中国农业科技导报 ›› 2025, Vol. 27 ›› Issue (4): 99-109.DOI: 10.13304/j.nykjdb.2023.0785
陈自立1,2(), 林卫1(
), 贺佳2, 王来刚2, 郑国清2, 彭一龙1,2, 焦家东1, 郭燕2(
)
收稿日期:
2023-10-26
接受日期:
2024-02-06
出版日期:
2025-04-15
发布日期:
2025-04-15
通讯作者:
林卫,郭燕
作者简介:
陈自立 E-mail: czl989898@163.com
基金资助:
Zili CHEN1,2(), Wei LIN1(
), Jia HE2, Laigang WANG2, Guoqing ZHENG2, Yilong PENG1,2, Jiadong JIAO1, Yan GUO2(
)
Received:
2023-10-26
Accepted:
2024-02-06
Online:
2025-04-15
Published:
2025-04-15
Contact:
Wei LIN,Yan GUO
摘要:
农作物病害对农业生产造成重大威胁,及时、准确的病害识别对制定防治措施和保证粮食安全具有重要意义。随着深度学习的迅猛发展,以卷积神经网络为代表的农作物病害识别方法越来越多地被采用。从基于不同数据集的病害识别、使用迁移学习与预训练的病害识别、病害识别模型的轻量化3个方面对卷积神经网络病害识别方法的优劣进行了比较,分析了现有方法存在的不足,并对未来发展趋势进行了展望,指出为实现农作物病害的自动检测,应构建更丰富数据集、结合多模态数据、进一步优化模型、使用机器人等设备。为减少粮食损失、实现精准农业管理、推动农业现代化和可持续发展提供重要的参考。
中图分类号:
陈自立, 林卫, 贺佳, 王来刚, 郑国清, 彭一龙, 焦家东, 郭燕. 基于卷积神经网络的农作物病害识别研究[J]. 中国农业科技导报, 2025, 27(4): 99-109.
Zili CHEN, Wei LIN, Jia HE, Laigang WANG, Guoqing ZHENG, Yilong PENG, Jiadong JIAO, Yan GUO. Research Progress on Crop Diseases Identification Based on Convolutional Neural Network[J]. Journal of Agricultural Science and Technology, 2025, 27(4): 99-109.
数据集 Data set | 作物种类Crop type | 图像种类 Image type | 图像数量 Number of images | 接网址 Wehsite |
---|---|---|---|---|
植物村 PlantVillage | 14 | 38 | 54 303 | https://github.com/spMohanty/PlantVillage-Dataset |
植物文档 PlantDoc | 13 | 17 | 2 598 | https://github.com/pratikkayal/PlantDoc-Object-Detection-Dataset |
水稻叶片病害数据集 Rice Leaf Disease Image Samples | 1 | 4 | 5 932 | https://link.zhihu.com/?target=https%3A//data.mendeley.com/datasets/fwcj7stb8r/1 |
IP102 | 8 | 102 | 75 000 | https://github.com/xpwu95/IP102 |
DiaMOS | 1 | 4 | 3 505 | https://zenodo.org/record/5557313 |
巴西阿拉比卡咖啡叶图像数据集 BRACOL | 1 | 4 | 4 407 | https://data.mendeley.com/datasets/yy2k5y8mxg/1 |
木薯叶病数据集 Cassava Leaf Disease | 1 | 5 | 21 397 | https://www.kaggle.com/competitions/cassava-leaf-disease-classification/data |
植物病理学2020-FGVC7 Plant Pathology 2020-FGVC7 | 1 | 3 | 3 642 | https://www.kaggle.com/competitions/plant-pathology-2020-fgvc7/data |
AI Challenger 2018病虫害分类数据集 AI Challenger 2018 Pest and disease classification data set | 10 | 27 | 50 000 | https://aistudio.baidu.com/datasetdetail/76075 |
苹果叶部病理图像 Apple leaf pathology images | 1 | 5 | 约20 000 About 20 000 | https://aistudio.baidu.com/datasetdetail/11591 |
小麦病害数据集 Large Wheat Disease Classification Dataset 2020 | 1 | 10 | 12 000(可获取4 500幅) 12 000(4 500 sheets are available) | https://drive.google.com/drive/folders/1OHKtwD1UrdmhqxrpQEeF_X_pqKotxRGD |
表1 农业领域公开数据集
Table 1 Public data sets in the agricultural field
数据集 Data set | 作物种类Crop type | 图像种类 Image type | 图像数量 Number of images | 接网址 Wehsite |
---|---|---|---|---|
植物村 PlantVillage | 14 | 38 | 54 303 | https://github.com/spMohanty/PlantVillage-Dataset |
植物文档 PlantDoc | 13 | 17 | 2 598 | https://github.com/pratikkayal/PlantDoc-Object-Detection-Dataset |
