中国农业科技导报 ›› 2024, Vol. 26 ›› Issue (1): 89-98.DOI: 10.13304/j.nykjdb.2022.0650
收稿日期:
2022-08-09
接受日期:
2022-11-13
出版日期:
2024-01-15
发布日期:
2024-01-08
通讯作者:
姜玉松
作者简介:
郑果 E-mail:zhengguo@qq.com;
基金资助:
Received:
2022-08-09
Accepted:
2022-11-13
Online:
2024-01-15
Published:
2024-01-08
Contact:
Yusong JIANG
摘要:
为了快速、准确判别农作物叶片病害图像的病害类型及病害程度,提出基于多任务学习的诊断方法。引入通道和空间注意力模型,对经典的MobileNetV3网络模型进行改进,并在此基础上构建基于特征金字塔的多任务深度卷积神经网络模型,实现作物类型、病害类型和病害程度的精准识别。采用多种图像增强方法对农作物叶片病害图像进行扩展,对改进前后模型与其他图像识别模型在农作物病害叶片识别性能上进行对比试验,并探究在有无数据增强处理条件下不同模型的性能。结果表明:该模型在作物类型识别、病害类型识别与病害程度识别任务上,平均准确率比原模型分别提升1.38、2.24和2.03个百分点;召回率比原模型分别提升2.38、1.62和1.18个百分点;对比MobileNetV3,InceptionV3、YOLOv7模型,该模型在上述3个任务上平均识别准确率和召回率均达到最高。
中图分类号:
郑果, 姜玉松. 基于多任务学习农作物叶片病害诊断方法[J]. 中国农业科技导报, 2024, 26(1): 89-98.
Guo ZHENG, Yusong JIANG. Diagnosis of Crop Disease Based on Multi-task Learning[J]. Journal of Agricultural Science and Technology, 2024, 26(1): 89-98.
植物 Plant | 类别编号 Class code | 类别名称 Class name | 图像数量 Number of images | 植物 Plant | 类别编号 Class code | 类别名称 Class name | 图像数量 Number of images |
---|---|---|---|---|---|---|---|
苹果Apple | C1 | 疮痂病Corky scab | 630 | C20 | 健康叶health | 1 478 | |
C2 | 黑腐病Black rot | 622 | 马铃薯 Potato | C21 | 早疫病Early blignt | 1 000 | |
C3 | 锈病Rust | 275 | C22 | 健康叶health | 152 | ||
C4 | 健康Health | 1 645 | C23 | 晚疫病Late blight | 1 000 | ||
蓝莓 Blueberry | C5 | 健康Health | 1 502 | C24 | 干腐病 Mummy disease | 371 | |
樱桃 Cherry | C6 | 健康Health | 854 | 大豆Soybean | C25 | 健康Health | 5 090 |
C7 | 白粉病 Powdery mildew | 1 052 | 南瓜Pumpkin | C26 | 白粉病 Powdery mildew | 1 835 | |
玉米 Corn | C8 | 灰斑病 Gray leaf spot | 513 | 草莓Strayberry | C27 | 健康Health | 456 |
C9 | 锈病Rust | 1 192 | C28 | 叶焦病Tipburn | 1 109 | ||
C10 | 健康Health | 1 162 | 番茄 Tomato | C29 | 斑点病Scab | 2 127 | |
C11 | 枯叶病Leaf blight | 985 | C30 | 早疫病Early blignt | 1 000 | ||
葡萄Grape | C12 | 黑腐病Black rot | 1 180 | C31 | 健康Health | 1 591 | |
C13 | 黑豆病Black bean | 1 383 | C32 | 晚疫病Late blight | 1 909 | ||
C14 | 健康Health | 423 | C33 | 叶霉病Leaf mold | 952 | ||
C15 | 枯叶病Leaf blight | 1 076 | C34 | 斑枯病Septoria | 1 771 | ||
桔子Orange | C16 | 黄龙病 Yellow shoot | 5 507 | C35 | 叶螨病Acariasis | 1 667 | |
桃Peach | C17 | 斑点病Scab | 2 297 | C36 | 轮斑病Zonate spot | 1 404 | |
C18 | 健康Health | 360 | C37 | 黄叶病Yellowtop | 373 | ||
辣椒Pepper | C19 | 斑点病Scab | 997 | C38 | 黄曲病 Yellow aspergillosis | 5 357 |
表 1 PlantVillage数据数据库图像信息
Table 1 Image information of PlantVillage dataset
植物 Plant | 类别编号 Class code | 类别名称 Class name | 图像数量 Number of images | 植物 Plant | 类别编号 Class code | 类别名称 Class name | 图像数量 Number of images |
---|---|---|---|---|---|---|---|
苹果Apple | C1 | 疮痂病Corky scab | 630 | C20 | 健康叶health | 1 478 | |
C2 | 黑腐病Black rot | 622 | 马铃薯 Potato | C21 | 早疫病Early blignt | 1 000 | |
C3 | 锈病Rust | 275 | C22 | 健康叶health | 152 | ||
C4 | 健康Health | 1 645 | C23 | 晚疫病Late blight | 1 000 | ||
蓝莓 Blueberry | C5 | 健康Health | 1 502 | C24 | 干腐病 Mummy disease | 371 | |
樱桃 Cherry | C6 | 健康Health | 854 | 大豆Soybean | C25 | 健康Health | 5 090 |
C7 | 白粉病 Powdery mildew | 1 052 | 南瓜Pumpkin | C26 | 白粉病 Powdery mildew | 1 835 | |
玉米 Corn | C8 | 灰斑病 Gray leaf spot | 513 | 草莓Strayberry | C27 | 健康Health | 456 |
C9 | 锈病Rust | 1 192 | C28 | 叶焦病Tipburn | 1 109 | ||
C10 | 健康Health | 1 162 | 番茄 Tomato | C29 | 斑点病Scab | 2 127 | |
C11 | 枯叶病Leaf blight | 985 | C30 | 早疫病Early blignt | 1 000 | ||
葡萄Grape | C12 | 黑腐病Black rot | 1 180 | C31 | 健康Health | 1 591 | |
C13 | 黑豆病Black bean | 1 383 | C32 | 晚疫病Late blight | 1 909 | ||
C14 | 健康Health | 423 | C33 | 叶霉病Leaf mold | 952 | ||
C15 | 枯叶病Leaf blight | 1 076 | C34 | 斑枯病Septoria | 1 771 | ||
桔子Orange | C16 | 黄龙病 Yellow shoot | 5 507 | C35 | 叶螨病Acariasis | 1 667 | |
桃Peach | C17 | 斑点病Scab | 2 297 | C36 | 轮斑病Zonate spot | 1 404 | |
C18 | 健康Health | 360 | C37 | 黄叶病Yellowtop | 373 | ||
辣椒Pepper | C19 | 斑点病Scab | 997 | C38 | 黄曲病 Yellow aspergillosis | 5 357 |
模型Model | 准确率 Accuracy/% | 召回率 Recall/% | ||||
---|---|---|---|---|---|---|
作物 Crop | 病害 Disease | 病害程度 Disease grade | 作物 Crop | 病害 Disease | 病害程度 Disease grade | |
Non-DA | 95.23 | 96.67 | 92.76 | 94.28 | 95.86 | 93.67 |
DA | 98.73 | 97.26 | 93.99 | 97.49 | 97.17 | 95.36 |
表 2 数据增强对农作物病害识别效果的影响
Table 2 Effect of data augmentation on plant disease recognition
模型Model | 准确率 Accuracy/% | 召回率 Recall/% | ||||
---|---|---|---|---|---|---|
作物 Crop | 病害 Disease | 病害程度 Disease grade | 作物 Crop | 病害 Disease | 病害程度 Disease grade | |
Non-DA | 95.23 | 96.67 | 92.76 | 94.28 | 95.86 | 93.67 |
DA | 98.73 | 97.26 | 93.99 | 97.49 | 97.17 | 95.36 |
类别编号 Class code | 准确率 Accuracy/% | 召回率 Recall/% | |||||||
---|---|---|---|---|---|---|---|---|---|
MobileNetV3 | InceptionV3 | YOLOV7 | 本文Proposed | MobileNetV3 | InceptionV3 | YOLOV7 | 本文Proposed | ||
C1 | 92.86 | 93.65 | 93.78 | 93.89 | 94.32 | 95.68 | 95.23 | 95.26 | |
C2 | 98.40 | 97.58 | 98.82 | 99.12 | 96.53 | 95.61 | 96.79 | 97.32 | |
C3 | 100.00 | 100.00 | 99.98 | 100.00 | 98.65 | 99.22 | 99.38 | 99.62 | |
C4 | 99.39 | 96.96 | 98.96 | 100.00 | 92.43 | 93.95 | 94.62 | 96.25 | |
C5 | 100.00 | 100.00 | 100.00 | 100.00 | 95.42 | 96.98 | 95.54 | 95.89 | |
C6 | 97.08 | 98.83 | 98.89 | 98.65 | 98.26 | 97.88 | 98.32 | 98.15 | |
C7 | 99.00 | 99.00 | 99.13 | 99.20 | 95.24 | 96.32 | 96.85 | 97.24 | |
C8 | 83.50 | 92.23 | 90.85 | 91.84 | 86.48 | 92.23 | 92.27 | 90.62 | |
C9 | 98.74 | 100.00 | 99.78 | 99.69 | 96.64 | 97.04 | 96.93 | 96.89 | |
C10 | 99.57 | 99.98 | 99.92 | 100.00 | 97.88 | 98.06 | 98.17 | 98.56 | |
C11 | 93.88 | 90.36 | 93.81 | 94.23 | 94.56 | 93.86 | 94.32 | 94.72 | |
C12 | 98.73 | 99.58 | 99.18 | 99.35 | 97.92 | 98.88 | 98.30 | 97.45 | |
C13 | 97.84 | 98.56 | 98.49 | 98.52 | 98.26 | 98.89 | 98.56 | 98.43 | |
C14 | 96.47 | 100.0 | 98.93 | 99.88 | 95.39 | 96.03 | 97.35 | 98.48 | |
C15 | 99.07 | 99.07 | 99.18 | 99.28 | 97.35 | 96.98 | 97.46 | 97.88 | |
C16 | 99.30 | 99.40 | 99.47 | 99.50 | 96.26 | 97.87 | 97.92 | 98.12 | |
C17 | 98.03 | 98.26 | 99.03 | 98.54 | 97.34 | 97.25 | 97.17 | 97.96 | |
C18 | 95.83 | 97.22 | 97.59 | 98.12 | 96.46 | 96.29 | 97.92 | 97.82 | |
C19 | 100.0 | 96.48 | 98.94 | 100.0 | 98.13 | 97.68 | 98.37 | 98.80 | |
C20 | 93.58 | 97.97 | 96.42 | 96.80 | 96.36 | 98.34 | 98.41 | 97.87 | |
C21 | 93.50 | 96.50 | 96.52 | 96.32 | 96.34 | 98.56 | 97.78 | 97.93 | |
C22 | 83.33 | 93.33 | 93.90 | 94.86 | 92.42 | 94.13 | 94.87 | 95.46 | |
C23 | 91.00 | 97.50 | 97.83 | 98.21 | 93.32 | 96.62 | 96.07 | 97.31 | |
C24 | 100.0 | 100.00 | 99.95 | 100.0 | 98.34 | 97.89 | 99.18 | 99.12 | |
C25 | 98.72 | 97.45 | 97.98 | 98.45 | 98.72 | 97.92 | 97.52 | 97.86 | |
C26 | 100.0 | 99.18 | 99.93 | 100.0 | 98.12 | 97.48 | 98.52 | 99.04 | |
C27 | 97.80 | 97.80 | 98.15 | 98.24 | 96.47 | 96.93 | 97.16 | 97.72 | |
C28 | 100.0 | 97.30 | 98.95 | 100.0 | 98.42 | 97.94 | 98.37 | 98.60 | |
C29 | 99.53 | 93.41 | 98.86 | 99.80 | 99.13 | 94.76 | 97.20 | 96.81 | |
C30 | 70.00 | 68.00 | 75.26 | 76.21 | 86.34 | 88.67 | 89.50 | 89.45 | |
C31 | 95.91 | 89.31 | 95.97 | 96.42 | 96.23 | 92.39 | 96.91 | 96.82 | |
C32 | 84.25 | 90.58 | 91.62 | 90.68 | 89.34 | 91.50 | 90.82 | 91.88 | |
C33 | 96.84 | 90.53 | 97.28 | 97.65 | 95.89 | 93.59 | 96.17 | 96.25 | |
C34 | 83.90 | 90.40 | 91.59 | 92.78 | 90.42 | 91.47 | 92.09 | 92.18 | |
C35 | 97.31 | 90.15 | 98.10 | 98.34 | 96.34 | 95.89 | 96.39 | 96.82 | |
C36 | 81.14 | 91.81 | 92.19 | 92.60 | 90.23 | 91.90 | 90.45 | 91.96 | |
C37 | 97.33 | 100.0 | 99.39 | 99.78 | 98.46 | 99.00 | 98.28 | 98.38 | |
C38 | 98.79 | 95.14 | 98.38 | 98.90 | 96.34 | 96.89 | 97.14 | 97.27 | |
均值Average | 95.02 | 95.62 | 96.92 | 97.26 | 95.99 | 95.98 | 96.43 | 97.17 |
表 3 农作物病害识别结果 (续表Continued)
Table 3 Results of plant disease recognition
类别编号 Class code | 准确率 Accuracy/% | 召回率 Recall/% | |||||||
---|---|---|---|---|---|---|---|---|---|
MobileNetV3 | InceptionV3 | YOLOV7 | 本文Proposed | MobileNetV3 | InceptionV3 | YOLOV7 | 本文Proposed | ||
C1 | 92.86 | 93.65 | 93.78 | 93.89 | 94.32 | 95.68 | 95.23 | 95.26 | |
C2 | 98.40 | 97.58 | 98.82 | 99.12 | 96.53 | 95.61 | 96.79 | 97.32 | |
C3 | 100.00 | 100.00 | 99.98 | 100.00 | 98.65 | 99.22 | 99.38 | 99.62 | |
C4 | 99.39 | 96.96 | 98.96 | 100.00 | 92.43 | 93.95 | 94.62 | 96.25 | |
C5 | 100.00 | 100.00 | 100.00 | 100.00 | 95.42 | 96.98 | 95.54 | 95.89 | |
C6 | 97.08 | 98.83 | 98.89 | 98.65 | 98.26 | 97.88 | 98.32 | 98.15 | |
C7 | 99.00 | 99.00 | 99.13 | 99.20 | 95.24 | 96.32 | 96.85 | 97.24 | |
C8 | 83.50 | 92.23 | 90.85 | 91.84 | 86.48 | 92.23 | 92.27 | 90.62 | |
C9 | 98.74 | 100.00 | 99.78 | 99.69 | 96.64 | 97.04 | 96.93 | 96.89 | |
C10 | 99.57 | 99.98 | 99.92 | 100.00 | 97.88 | 98.06 | 98.17 | 98.56 | |
C11 | 93.88 | 90.36 | 93.81 | 94.23 | 94.56 | 93.86 | 94.32 | 94.72 | |
C12 | 98.73 | 99.58 | 99.18 | 99.35 | 97.92 | 98.88 | 98.30 | 97.45 | |
C13 | 97.84 | 98.56 | 98.49 | 98.52 | 98.26 | 98.89 | 98.56 | 98.43 | |
C14 | 96.47 | 100.0 | 98.93 | 99.88 | 95.39 | 96.03 | 97.35 | 98.48 | |
C15 | 99.07 | 99.07 | 99.18 | 99.28 | 97.35 | 96.98 | 97.46 | 97.88 | |
C16 | 99.30 | 99.40 | 99.47 | 99.50 | 96.26 | 97.87 | 97.92 | 98.12 | |
C17 | 98.03 | 98.26 | 99.03 | 98.54 | 97.34 | 97.25 | 97.17 | 97.96 | |
C18 | 95.83 | 97.22 | 97.59 | 98.12 | 96.46 | 96.29 | 97.92 | 97.82 | |
C19 | 100.0 | 96.48 | 98.94 | 100.0 | 98.13 | 97.68 | 98.37 | 98.80 | |
C20 | 93.58 | 97.97 | 96.42 | 96.80 | 96.36 | 98.34 | 98.41 | 97.87 | |
C21 | 93.50 | 96.50 | 96.52 | 96.32 | 96.34 | 98.56 | 97.78 | 97.93 | |
C22 | 83.33 | 93.33 | 93.90 | 94.86 | 92.42 | 94.13 | 94.87 | 95.46 | |
C23 | 91.00 | 97.50 | 97.83 | 98.21 | 93.32 | 96.62 | 96.07 | 97.31 | |
C24 | 100.0 | 100.00 | 99.95 | 100.0 | 98.34 | 97.89 | 99.18 | 99.12 | |
C25 | 98.72 | 97.45 | 97.98 | 98.45 | 98.72 | 97.92 | 97.52 | 97.86 | |
C26 | 100.0 | 99.18 | 99.93 | 100.0 | 98.12 | 97.48 | 98.52 | 99.04 | |
C27 | 97.80 | 97.80 | 98.15 | 98.24 | 96.47 | 96.93 | 97.16 | 97.72 | |
C28 | 100.0 | 97.30 | 98.95 | 100.0 | 98.42 | 97.94 | 98.37 | 98.60 | |
C29 | 99.53 | 93.41 | 98.86 | 99.80 | 99.13 | 94.76 | 97.20 | 96.81 | |
C30 | 70.00 | 68.00 | 75.26 | 76.21 | 86.34 | 88.67 | 89.50 | 89.45 | |
C31 | 95.91 | 89.31 | 95.97 | 96.42 | 96.23 | 92.39 | 96.91 | 96.82 | |
C32 | 84.25 | 90.58 | 91.62 | 90.68 | 89.34 | 91.50 | 90.82 | 91.88 | |
C33 | 96.84 | 90.53 | 97.28 | 97.65 | 95.89 | 93.59 | 96.17 | 96.25 | |
C34 | 83.90 | 90.40 | 91.59 | 92.78 | 90.42 | 91.47 | 92.09 | 92.18 | |
C35 | 97.31 | 90.15 | 98.10 | 98.34 | 96.34 | 95.89 | 96.39 | 96.82 | |
C36 | 81.14 | 91.81 | 92.19 | 92.60 | 90.23 | 91.90 | 90.45 | 91.96 | |
C37 | 97.33 | 100.0 | 99.39 | 99.78 | 98.46 | 99.00 | 98.28 | 98.38 | |
C38 | 98.79 | 95.14 | 98.38 | 98.90 | 96.34 | 96.89 | 97.14 | 97.27 | |
均值Average | 95.02 | 95.62 | 96.92 | 97.26 | 95.99 | 95.98 | 96.43 | 97.17 |
编号 Code | 植物 Plant | 准确率 Accuracy/% | 召回率 Recall/% | |||||||
---|---|---|---|---|---|---|---|---|---|---|
MobileNetV3 | InceptionV3 | YOLOV7 | 本文 Proposed | MobileNetV3 | InceptionV3 | YOLOV7 | 本文Proposed | |||
