effects of Plant Protection Unmanned Aerial Vehicle (UAV) on Diseases and Insect Pests of Rice#br# [J]. Journal of Agricultural Science and Technology, 2021, 23(4): 103-109. |
[5] | LIANG Zhen1,2, LIU Zhimei3*. Studies on Stabilization of Phosphorus in Dredged Sediment by Red Mud and Fly Ash [J]. Journal of Agricultural Science and Technology, 2018, 20(6): 136-141. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||