中国农业科技导报 ›› 2025, Vol. 27 ›› Issue (4): 99-109.DOI: 10.13304/j.nykjdb.2023.0785

• 智慧农业 农机装备 • 上一篇    下一篇

基于卷积神经网络的农作物病害识别研究

陈自立1,2(), 林卫1(), 贺佳2, 王来刚2, 郑国清2, 彭一龙1,2, 焦家东1, 郭燕2()   

  1. 1.河南师范大学计算机与信息工程学院,河南省教育人工智能与个性化学习重点实验室,河南 新乡 453007
    2.河南省农业科学院农业经济与信息研究所,农业农村部黄淮海智慧农业技术重点实验室,郑州 450002
  • 收稿日期:2023-10-26 接受日期:2024-02-06 出版日期:2025-04-15 发布日期:2025-04-15
  • 通讯作者: 林卫,郭燕
  • 作者简介:陈自立 E-mail: czl989898@163.com
  • 基金资助:
    国家自然科学基金项目(41601213);国家重点研发计划项目(2022YFD2001105);河南省重点研发与推广专项(232102111030);河南省农业科学院自主创新项目(2023ZC064)

Research Progress on Crop Diseases Identification Based on Convolutional Neural Network

Zili CHEN1,2(), Wei LIN1(), Jia HE2, Laigang WANG2, Guoqing ZHENG2, Yilong PENG1,2, Jiadong JIAO1, Yan GUO2()   

  1. 1.Henan Provincial Key Laboratory of Educational Artificial Intelligence and Personalized Learning,College of Computer and Information Engineering,Henan Normal University,Henan Xinxiang 453007,China
    2.Key Laboratory of Huang-Huai-Hai Smart Agricultural Technology of Ministry of Agriculture and Rural Affairs,Economy and Information,Henan Academy of Agricultural Sciences,Zhengzhou 450002,China
  • Received:2023-10-26 Accepted:2024-02-06 Online:2025-04-15 Published:2025-04-15
  • Contact: Wei LIN,Yan GUO

摘要:

农作物病害对农业生产造成重大威胁,及时、准确的病害识别对制定防治措施和保证粮食安全具有重要意义。随着深度学习的迅猛发展,以卷积神经网络为代表的农作物病害识别方法越来越多地被采用。从基于不同数据集的病害识别、使用迁移学习与预训练的病害识别、病害识别模型的轻量化3个方面对卷积神经网络病害识别方法的优劣进行了比较,分析了现有方法存在的不足,并对未来发展趋势进行了展望,指出为实现农作物病害的自动检测,应构建更丰富数据集、结合多模态数据、进一步优化模型、使用机器人等设备。为减少粮食损失、实现精准农业管理、推动农业现代化和可持续发展提供重要的参考。

关键词: 深度学习, 卷积神经网络, 农作物病害, 识别

Abstract:

Crop diseases are major threats for agricultural production, so timely and accurate identification of disease is important for the development of control measures to ensure food security. With the rapid development of deep learning, convolutional neural networks are used more and more to identify crop diseases. This paper compared the advantages and disadvantages of convolutional neural network disease recognition methods from 3 aspects including disease recognition based on different data sets, disease recognition using transfer learning and pre-training, and lightweight of the disease recognition model. It also analyzed the shortcomings of the current methods and put forward the future development trend. It was pointed out that more abundant data sets should be constructed, multi-modal data should be combined, models should be further optimized, and robots should be used to implement automatic detection. It provided important references for reducing food loss, realizing precision agriculture management, promoting agricultural modernization and sustainable development.

Key words: deep learning, convolutional neural network, cropdiseases, identification

中图分类号: