中国农业科技导报 ›› 2024, Vol. 26 ›› Issue (6): 170-182.DOI: 10.13304/j.nykjdb.2023.0420
• 生物制造 资源生态 • 上一篇
赵鸿硕1,2,3(), 曹红雨1,2,3, 高广磊1,2,3(
), 孙哲4, 张英1,2,3, 丁国栋1,2,3
收稿日期:
2023-05-31
接受日期:
2023-09-28
出版日期:
2024-06-15
发布日期:
2024-06-12
通讯作者:
高广磊
作者简介:
赵鸿硕 E-mail:zhaohongshuo@bjfu.edu.cn;
基金资助:
Hongshuo ZHAO1,2,3(), Hongyu CAO1,2,3, Guanglei GAO1,2,3(
), Zhe SUN4, Ying ZHANG1,2,3, Guodong DING1,2,3
Received:
2023-05-31
Accepted:
2023-09-28
Online:
2024-06-15
Published:
2024-06-12
Contact:
Guanglei GAO
摘要:
微生物诱导碳酸钙沉淀(microorganism induced carbonate precipitation,MICP)能够填充土壤孔隙,减少水分蒸发和增强风沙土的抗风蚀性,其防风固沙效果已得到证实,但其对沙生植物叶片性状和生长生理过程的影响尚不明确,为揭示微生物诱导碳酸钙沉淀固沙对沙生植物叶性状和光合生理特征的影响,以沙蓬(Agriophyllum squarrosum)、斜茎黄芪(Astragalus laxmannii)、柠条锦鸡儿(Caragana korshinskii)、蒙古羊柴(Corethrodendron fruticosum)4种沙生植物为研究对象,开展室内盆栽试验,对比分析不同菌剂施用量(高、中、低)和固结层位置(下、中、上)处理下沙生植物的叶性状和生理特性。结果表明,①微生物诱导碳酸钙分布在风沙土颗粒间,且呈立方体形、菱形、球形和不定形等多种晶态,能够胶结风沙土颗粒。②菌剂处理显著提高了4种沙生植物土壤的有机质和碳酸钙含量;施加高水平菌剂时,固结层下处理组沙蓬和斜茎黄芪土壤的有机质和碳酸钙含量显著高于其他处理组;其中斜茎黄芪土壤有机质含量的增幅最大,为90.19%,柠条锦鸡儿土壤碳酸钙含量增幅最大,为41.47%。③高水平菌剂处理组沙蓬的比叶面积显著高于其他处理组,平均提高0.98%;低水平菌剂处理组沙蓬和斜茎黄芪的叶干物质含量显著高于其他处理组,分别平均提高34.11%和24.18%。固结层中处理组沙蓬、斜茎黄芪和柠条锦鸡儿的比叶面积显著低于其他处理组。④高水平菌剂处理组沙蓬、斜茎黄芪和柠条锦鸡儿的叶绿素含量显著高于其他处理组,分别平均提高9.01%、12.97%和31.77%;中水平菌剂处理组沙蓬、高水平菌剂处理组斜茎黄芪和柠条锦鸡儿的最大净光合速率显著高于其他处理组,分别平均提高55.70%、48.39%和13.24%。综上,施加菌剂能够提高土壤有机质和碳酸钙含量,为植物生长提供充足的养分,因此沙蓬、斜茎黄芪和柠条锦鸡儿的光合生理特性显著高于对照组,但植物叶性状对土壤有机质和碳酸钙含量响应不显著。微生物诱导碳酸钙沉淀固沙对中水平菌剂处理沙蓬、高水平菌剂处理斜茎黄芪和柠条锦鸡儿的叶性状和光合生理特性有促进作用,但是对蒙古羊柴的叶性状和光合生理特性有抑制作用。以上研究结果为丰富完善微生物诱导碳酸钙沉淀固沙技术提供理论依据和科学支撑。
中图分类号:
赵鸿硕, 曹红雨, 高广磊, 孙哲, 张英, 丁国栋. 微生物诱导碳酸钙沉淀固沙对典型沙生植物叶片性状和生理特性的影响[J]. 中国农业科技导报, 2024, 26(6): 170-182.
Hongshuo ZHAO, Hongyu CAO, Guanglei GAO, Zhe SUN, Ying ZHANG, Guodong DING. Effects of Sand Fixation Using Microbially Induced Carbonate Precipitation on Leaf Traits and Physiological Characteristics of Typical Psammophytes[J]. Journal of Agricultural Science and Technology, 2024, 26(6): 170-182.
图2 不同菌剂施用水平和固结层位置下土壤有机质含量注:不同英文字母表示同一菌剂水平下不同固结层位置间在P<0.05水平差异显著;不同希腊字母表示同一固结层位置下不同菌剂水平间在P<0.05水平差异显著。
Fig. 2 Soil organic matter content under different microbial agent levels and consolidation layer positionsNote: Different English letters indicate significant differences between different consolidation layer positions of same agent level at P<0.05 level; different Greece letters indicate significant differences between different agent levels of same consolidation layer position at P<0.05 level.