水稻叶片病害数据集 Rice Leaf Disease Image Samples | 1 | 4 | 5 932 | https://link.zhihu.com/?target=https%3A//data.mendeley.com/datasets/fwcj7stb8r/1 |
IP102 | 8 | 102 | 75 000 | https://github.com/xpwu95/IP102 |
DiaMOS | 1 | 4 | 3 505 | https://zenodo.org/record/5557313 |
巴西阿拉比卡咖啡叶图像数据集 BRACOL | 1 | 4 | 4 407 | https://data.mendeley.com/datasets/yy2k5y8mxg/1 |
木薯叶病数据集 Cassava Leaf Disease | 1 | 5 | 21 397 | https://www.kaggle.com/competitions/cassava-leaf-disease-classification/data |
植物病理学2020-FGVC7 Plant Pathology 2020-FGVC7 | 1 | 3 | 3 642 | https://www.kaggle.com/competitions/plant-pathology-2020-fgvc7/data |
AI Challenger 2018病虫害分类数据集 AI Challenger 2018 Pest and disease classification data set | 10 | 27 | 50 000 | https://aistudio.baidu.com/datasetdetail/76075 |
苹果叶部病理图像 Apple leaf pathology images | 1 | 5 | 约20 000 About 20 000 | https://aistudio.baidu.com/datasetdetail/11591 |
小麦病害数据集 Large Wheat Disease Classification Dataset 2020 | 1 | 10 | 12 000(可获取4 500幅) 12 000(4 500 sheets are available) | https://drive.google.com/drive/folders/1OHKtwD1UrdmhqxrpQEeF_X_pqKotxRGD |
模型 Model | 参数量/内存占用量 Parameter quantity/memory usage | 数据集 Data set | 性能 Performance | 参考文献 Reference |
---|---|---|---|---|
ULEN | 111 758 | 植物村/木薯叶病 Plantvillage/ The Cassava dataset | 精确度 Precision:98.13%/54.97% | [ |
VGG16-Inception迁移 VGG16-Inception migration | 2 250 000 | 植物村 PlantVillage | 平均准确率 Average accuracy:92.40% | [ |
LMA-CNNs | 1 400 000 | 全球AI挑战赛农作物病害数据集 AI Challenger 2018 Pest and disease classification data set | 准确率 Accuracy:88.08% | [ |
RLDNet | 0.65 MB | 植物村/自建数据集 PlantVillage/ Self-managed datasets | 准确率 Accuracy:99.53%/98.49% | [ |
SqueezeNe改进型 SqueezeNe improved | 0.62 MB | 植物村 PlantVillage | 平均准确率 Average accuracy:98.13% | [ |
MobileNet-CA-YOLO | 6.956 MB | 自建水稻病害数据集 Self-built rice disease dataset | 准确率Accuracy:92.3% | [ |
表 2 主要的轻量化模型
Table 2 Main lightweight model
模型 Model | 参数量/内存占用量 Parameter quantity/memory usage | 数据集 Data set | 性能 Performance | 参考文献 Reference |
---|---|---|---|---|
ULEN | 111 758 | 植物村/木薯叶病 Plantvillage/ The Cassava dataset | 精确度 Precision:98.13%/54.97% | [ |
VGG16-Inception迁移 VGG16-Inception migration | 2 250 000 | 植物村 PlantVillage | 平均准确率 Average accuracy:92.40% | [ |
LMA-CNNs | 1 400 000 | 全球AI挑战赛农作物病害数据集 AI Challenger 2018 Pest and disease classification data set | 准确率 Accuracy:88.08% | [ |
RLDNet | 0.65 MB | 植物村/自建数据集 PlantVillage/ Self-managed datasets | 准确率 Accuracy:99.53%/98.49% | [ |
SqueezeNe改进型 SqueezeNe improved | 0.62 MB | 植物村 PlantVillage | 平均准确率 Average accuracy:98.13% | [ |
MobileNet-CA-YOLO | 6.956 MB | 自建水稻病害数据集 Self-built rice disease dataset | 准确率Accuracy:92.3% | [ |
1 | 刘杰,曾娟,杨清坡,等.2023年农作物重大病虫害发生趋势预报[J].中国植保导刊,2023,43(1):32-35. |
LIU J, ZENG J, YANG Q P, et al.. Forecast of major crop diseases and pests in 2023 [J]. China Plant Prot., 2023,43(1):32-35. | |
2 | DONG X Y, WANG Q, HUANG Q D, et al.. PDDD-PreTrain:a series of commonly used pre-trained models support image-based plant disease diagnosis [J/OL]. Plant Phenomics, 2023,5:0054 [2024-10-08].. |
3 | 赵云娟,尹祥杰,屈丰年,等.“望闻问切” 四诊观察法在黄瓜病害诊断中的应用[J].农业开发与装备,2023(1):206-207. |
4 | 杨怡华,王明郧,曹瑱艳,等.麦冬主要病害病原菌巢式多重PCR检测方法的建立[J].植物保护学报,2021,48(4):742-747. |
YANG Y H, WANG M Y, CAO T Y, et al.. Nested multiplex PCR to detect two major fungal pathogens of Mondo grass Ophiopogon japonicas [J]. J. Plant Prot., 2021,48(4):742-747. | |
5 | 傅华英,葛丹凤,李晓燕,等.甘蔗赤条病菌巢式PCR检测[J].植物保护学报,2017,44(2):276-282. |
FU H Y, GE D F, LI X Y, et al.. Nested-PCR detection of Acidovorax avenae subsp.avenae,the pathogen of red stripe on sugarcane [J]. J. Plant Prot., 2017,44(2):276-282. | |
6 | AHMAD M, ABDULLAH M, MOON H, et al.. Plant disease detection in imbalanced datasets using efficient convolutional neural networks with stepwise transfer learning [J]. IEEE Access, 2021, 9:140565-140580. |
7 | HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks [J]. Science, 2006,313(5786):504-507. |
8 | SALEEM M H, POTGIETER J, ARIF K M. Automation in agriculture by machine and deep learning techniques:a review of recent developments [J]. Precis.Agric., 2021,22(6):2053-2091. |
9 | BHAKTA I, PHADIKAR S, MAJUMDER K, et al.. A novel plant disease prediction model based on thermal images using modified deep convolutional neural network [J]. Precis. Agric., 2023,24(1):23-39. |
10 | SETIAWAN W, ROCHMAN E M S, SATOTO B D, et al.. Machine learning and deep learning for maize leaf disease classification: a review [C]// Proceedigns of 5th International Conference on Electrical, Electronics, Informatics, and Vocational Education, Yogyakarta, Indonesia, 2022, 012-019. |
11 | WANG B B, ZHANG C X, LI Y Y, et al.. An ultra-lightweight efficient network for image-based plant disease and pest infection detection [J]. Precis. Agric., 2023, 24(5):1836-1861. |
12 | VAN DER KLIS R, ALANIZ S, MANCINI M, et al.. PDiscoNet: Semantically consistent part discovery for fine-grained recognition [C]// Proceedings of the IEEE/CVF International Conference on Computer Vision(ICCV), Paris, France, 2023, 1866-1876. |
13 | FANG T, CHEN P, ZHANG J, et al.. Crop leaf disease grade identification based on an improved convolutional neural network [J/OL]. J. Electron. Imaging, 2020, 29 (1):013004[2024-10-08].. |
14 | KAPOOR K, SINGH S, SINGH N P, et al.. Bell-pepper leaf bacterial spot detection using AlexNet and VGG-16 [C]// Proceedings of International Conference on Smart Computing and Communication, Singapore, 2023, 507-519. |
15 | CHEN Y P, WU Q F. Grape leaf disease identification with sparse data via generative adversarial networks and convolutional neural networks [J]. Precis. Agric., 2023,24(1):235-253. |
16 | CHEN Z, WU R, LIN Y, et al.. Plant disease recognition model based on improved YOLOv5 [J]. Agronomy, 2022, 12 (2): 365. |
17 | 姜红花,杨祥海,丁睿柔,等.基于改进ResNet18的苹果叶部病害多分类算法研究[J].农业机械学报,2023,54(4):295-303. |
JIANG H H, YANG X H, DING R R, et al.. Identification of apple leaf diseases based on improved ResNet18 [J]. Trans. Chin. Soc. Agric. Mach., 2023,54(4):295-303. | |
18 | 孙艳歌,吴飞,姚建峰,等.多尺度自注意力特征融合的茶叶病害检测方法[J].农业机械学报,2023,54(12):308-315. |
SUN Y G, WU F, YAO J F, et al.. Tea disease detection method with multi-scale self-attention feature fusion[J]. Trans. Chin. Soc. Agric. Mach., 2023,54(12):308-315. | |
19 | BHUGRA S, KAUSHIK V, GUPTA A, et al.. AnoLeaf: Unsupervised leaf disease segmentation via structurally robust generative inpainting [C]// Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, Hawaii, 2023, 6415-6424. |
20 | 宋余庆,谢熹,刘哲,等.基于多层EESP深度学习模型的农作物病虫害识别方法[J].农业机械学报,2020,51(8):196-202. |
SONG Y Q, XIE X, LIU Z, et al.. Crop pests and diseases recognition method based on multi-level EESP model [J]. Trans. Chin. Soc. Agric. Mach., 2020,51(8):196-202. | |
21 | ZHU D J, TAN J B, WU C Y, et al.. Crop disease identification by fusing multiscale convolution and vision transformer [J/OL]. Sensors, 2023, 23(13):6015 [2024-10-08]. . |
22 | BANDI S R, VARADHARAJAN A, CHINNASAMY A. Performance evaluation of various statistical classifiers in detecting the diseased citrus leaves [J]. Int. J. Eng. Sci. Technol., 2013, 5 (2): 298-307. |
23 | SCHULER J P S, ROMANI S, ABDEL-NASSER M, et al.. Color-aware two-branch DCNN for efficient plant disease classification [J], MENDEL, 2022, 28 (1): 55-62. |
24 | KAYA Y, GÜRSOY E. A novel multi-head CNN design to identify plant diseases using the fusion of RGB images [J/OL] .Ecol. Inform., 2023,75:101998 [2024-10-08]. . |
25 | JASROTIA S, YADAV J, RAJPAL N, et al.. Convolutional neural network based maize plant disease identification [J]. Procedia Comput. Sci., 2023, 218(1): 1712-1721. |
26 | 于明,李若曦,阎刚,等.基于颜色掩膜网络和自注意力机制的叶片病害识别方法[J].农业机械学报,2022,53(8):337-344. |
YU M, LI R X, YAN G, et al.. Crop diseases recognition method via fusion color mask and self-attention mechanism [J].Trans. Chin. Soc. Agric. Mach., 2022,53(8):337-344. | |
27 | THAI H T, LE K H, NGUYEN N L T. FormerLeaf:an efficient vision transformer for cassava leaf disease detection [J/OL]. Comput. Electron. Agric., 2023,204:107518[2024-10-08]. . |
28 | 李云红,张蕾涛,谢蓉蓉,等.基于AT-DenseNet网络的番茄叶片病害识别方法[J].江苏农业科学,2023,51(21):209-217. |
LI Y H, ZHANG L T, XIE R R, et al.. An identification method for tomato leaf disease based on AT-DenseNet network [J]. Jiangsu Agric. Sci., 2023, 51(21):209-217. | |
29 | 王瑞鹏,陈锋军,朱学岩,等.采用改进的EfficientNet识别苹果叶片病害[J].农业工程学报,2023,39(18):201-210. |
WANG R P, CHEN F J, ZHU X Y, et al.. Identifying apple leaf diseases using improved EfficientNet [J]. Trans. Chin. Soc. Agric. Eng., 2023, 39(18):201-210. | |
30 | XIAO J R, CHUNG P C, WU H Y, et al.. Detection of strawberry diseases using a convolutional neural network [J/OL]. Plants, 2020,10(1):31 [2024-10-08]. . |
31 | 李大湘,曾小通,刘颖.耦合全局与局部特征的苹果叶部病害识别模型[J].农业工程学报,2022,38(16):207-214. |
LI D X, ZENG X T, LIU Y. Apple leaf disease identification model by coupling global and patch features [J]. Trans. Chin. Soc. Agric. Eng., 2022, 38(16):207-214. | |
32 | LI D, AHMED F, WU N, et al.. YOLO-JD:a deep learning network for jute diseases and pests detection from images [J/OL]. Plants (Basel), 2022, 11(7):937 [2024-10-08]. . |
33 | ALSHAMMARI H, GASMI K, BBEN LTAIFA I, et al.. Olive disease classification based on vision transformer and CNN models [J/OL]. Comput. Intell. Neurosci., 2022, 1:3998193[2024-10-08]. . |
34 | 贾璐,叶中华.基于注意力机制和特征融合的葡萄病害识别模型[J].农业机械学报,2023,54(7):223-233. |
JIA L, YE Z H. Grape disease recognition model based on attention mechanism and feature fusion [J]. Trans. Chin. Soc. Agric. Mach., 2023, 54(7):223-233. | |
35 | 张楠楠,张晓,白铁成,等.基于CBAM-YOLO v7的自然环境下棉叶病虫害识别方法[J].农业机械学报, 2023, 54 (S1): 239-244. |
ZHANG N N, ZHANG X, BAI T C, et al.. Identification method of cotton leaf diseases and insect pests in natural environment based on CBAM-YOLO v7 [J]. Trans. Chin. Soc. Agric. Mach., 2023, 54 (S1): 239-244. | |
36 | CHEN J, ZHANG D, NANEHKARAN Y A, et al.. Detection of rice plant diseases based on deep transfer learning [J]. J. Sci. Food Agric., 2020, 100(7):3246-3256. |
37 | 李子茂,徐杰,郑禄,等.基于改进DenseNet的茶叶病害小样本识别方法[J].农业工程学报,2022,38(10):182-190. |
LI Z M, XU J, ZHENG L, et al.. Small sample recognition method of tea disease based on improved DenseNet [J]. Trans. Chin. Soc. Agric. Eng., 2022,38(10):182-190. | |
38 | 张文景,蒋泽中,秦立峰.基于弱监督下改进的CBAM-ResNet18模型识别苹果多种叶部病害[J].智慧农业(中英文), 2023, 5 (1): 111-121. |
ZHANG W J, JIANG Z Z, QIN L F. Identifying multiple apple leaf diseases based on the improved CBAM-ResNet18 model under weak supervision [J]. Smart Agric., 2023, 5 (1): 111-121. | |
39 | 周敏敏.基于迁移学习的苹果叶面病害Android检测系统研究[D].咸阳:西北农林科技大学, 2019. |
ZHOU M M. Apple foliage diseases recognition in android system with transfer learning-based [D]. Xianyang: Northwest A&F University, 2019. | |
40 | SANIDA T, SIDERIS A, SANIDA M V, et al.. Tomato leaf disease identification via two-stage transfer learning approach [J/OL]. Smart Agric. Technol., 2023, 5:100275 [2024-10-08]. . |
41 | AYAZ M, SHAH S K, ULLAH K, et al.. Automatic early diagnosis of dome galls in Cordia dichotoma G. Forst. using deep transfer learning [J]. IEEE Access, 2023, 11: 59511-59523. |
42 | LI L J, DONG P J, WEI Z M, et al.. Automated knowledge distillation via Monte Carlo tree search [C]// Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Paris, France, 2023, 17413-17424. |