物种 Species | 指标 Index | 土壤有机质SOM | CaCO3 | 比叶 面积SLA | 叶干物质含量 LDMC | 叶绿素Chl | 表观量子效率 AQE | 最大净光合速率 Pnmax | 光饱 和点 LSP | 光补 偿点 LCP | 暗呼吸 速率Rd |
---|---|---|---|---|---|---|---|---|---|---|---|
沙蓬 Agriophyllum squarrosum | FA | 56.722** | 4.497* | 8.981** | 33.056** | 26.627** | 0.067 | 85.477** | 8.068** | 2.502 | 4.390* |
FP | 26.185** | 3.696* | 16.328** | 1.255 | 7.404** | 1.934 | 6.097** | 1.486 | 1.102 | 0.375 | |
FA×P | 60.589** | 2.723* | 5.717** | 6.747** | 18.316** | 3.629* | 5.440** | 7.950** | 0.684 | 1.847 | |
斜茎黄芪 Astragalus laxmannii | FA | 235.105** | 46.306** | 3.942* | 8.066** | 4.082* | 682.761** | 26.192** | 1.081 | 0.735 | 1.153 |
FP | 27.764** | 2.775 | 15.052** | 0.032 | 4.377* | 0.041 | 4.554* | 0.828 | 0.475 | 1.225 | |
FA×P | 47.714** | 8.025** | 2.842* | 1.283 | 0.407 | 1.006 | 8.119** | 1.734 | 1.352 | 0.194 | |
柠条锦鸡儿 Caragana korshinskii | FA | 78.430** | 93.108** | 2.697 | 0.295 | 7.266** | 3.415* | 1.411 | 2.288 | 3.069* | 5.569** |
FP | 18.975** | 3.505* | 27.264** | 1.456 | 12.082** | 0.054 | 4.885* | 1.640 | 5.099* | 1.782 | |
FA×P | 37.335** | 6.595** | 7.154** | 2.344 | 5.803** | 0.013 | 6.237** | 1.545 | 2.770* | 0.694 | |
蒙古羊柴 Corethrodendron fruticosum | FA | 50.673** | 17.879** | 20.995** | 7.381** | 4.962** | 32.300** | 79.186** | 3.428* | 4.370* | 1.040 |
FP | 7.825** | 2.254 | 1.104 | 3.681* | 1.076 | 5.366* | 1.341 | 0.476 | 0.916 | 2.834 | |
FA×P | 11.095** | 1.681 | 2.116 | 4.820** | 0.641 | 2.539* | 3.611* | 2.028 | 1.889 | 2.106 |
表1 菌剂水平和固结层位置对4种沙生植物叶性状和光合生理指标影响的双因素方差分析
Table 1 Two-way ANOVA analysis of effect of microbial agent levels and consolidation layer positions on leaf traits and photosynthetic physiological indexes of four desert plants
物种 Species | 指标 Index | 土壤有机质SOM | CaCO3 | 比叶 面积SLA | 叶干物质含量 LDMC | 叶绿素Chl | 表观量子效率 AQE | 最大净光合速率 Pnmax | 光饱 和点 LSP | 光补 偿点 LCP | 暗呼吸 速率Rd |
---|---|---|---|---|---|---|---|---|---|---|---|
沙蓬 Agriophyllum squarrosum | FA | 56.722** | 4.497* | 8.981** | 33.056** | 26.627** | 0.067 | 85.477** | 8.068** | 2.502 | 4.390* |
FP | 26.185** | 3.696* | 16.328** | 1.255 | 7.404** | 1.934 | 6.097** | 1.486 | 1.102 | 0.375 | |
FA×P | 60.589** | 2.723* | 5.717** | 6.747** | 18.316** | 3.629* | 5.440** | 7.950** | 0.684 | 1.847 | |
斜茎黄芪 Astragalus laxmannii | FA | 235.105** | 46.306** | 3.942* | 8.066** | 4.082* | 682.761** | 26.192** | 1.081 | 0.735 | 1.153 |
FP | 27.764** | 2.775 | 15.052** | 0.032 | 4.377* | 0.041 | 4.554* | 0.828 | 0.475 | 1.225 | |
FA×P | 47.714** | 8.025** | 2.842* | 1.283 | 0.407 | 1.006 | 8.119** | 1.734 | 1.352 | 0.194 | |
柠条锦鸡儿 Caragana korshinskii | FA | 78.430** | 93.108** | 2.697 | 0.295 | 7.266** | 3.415* | 1.411 | 2.288 | 3.069* | 5.569** |
FP | 18.975** | 3.505* | 27.264** | 1.456 | 12.082** | 0.054 | 4.885* | 1.640 | 5.099* | 1.782 | |
FA×P | 37.335** | 6.595** | 7.154** | 2.344 | 5.803** | 0.013 | 6.237** | 1.545 | 2.770* | 0.694 | |
蒙古羊柴 Corethrodendron fruticosum | FA | 50.673** | 17.879** | 20.995** | 7.381** | 4.962** | 32.300** | 79.186** | 3.428* | 4.370* | 1.040 |
FP | 7.825** | 2.254 | 1.104 | 3.681* | 1.076 | 5.366* | 1.341 | 0.476 | 0.916 | 2.834 | |
FA×P | 11.095** | 1.681 | 2.116 | 4.820** | 0.641 | 2.539* | 3.611* | 2.028 | 1.889 | 2.106 |
图3 不同菌剂水平和固结层位置下土壤碳酸钙含量注:不同英文字母表示同一菌剂水平下不同固结层位置间在P<0.05水平差异显著;不同希腊字母表示同一固结层位置下不同菌剂水平间在P<0.05水平差异显著。
Fig. 3 Soil CaCO3 content under different microbial agent levels and consolidation layer positionsNote: Different English letters indicate significant differences between different consolidation layer positions of same agent level at P<0.05 level; different Greece letters indicate significant differences between different agent levels of same consolidation layer position at P<0.05 level.
图4 不同菌剂施用水平和固结层位置条件下比叶面积注:不同英文字母表示同一菌剂水平下不同固结层位置间在P<0.05水平差异显著;不同希腊字母表示同一固结层位置下不同菌剂水平间在P<0.05水平差异显著。
Fig. 4 Specific leaf area under different microbial agent levels and consolidation layer positionsNote:Different English letters indicate significant differences between different consolidation layer positions of same agent level at P<0.05 level; different Greece letters indicate significant differences between different agent levels of same consolidation layer position at P<0.05 level.
图5 不同菌剂施用水平和固结层位置条件下叶干物质含量注:不同英文字母表示同一菌剂水平下不同固结层位置间在P<0.05水平差异显著;不同希腊字母表示同一固结层位置下不同菌剂水平间在P<0.05水平差异显著。
Fig. 5 Dry matter content in leaves under different microbial agent levels and consolidation layer positionsNote: Different English letters indicate significant differences between different consolidation layer positions of same agent level at P<0.05 level; different Greece letters indicate significant differences between different agent levels of same consolidation layer position at P<0.05 level.
图6 不同菌剂施用水平和固结层位置条件下叶绿素含量注:不同英文字母表示同一菌剂水平下不同固结层位置间在P<0.05水平差异显著;不同希腊字母表示同一固结层位置下不同菌剂水平间在P<0.05水平差异显著。
Fig. 6 Chlorophyll content under different microbial agent levels and consolidation layer positionsNote: Different English letters indicate significant differences between different consolidation layer positions of same agent level at P<0.05 level; different Greece letters indicate significant differences between different agent levels of same consolidation layer position at P<0.05 level.
物种 Species | 处理 Treatment | 表观量子 效率 AQE | 最大净光合 速率Pnmax/ (μmol·m-2·s-1) | 光饱和点 LSP/ (μmol·m-2·s-1) | 光补偿点 LCP/ (μmol·m-2·s-1) | 暗呼吸 速率 Rd/(μmol·m-2·s-1) | 决定系数 R2 | |
---|---|---|---|---|---|---|---|---|
沙蓬 Agriophyllum squarrosum | CK | B | 0.042 αβa | 11.62 βa | 1 162.28 γa | 63.13 αa | 2.28 αa | 0.992 |
C | 0.036 αba | 11.46 γa | 1 161.86 βa | 61.73 αa | 2.22 αa | 0.991 | ||
T | 0.041 αa | 11.54 γa | 1 155.81 βa | 62.93 αβa | 2.21 αβa | 0.992 | ||
L | B | 0.051 αa | 10.85 βa | 1 609.89 αa | 41.03 αa | 1.77 αa | 0.990 | |
C | 0.025 βb | 10.98 γa | 1 219.24 βb | 39.52 βa | 0.96 βb | 0.997 | ||
T | 0.035 αβab | 9.99 γa | 1 305.60 αβb | 41.93 βa | 1.36 βab | 0.997 | ||
M | B | 0.033 βa | 17.06 αb | 1 184.21 γa | 44.78 αa | 1.43 αa | 0.992 | |
C | 0.048 αa | 16.45 αb | 1 545.55 αa | 59.08 αβa | 2.42 αa | 0.998 | ||
T | 0.033 αβa | 21.23 αa | 1 506.53 αa | 85.63 αa | 2.70 αa | 0.996 | ||
H | B | 0.038 αβa | 16.36 αa | 1 467.69 βa | 64.25 αa | 2.05 αa | 0.991 | |
C | 0.038 αβa | 13.84 βa | 1 236.61 βa | 57.35 αβa | 2.06 αa | 0.999 | ||
T | 0.028 βa | 17.18 βa | 1 430.02 αa | 70.41 αβa | 1.88 αβa | 0.997 | ||
斜茎黄芪 Astragalus laxmannii | CK | B | 0.033 αa | 11.75 βa | 1 474.40 αa | 45.81 αβa | 1.41 αa | 0.999 |
C | 0.033 αa | 12.35 βa | 1 456.57 αβa | 44.67 αa | 1.39 αa | 0.992 | ||
T | 0.035 αa | 11.23 γa | 1 459.10 αa | 43.93 αa | 1.43 αa | 0.996 | ||
L | B | 0.030 βa | 9.85 βb | 1 427.10 αa | 62.55 αa | 1.53 αa | 0.997 | |
C | 0.038 βa | 14.92 αa | 1 607.01 αa | 56.70 αa | 1.81 αa | 0.998 | ||
T | 0.057 βa | 15.56 βa | 1 326.04 αa | 39.50 αa | 2.00 αa | 0.997 | ||
M | B | 0.043 βa | 11.48 βa | 1 414.63 αa | 32.75 βa | 1.31 αa | 0.996 | |
C | 0.032 βa | 10.20 βa | 1 371.24 αβa | 57.11 αa | 1.69 αa | 0.996 | ||
T | 0.037 βa | 11.80 γa | 1 323.44 αa | 51.63 αa | 1.78 αa | 0.999 | ||
H | B | 0.039 βa | 20.31 αa | 1 504.00 αa | 46.13 αβa | 1.76 αa | 0.997 | |
C | 0.037 βa | 13.02 αβb | 1 343.88 βb | 51.39 αa | 1.77 αa | 0.995 | ||
T | 0.033 βa | 18.48 αa | 1 475.26 αab | 62.87 αa | 1.89 αa | 0.996 | ||
柠条锦鸡儿Caragana korshinskii | CK | B | 0.035 αa | 9.36 αβa | 1 433.48 αa | 82.32 αa | 2.12 αa | 0.990 |
C | 0.034 αa | 9.43 βa | 1 445.71 αa | 81.71 αβa | 2.17 αa | 0.998 | ||
T | 0.034 αa | 8.57 αa | 1 435.846 αa | 79.88 αa | 2.03 αa | 0.994 | ||
L | B | 0.024 αa | 6.26 βb | 1 145.02 αa | 51.07 αa | 1.10 αa | 0.995 | |
C | 0.031 αa | 12.76 αa | 1 341.10 αa | 53.48 βa | 1.48 αβa | 0.999 | ||
T | 0.033 αa | 10.77 αa | 1 435.52 αa | 31.16 βa | 0.93 βa | 0.994 | ||
M | B | 0.018 αa | 9.09 αβa | 1 314.52 αa | 100.03 αa | 1.68 αa | 0.990 | |
C | 0.024 αa | 12.13 αa | 1 607.39 αa | 44.03 βb | 0.90 βa | 0.997 | ||
T | 0.022 αa | 12.08 αa | 1 278.94 αa | 23.31 βb | 0.48 βa | 0.989 | ||
H | B | 0.029 αab | 11.21 αa | 1 305.68 αa | 67.75 αa | 2.07 αa | 0.992 | |
C | 0.023 αb | 6.37 γb | 1 339.84 αa | 119.96 αa | 2.25 αa | 0.990 | ||
T | 0.041 αa | 12.85 αa | 968.37 βb | 33.81 βa | 1.36 βa | 0.996 | ||
蒙古羊柴Corethrodendron fruticosum | CK | B | 0.049 αa | 24.10 αa | 1 250.73 αa | 32.55 βa | 1.53 αa | 0.996 |
C | 0.045 αa | 23.38 αa | 1 280.05 αa | 32.63 βa | 1.43 αa | 0.992 | ||
T | 0.044 αa | 22.94 αa | 1 265.46 γa | 33.61 βa | 1.47 αβa | 0.995 | ||
L | B | 0.018 βa | 9.15 αa | 1 416.87 αa | 103.06 αa | 1.72 αa | 0.997 | |
C | 0.020 γa | 12.77 γa | 1 452.36 αa | 88.36 αa | 1.73 αa | 0.990 | ||
T | 0.020 γa | 12.32 γa | 1 363.30 βa | 61.05 αβa | 1.22 βa | 0.997 | ||
M | B | 0.040 αa | 18.18 βa | 1 318.29 αa | 49.33 αβa | 1.81 αab | 0.998 | |
C | 0.020 γb | 13.59 βγb | 1 436.83 αa | 56.18 αβa | 1.09 αb | 0.986 | ||
T | 0.029 βγab | 14.82 γab | 1 401.00 βa | 118.09 αa | 3.14 αa | 0.990 | ||
H | B | 0.036 αa | 19.81 βa | 1 323.05 αb | 39.66 βa | 1.41 αa | 0.996 | |
C | 0.027 βa | 16.48 βb | 1 346.72 αb | 57.09 αβa | 1.55 αa | 0.991 | ||
T | 0.034 βa | 19.97 βa | 1 548.12 αa | 78.29 αβa | 2.56 αβa | 0.995 |
表2 不同菌剂施用量和固结层位置条件下光响应曲线参数 (续表Continued)
Table 2 Characteristic parameters of light response curve under different microbial agent levels and consolidation layer positions
物种 Species | 处理 Treatment | 表观量子 效率 AQE | 最大净光合 速率Pnmax/ (μmol·m-2·s-1) | 光饱和点 LSP/ (μmol·m-2·s-1) | 光补偿点 LCP/ (μmol·m-2·s-1) | 暗呼吸 速率 Rd/(μmol·m-2·s-1) | 决定系数 R2 | |
---|---|---|---|---|---|---|---|---|
沙蓬 Agriophyllum squarrosum | CK | B | 0.042 αβa | 11.62 βa | 1 162.28 γa | 63.13 αa | 2.28 αa | 0.992 |
C | 0.036 αba | 11.46 γa | 1 161.86 βa | 61.73 αa | 2.22 αa | 0.991 | ||
T | 0.041 αa | 11.54 γa | 1 155.81 βa | 62.93 αβa | 2.21 αβa | 0.992 | ||
L | B | 0.051 αa | 10.85 βa | 1 609.89 αa | 41.03 αa | 1.77 αa | 0.990 | |
C | 0.025 βb | 10.98 γa | 1 219.24 βb | 39.52 βa | 0.96 βb | 0.997 | ||
T | 0.035 αβab | 9.99 γa | 1 305.60 αβb | 41.93 βa | 1.36 βab | 0.997 | ||
M | B | 0.033 βa | 17.06 αb | 1 184.21 γa | 44.78 αa | 1.43 αa | 0.992 | |
C | 0.048 αa | 16.45 αb | 1 545.55 αa | 59.08 αβa | 2.42 αa | 0.998 | ||
T | 0.033 αβa | 21.23 αa | 1 506.53 αa | 85.63 αa | 2.70 αa | 0.996 | ||
H | B | 0.038 αβa | 16.36 αa | 1 467.69 βa | 64.25 αa | 2.05 αa | 0.991 | |
C | 0.038 αβa | 13.84 βa | 1 236.61 βa | 57.35 αβa | 2.06 αa | 0.999 | ||
T | 0.028 βa | 17.18 βa | 1 430.02 αa | 70.41 αβa | 1.88 αβa | 0.997 | ||