43 | FANG G, MA X, SONG M, et al.. Depgraph: towards any structural pruning [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, Canada, 2023, 16091-16101. |
44 | 邓朋飞,官铮,王宇阳,等.基于迁移学习和模型压缩的玉米病害识别方法[J].计算机科学, 2022, 49 (S2): 444-449. |
DENG P F, GUAN Z, WANG Y Y, et al.. Maize disease identification method based on transfer learning and model compression [J]. Comput. Sci., 2022, 49 (S2): 444-449. | |
45 | 王泽钧,马凤英,张瑜,等.基于注意力机制和多尺度轻量型网络的农作物病害识别[J].农业工程学报, 2022, 38 (S1): 176-183. |
WANG Z J, MA F Y, ZHANG Y, et al.. Crop disease identification based on attention mechanism and multi-scale lightweight network [J]. Trans. Chin. Soc. Agric. Eng., 2022, 38 (S1): 176-183. | |
46 | 彭玉寒,李书琴.基于重参数化MobileNetV2的农作物叶片病害识别模型[J].农业工程学报,2023,39(17):132-140. |
PENG Y H, LI S Q. Recognizing crop leaf diseases using reparameterized MobileNetV2 [J]. Trans. Chin. Soc. Agric. Eng., 2023, 39(17):132-140. | |
47 | 刘阳,高国琴.采用改进的SqueezeNet模型识别多类叶片病害[J].农业工程学报, 2021, 37 (2):187-195. |
LIU Y, GAO G Q. Identification of multi-class leaf diseases by using improved SqueezeNet model [J]. Trans. Chin. Soc. Agric. Eng., 2021, 37 (2):187-195. | |
48 | JIA L, WANG T, CHEN Y, et al.. MobileNet-CA-YOLO: an improved YOLOv7 based on the MobileNetV3 and attention mechanism for rice pests and diseases detection [J/OL]. Agriculture, 2023, 13 (7):1285 [2024-10-08]. . |
[1] | 陈林涛, 刘兆祥, 蓝莹, 牟向伟, 马旭, 王日俊. 基于高光谱技术与主成分分析的稻种品种识别研究[J]. 中国农业科技导报, 2025, 27(3): 104-111. |
[2] | 邢卓冉, 丁松爽, 张凯, 马明, 郭文龙, 刘旭东, 时向东. 计算机视觉与深度学习技术在烟叶生产上的研究进展[J]. 中国农业科技导报, 2025, 27(1): 96-106. |
[3] | 胡国玉, 董娅兰, 古丽巴哈尔·托乎提, 刘广, 周建平. 基于机器视觉的葡萄藤结构分割方法研究[J]. 中国农业科技导报, 2024, 26(9): 105-111. |
[4] | 熊晓菲, 王秀琴, 庄翠珍, 郭家贤, 谢新锐, 吴建伟, 李奇峰. 基于ROI融合特征的柑橘炭疽病诊断方法[J]. 中国农业科技导报, 2024, 26(9): 83-92. |
[5] | 金慧萍, 牟海雯, 刘腾, 于佳琳, 金小俊. 基于深度卷积神经网络的青菜和杂草识别[J]. 中国农业科技导报, 2024, 26(8): 122-130. |
[6] | 李锐风, 杨云福, 杨永发, 于永顺. 基于机器视觉的玫瑰花检测与特征提取[J]. 中国农业科技导报, 2024, 26(4): 106-113. |
[7] | 李名博, 刘玉乐, 穆志民, 郭俊旺, 卫勇, 任东悦, 贾济深, 卫泽中, 栗宇红. 基于YOLOX-L-TN模型的番茄果实识别[J]. 中国农业科技导报, 2024, 26(4): 97-105. |
[8] | 张晓卫, 陈波, 王月明, 李子剑, 张继红, 曹天一. 基于多角度数据融合的养殖场通道中奶牛身份识别算法研究[J]. 中国农业科技导报, 2024, 26(12): 98-106. |
[9] | 朱芷芫, 王海峰, 李斌, 赵文文, 朱君, 贾楠, 赵宇亮. 深度学习在畜禽典型行为识别中的研究进展[J]. 中国农业科技导报, 2024, 26(10): 110-124. |
[10] | 郑果, 姜玉松. 基于多任务学习农作物叶片病害诊断方法[J]. 中国农业科技导报, 2024, 26(1): 89-98. |
[11] | 钱政, 杨孙哲, 张国卿, 郭紫微, 张林朋, 万家兴, 杨红云. 基于卷积神经网络的水稻氮素营养诊断[J]. 中国农业科技导报, 2023, 25(9): 113-121. |
[12] | 赵宁, 李星, 江勇, 王志秀, 毕瑜林, 陈国宏, 白皓, 常国斌. 图像识别技术在鸡养殖领域的应用[J]. 中国农业科技导报, 2023, 25(9): 13-22. |
[13] | 林开颜, 梅飞, 吴军辉, 郭文刚, 陈杰, 司慧萍. 基于计算机视觉的作物病害监测服务平台设计与研究[J]. 中国农业科技导报, 2023, 25(6): 89-96. |
[14] | 赵威, 马睿, 王佳, 郭宏杰, 许金普. 基于果穗图像的玉米品种分类识别[J]. 中国农业科技导报, 2023, 25(6): 97-106. |
[15] | 刘朝阳, 王永强, 周聪玲, 强斯祺. 室外池塘养殖投饵系统智能控制方法研究[J]. 中国农业科技导报, 2023, 25(5): 123-130. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||