斜茎黄芪 Astragalus laxmannii | CK | B | 0.033 αa | 11.75 βa | 1 474.40 αa | 45.81 αβa | 1.41 αa | 0.999 |
C | 0.033 αa | 12.35 βa | 1 456.57 αβa | 44.67 αa | 1.39 αa | 0.992 | ||
T | 0.035 αa | 11.23 γa | 1 459.10 αa | 43.93 αa | 1.43 αa | 0.996 | ||
L | B | 0.030 βa | 9.85 βb | 1 427.10 αa | 62.55 αa | 1.53 αa | 0.997 | |
C | 0.038 βa | 14.92 αa | 1 607.01 αa | 56.70 αa | 1.81 αa | 0.998 | ||
T | 0.057 βa | 15.56 βa | 1 326.04 αa | 39.50 αa | 2.00 αa | 0.997 | ||
M | B | 0.043 βa | 11.48 βa | 1 414.63 αa | 32.75 βa | 1.31 αa | 0.996 | |
C | 0.032 βa | 10.20 βa | 1 371.24 αβa | 57.11 αa | 1.69 αa | 0.996 | ||
T | 0.037 βa | 11.80 γa | 1 323.44 αa | 51.63 αa | 1.78 αa | 0.999 | ||
H | B | 0.039 βa | 20.31 αa | 1 504.00 αa | 46.13 αβa | 1.76 αa | 0.997 | |
C | 0.037 βa | 13.02 αβb | 1 343.88 βb | 51.39 αa | 1.77 αa | 0.995 | ||
T | 0.033 βa | 18.48 αa | 1 475.26 αab | 62.87 αa | 1.89 αa | 0.996 | ||
柠条锦鸡儿Caragana korshinskii | CK | B | 0.035 αa | 9.36 αβa | 1 433.48 αa | 82.32 αa | 2.12 αa | 0.990 |
C | 0.034 αa | 9.43 βa | 1 445.71 αa | 81.71 αβa | 2.17 αa | 0.998 | ||
T | 0.034 αa | 8.57 αa | 1 435.846 αa | 79.88 αa | 2.03 αa | 0.994 | ||
L | B | 0.024 αa | 6.26 βb | 1 145.02 αa | 51.07 αa | 1.10 αa | 0.995 | |
C | 0.031 αa | 12.76 αa | 1 341.10 αa | 53.48 βa | 1.48 αβa | 0.999 | ||
T | 0.033 αa | 10.77 αa | 1 435.52 αa | 31.16 βa | 0.93 βa | 0.994 | ||
M | B | 0.018 αa | 9.09 αβa | 1 314.52 αa | 100.03 αa | 1.68 αa | 0.990 | |
C | 0.024 αa | 12.13 αa | 1 607.39 αa | 44.03 βb | 0.90 βa | 0.997 | ||
T | 0.022 αa | 12.08 αa | 1 278.94 αa | 23.31 βb | 0.48 βa | 0.989 | ||
H | B | 0.029 αab | 11.21 αa | 1 305.68 αa | 67.75 αa | 2.07 αa | 0.992 | |
C | 0.023 αb | 6.37 γb | 1 339.84 αa | 119.96 αa | 2.25 αa | 0.990 | ||
T | 0.041 αa | 12.85 αa | 968.37 βb | 33.81 βa | 1.36 βa | 0.996 | ||
蒙古羊柴Corethrodendron fruticosum | CK | B | 0.049 αa | 24.10 αa | 1 250.73 αa | 32.55 βa | 1.53 αa | 0.996 |
C | 0.045 αa | 23.38 αa | 1 280.05 αa | 32.63 βa | 1.43 αa | 0.992 | ||
T | 0.044 αa | 22.94 αa | 1 265.46 γa | 33.61 βa | 1.47 αβa | 0.995 | ||
L | B | 0.018 βa | 9.15 αa | 1 416.87 αa | 103.06 αa | 1.72 αa | 0.997 | |
C | 0.020 γa | 12.77 γa | 1 452.36 αa | 88.36 αa | 1.73 αa | 0.990 | ||
T | 0.020 γa | 12.32 γa | 1 363.30 βa | 61.05 αβa | 1.22 βa | 0.997 | ||
M | B | 0.040 αa | 18.18 βa | 1 318.29 αa | 49.33 αβa | 1.81 αab | 0.998 | |
C | 0.020 γb | 13.59 βγb | 1 436.83 αa | 56.18 αβa | 1.09 αb | 0.986 | ||
T | 0.029 βγab | 14.82 γab | 1 401.00 βa | 118.09 αa | 3.14 αa | 0.990 | ||
H | B | 0.036 αa | 19.81 βa | 1 323.05 αb | 39.66 βa | 1.41 αa | 0.996 | |
C | 0.027 βa | 16.48 βb | 1 346.72 αb | 57.09 αβa | 1.55 αa | 0.991 | ||
T | 0.034 βa | 19.97 βa | 1 548.12 αa | 78.29 αβa | 2.56 αβa | 0.995 |
1 | 杜宇佳,高广磊,陈丽华,等.土壤微生物膜对风沙土固沙保水特性的影响[J].农业工程学报,2020,36(17):98-105. |
DU Y J, GAO G L, CHEN L H, et al.. Effects of soil microbial films on sand fixation and water retention characteristics of aeolian soils [J]. Trans. Chin. Soc. Agric. Eng., 2020, 36(17):98-105. | |
2 | ZHAO Y, GAO G L, DING G D, et al.. Assessing the influencing factors of soil susceptibility to wind erosion: a wind tunnel experiment with a machine learning and model-agnostic interpretation approach [J/OL]. Catena, 2022, 215:106324 [2023-04-30]. . |
3 | CHEN Y X, GAO G L, WANG L, et al.. Wind erodibility of arenosols and its driving factors during sand dune fixation: a wind tunnel experiment [J/OL]. Catena, 2022, 214: 106237 [2023-04-30]. . |
4 | 高广磊,殷小琳,丁国栋,等.土壤风蚀可蚀性研究进展评述[J].中国水土保持科学,2022,20(1):143-150. |
GAO G L, YIN X L, DING G D, et al.. Soil erodibility for wind erosion: a critical review [J]. Sci. Soil Water. Conserv. China, 2022, 20(1):143-150. | |
5 | JANSSON J K, PROSSER J I. Microbiology: the life beneath our feet [J]. Nature, 2013, 494:40-41. |
6 | 阿拉萨,高广磊,丁国栋,等.土壤微生物膜生理生态功能研究进展[J].应用生态学报,2022,33(7):1885-1892. |
A L S, GAO G L, DING G D, et al.. Eco-physiological functions of soil microbial biofilms: a review [J]. Chin. J. Appl. Ecol., 2022, 33(7):1885-1892. | |
7 | 王雨,刘振婷,高广磊,等.干旱胁迫下枯草芽孢杆菌(Bacillus subtilis)对柠条(Caragana korshinskii)和沙冬青(Ammopiptanthus mongolicus)种子萌发及幼苗生长的影响[J].中国沙漠,2022,42(5):73-81. |
WANG Y, LIU Z T, GAO G L, et al.. Effects of Bacillus subtilis on seed germination,seedling growth of Caragana korshinskii and Ammopiptanthus mongolicus under drought stress [J]. J. Desert. Res., 2022, 42(5):73-81. | |
8 | SEIFAN M, BERENJIAN A. Microbially induced calcium carbonate precipitation a widespread phenomenon in the biological world [J]. Appl. Microbiol. Biotechnol., 2019, 103:4693-4708. |
9 | LIU Z, SUN Y F, ZHANG Y Q, et al. Desert soil sequesters atmospheric CO2 by microbial mineral formation [J/OL]. Geoderma, 2020, 361: 114104 [2023-04-30]. . |
10 | MONDAL S, GHOSH A. Review on microbial induced calcite precipitation mechanisms leading to bacterial selection for microbial concrete [J]. Constr. Build. Mater., 2019, 225:67-75. |
11 | CHOI S G, CHANG I, LEE M, et al.. Review on geotechnical engineering properties of sands treated by micp and biopolymers [J/OL]. Constr. Build. Mater., 2020, 246:118415 [2023-04-30]. . |
12 | MENG H, GAO Y F, HE J, et al.. Microbially induced carbonate precipitation for wind erosion control of desert soil: field-scale tests [J/OL]. Geoderma, 2021, 383:114723 [2023-04-30]. . |
13 | TIAN K L, WU Y Y, ZHANG H L, et al.. Increasing wind erosion resistance of aeolian sand soil by microbial induced calcium carbonate precipitation [J]. Land. Degrad. Dev., 2018, 29:4271-4281. |
14 | 李驰,王硕,王燕星,等.沙漠微生物矿化覆膜及其稳定性的现场试验研究[J].岩土力学,2019,40(4):1-8. |
LI C, WANG S, WANG Y X, et al.. Field experimental study on stability of bio-mineralization crust in the desert [J]. Rock Soil Mech., 2019, 40(4):1-8. | |
15 | 吴才武,夏建新,段峥嵘.土壤有机质测定方法述评与展望[J].土壤,2015,47(3):453-460. |
WU C W, XIA J X, DUAN Z R. Review on detection methods of soil organic matter (SOM) [J]. Soil, 2015, 47(3):453-460. | |
16 | 叶子飘,段世华,安婷,等.C4作物电子传递速率对CO2响应模型的构建及应用[J].植物生态学报 2018,42(10):1000-1008. |
YE Z P, DUAN S H, AN T, et al.. Construction of CO2-response model of electron transport rate in C4 crop and its application [J]. Chin. J. Plant Ecol., 2018, 42(10):1000-1008. | |
17 | 铁生年,姜雄,汪长安.化学固沙材料研究进展[J].材料导报,2013,27(5):71-75. |
TIE S N, JIANG X, WANG C A, et al.. Advances in chemical sand-fixing materials [J]. Mater. Rep., 2013, 27(5):71-75. | |
18 | MA G F, FENG E K, RAN F T, et al.. Preparation and sand-fixing property of a novel and eco-friendly organic-inorganic composite [J]. Polym-Plastics Technol. Eng., 2015, 54(7):703-710. |
19 | MENDOZA-AGUILAR D O, CORTINA J, PANDO-MORENO M. Biological soil crust influence on germination and rooting of two key species in a Stipa tenacissima steppe [J]. Plant. Soil., 2014, 375(1/2):267-274. |
20 | LIU Z G, DONG N, ZHANG H X, et al.. Divergent long- and short-term responses toenvironmental gradients in specific leaf area of grassland species [J/OL]. Ecol. Indic., 2021, 130:108058 [2023-04-30]. . |
21 | 杨洋,赵杏花,左合君.羊柴叶形态结构的地域分异特征及其与生态因子间的关系[J].广西植物,2019,39(9):1233-1242. |
YANG Y, ZHAO X H, ZUO H J, et al. Regional differentiation of Hedysarum laeve leaf morphological structure and its relation with ecological factors [J]. Guihaia, 2019, 39(9):1233-1242. | |
22 | 陈宇轩,丁国栋,高广磊,等.呼伦贝尔沙地风沙土有机质和碳酸钙含量特征[J].中国水土保持科学,2019,17(4):104-111. |
CHEN Y X, DING G D, GAO G L, et al. Content characteristics of organic matter and calcium carbonate of aeolian soils in Hulun Buir sandy land [J]. Sci. Soil. Water. Conserv. China., 2019, 17(4):104-111. | |
23 | 檀龙颜,马洪娜.植物响应钙离子胁迫的研究进展[J].植物生理学报,2017,53(7):1150-1158. |
TAN L Y, MA H N. Advance in the research of plant in response to calcium ions stress [J]. Plant Physiol. J., 2017, 53(7):1150-1158. | |
24 | LIU T, LIU Y P, FU G, et al.. Identification of genes involved in drought tolerance in seedlings of the desert grass, Psammochloa villosa (poaceae), based on full-length isoform sequencing and de novo assembly from short reads [J/OL]. J. Plant Physiol., 2022, 271:153630 [2023-04-30]. . |
25 | 刘国花,兰建彬,刘奕清,等.外源钙对低温胁迫下尾巨桉幼苗生理特性及内源激素的影响[J].西北林学院学报,2017,32(6):101-106. |
LIU G H, LAN J B, LIU Y Q, et al.. Effects of exogenous calcium on seeding physiological characteristics and enddogenous hormone of Euccalyptus urophylla ×E. grandis under low temperature stress [J]. J. Northwest. For. Univ., 2017, 32(6):101-106. | |
26 | MENG H, GAO Y F, HE J, et al.. Microbially induced carbonate precipitation for wind erosion control of desert soil: Field-scale tests [J/OL]. Geoderma, 2021, 383: 114723 [2023-04-30]. . |
27 | 马洋,王雪芹,韩章勇,等.风蚀沙埋对疏叶骆驼刺(Alhagi sparsifolia)和花花柴(Karelinia caspica)幼苗的生理影响[J].中国沙漠,2015,35(5):1254-1261. |
MA Y, WANG X Q, HAN Z Y, et al.. Effect of wind erosion and sand burial on physiological characters in Alhagi sparsifolia and Karelinia capsica seedings in the southern margin of the Taklimakan desert [J]. J. Desert Res., 2015, 35(5):1254-1261. | |
28 | 郑曼曼,王超,沈仁芳.碳酸钙和根际作用对酸性红壤解磷微生物丰度的影响[J].土壤,2020,52(4):704-709. |
ZHENG M M, WANG C, SHEN R F. Effects of calcium carbonate and rhizosphere on abundance of phosphate-solubilizing microorganisms in acidic red soil [J]. Soil, 2020, 52(4):704-709. | |
29 | 钟帅,韩致文,李爱敏.GS-3生态固沙剂性能及其浓度对植物生长的影响[J].农业工程学报,2018,34(24):107-114. |
ZHONG S, HAN Z W, LI A M. Effects of performance and concentration of GS-3 sand-fixing agent on plant growth [J]. Trans. Chin. Soc. Agric. Eng., 2018, 34(24):107-114. | |
30 | 赵哈林,曲浩,周瑞莲,等.沙埋对沙米幼苗生长及生理过程的影响[J].应用生态学报,2013,24(12):3367-3372. |
ZHAO H L, QU H, ZHOU R L, et al.. Effects of sand burial on growth and physiological process of Agriophyllum squarrosum seedlings in Horqin sand land of Inner Mongolia, North China [J]. Chin. J. Appl. Ecol., 2013, 24(12):3367-3372. | |
31 | GUO J J, GONG X W, FANG L D, et al.. Switching of dominant positions between two sand-fixing shrub species during the dune revegetation process is underlain by their contrasting xylem hydraulics and water-use strategies [J]. Land. Degrad. De., 2020, 31(10):1195-1205. |
32 | BASILE A, SORBO S, PISANI T, et al.. Bioacumulation and ultrastructural effects of Cd, Cu, Pb and Zn in the moss Scorpiurum circinatum (Brid.) Fleisch & Loeske [J]. Environ. Pollut., 2012, 166:208-211. |
33 | 刘军,张宇清,秦树高,等.不同喷洒浓度沙蒿胶固沙效果试验[J].农业工程学报,2016,32(5):149-155. |
LIU J, ZHANG Y Q, QIN S G, et al.. Sand fixation experiment of Artemisia Sphaerocephala krasch. Gum with different concentrations [J]. Trans. Chin. Soc. Agri. Eng., 2016, 32(5):149-155. | |
34 | YANG J, CAO H, WANG F, et al.. Application and appreciation of chemical sand fixing agent-poly (aspartic acid) and its composites [J]. Environ. Pollut., 2007, 150(3):381-384. |
35 | 谭雪红,郭小平,赵廷宁.陶粒覆盖对土壤水分、植物光合作用及生长状况的影响[J].生态学报,2013,33(19):6097-6106. |
TAN X H, GUO X P, ZHAO T N. Effects of ceramsite mulching on soil water content,photosynthetic physiological characteristics and growth of plants [J]. Acta Ecol. Sin., 2013, 33(19):6097-6106. | |
36 | LIU J, SHI B, LU Y, et al.. Effectiveness of a new organic polymer sand-fixing agent on sand fixation [J]. Environ. Earth. Sci., 2012, 65(3):589-595. |
37 | 王蕊,朱清科,赵磊磊,等.黄土高原土壤生物结皮对植物种子出苗和生长的影响[J].干旱区研究,2011,28(5):800-807. |
WANG R, ZHU Q K, ZHAO L L, et al.. Effects of biological soil crusts on seed emergence and seedling growth in loess plateau,north Shaanxi province [J]. Arid. Zone. Res., 2011, 28(5):800-807. | |
38 | SONG G, LI X R, HUI R. Biological soil crusts determine the germination and growth of two exotic plants [J]. Ecol. Evol., 2017, 7(22):9441-9450. |
39 | 李浩铭,李青丰,曲艳,等.不同植物生长调剂对八宝景天株型和生理特性的影响[J].草地学报,2022,30(12):3294-3301. |
LI H M, LI Q F, QU Y, et al.. Effects of different plant growth regulators on plant type and physiological characteristics of Hylotelephium erythrostictum [J]. Acta Agrestia Sin., 2022, 30(12):3294-3301. |
[1] | 褚蓉蓉, 冯国庆, 张中一, 刘慧娇, 董家鑫, 文章镇, 高祥斌, 解孝满, 刘丹. 不同树龄国槐叶片性状特征及其适应策略研究[J]. 中国农业科技导报, 2024, 26(3): 48-56. |
[2] | 李生梅, 庞博, 耿世伟, 宋武, 李红梅, 马茂森, 张茹, 王新燕, 高文伟. 棉花海陆回交群体盛铃期的光合特性及其生理基础[J]. 中国农业科技导报, 2024, 26(1): 40-51. |
[3] | 段媛媛, 刘晓洪, 唐涛, 王帆帆, 游景茂, 郭晓亮, 郭杰. 种植密度对湖北贝母生长及品质的影响[J]. 中国农业科技导报, 2023, 25(9): 197-206. |
[4] | 侯非凡, 张笑文, 王嘉琦, 张建珍, 李凯泉, 尹雪斌. 硒肥土施位置对小麦生理特性及硒积累的影响[J]. 中国农业科技导报, 2023, 25(7): 144-152. |
[5] | 刘咏艳, 宋正熊, 金佳威, 王静, 徐敏, 周俊学, 李占民, 赵世民, 符云鹏, 代晓燕. 钼锌营养对烤烟生理特性及品质的影响[J]. 中国农业科技导报, 2023, 25(6): 216-224. |
[6] | 李世民, 董琼, 金友帆, 李树萍, 李猛, 刘廷彪, 赵兴杰, 陈静, 叶平, 吕梦. 树番茄幼苗叶片性状和生理参数对遮阴的响应及评价[J]. 中国农业科技导报, 2023, 25(1): 72-82. |
[7] | 杨茜, 吴娜, 赵匆, 韩羽, 麻仲花, 杨永森, 刘吉利. 施锌对盐碱地玉米生理特性及籽粒锌含量的影响[J]. 中国农业科技导报, 2022, 24(9): 166-176. |
[8] | 王志丹, 刘吉利, 吴娜. 粉垄耕作对甜高粱光合生理特性及产量的影响[J]. 中国农业科技导报, 2022, 24(1): 148-156. |
[9] | 张胜珍, 马艳芝. 氯化钙对盐胁迫下荆芥种子萌发及幼苗生理特性的影响 [J]. 中国农业科技导报, 2021, 23(7): 65-71. |
[10] | 石丽红, 唐海明, 肖小平, 李超, 刘曲, 程爱武, 程凯凯, 李微艳, 文丽. 双季稻区长期秸秆还田配施化肥对大麦生理特性与产量的影响[J]. 中国农业科技导报, 2021, 23(5): 143-152. |
[11] | 王志恒,杨秀柳,邹芳,黄思麒,周吴艳,徐中伟,魏玉清*. 旱盐交叉胁迫对甜高粱种子萌发和生理特性的影响[J]. 中国农业科技导报, 2021, 23(2): 37-49. |
[12] | 李艳梅1,周亚文2,张琳1,廖上强1*,孙焱鑫1*. 抗逆与渗透物质耦合对番茄产量及水分利用的调控及机制探讨[J]. 中国农业科技导报, 2021, 23(1): 43-50. |
[13] | 通旭芳,汪季*,蒙仲举,魏亚娟. 光伏电板下沙打旺叶片性状及其养分差异研究[J]. 中国农业科技导报, 2020, 22(8): 168-177. |
[14] | 唐海明,李超,肖小平*,汤文光,程凯凯,潘孝晨,汪柯,李微艳. 不同有机无机肥氮投入比例对双季水稻生理特性与产量的影响[J]. 中国农业科技导报, 2020, 22(6): 149-160. |
[15] | 李纪潮,张金渝,杨天梅,杨美权,杨维泽,许宗亮,左应梅*. 滇重楼种质资源抗旱综合评价及生理机制研究[J]. 中国农业科技导报, 2020, 22(10): 49-59. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||