P1 | 苹果Apple | 95.56 | 96.25 | 96.58 | 97.82 | 92.25 | 91.86 | 92.08 | 93.62 | |
P2 | 蓝莓Cherry | 93.40 | 92.68 | 94.87 | 95.42 | 94.46 | 93.89 | 95.13 | 96.82 | |
P3 | 樱桃Cherry | 99.20 | 99.31 | 99.53 | 100.0 | 98.80 | 98.82 | 99.05 | 99.86 | |
P4 | 玉米Corn | 98.67 | 97.99 | 98.92 | 100.0 | 96.58 | 96.82 | 98.13 | 97.56 | |
P5 | 葡萄Grape | 100.0 | 100.0 | 99.95 | 100.0 | 95.82 | 94.67 | 95.19 | 95.25 | |
P6 | 橘子Orange | 95.88 | 97.89 | 97.68 | 98.65 | 96.78 | 95.96 | 97.32 | 99.45 | |
P7 | 桃Peach | 98.90 | 99.10 | 99.09 | 99.20 | 96.86 | 98.65 | 97.94 | 98.84 | |
P8 | 辣椒Pepper | 93.50 | 98.23 | 98.15 | 96.35 | 92.59 | 96.73 | 96.82 | 96.42 | |
P9 | 土豆Potato | 99.89 | 99.92 | 99.96 | 99.88 | 96.88 | 97.80 | 96.51 | 96.98 | |
P10 | 大豆Soybean | 98.45 | 99.96 | 98.87 | 99.68 | 96.42 | 98.98 | 96.82 | 97.82 | |
P11 | 南瓜Pumpkin | 97.87 | 96.84 | 97.56 | 98.60 | 96.82 | 97.56 | 98.23 | 98.62 | |
P12 | 草莓Strayberry | 95.39 | 98.93 | 99.53 | 98.89 | 94.32 | 98.26 | 96.95 | 97.88 | |
P13 | 番茄Tomato | 98.78 | 95.14 | 96.68 | 98.96 | 97.72 | 96.84 | 97.84 | 98.26 | |
平均Average | 97.35 | 97.86 | 98.26 | 98.73 | 95.87 | 96.68 | 96.77 | 97.49 |
表 4 农作物识别结果
Table 4 Results of plant recognition
编号 Code | 植物 Plant | 准确率 Accuracy/% | 召回率 Recall/% | |||||||
---|---|---|---|---|---|---|---|---|---|---|
MobileNetV3 | InceptionV3 | YOLOV7 | 本文 Proposed | MobileNetV3 | InceptionV3 | YOLOV7 | 本文Proposed | |||
P1 | 苹果Apple | 95.56 | 96.25 | 96.58 | 97.82 | 92.25 | 91.86 | 92.08 | 93.62 | |
P2 | 蓝莓Cherry | 93.40 | 92.68 | 94.87 | 95.42 | 94.46 | 93.89 | 95.13 | 96.82 | |
P3 | 樱桃Cherry | 99.20 | 99.31 | 99.53 | 100.0 | 98.80 | 98.82 | 99.05 | 99.86 | |
P4 | 玉米Corn | 98.67 | 97.99 | 98.92 | 100.0 | 96.58 | 96.82 | 98.13 | 97.56 | |
P5 | 葡萄Grape | 100.0 | 100.0 | 99.95 | 100.0 | 95.82 | 94.67 | 95.19 | 95.25 | |
P6 | 橘子Orange | 95.88 | 97.89 | 97.68 | 98.65 | 96.78 | 95.96 | 97.32 | 99.45 | |
P7 | 桃Peach | 98.90 | 99.10 | 99.09 | 99.20 | 96.86 | 98.65 | 97.94 | 98.84 | |
P8 | 辣椒Pepper | 93.50 | 98.23 | 98.15 | 96.35 | 92.59 | 96.73 | 96.82 | 96.42 | |
P9 | 土豆Potato | 99.89 | 99.92 | 99.96 | 99.88 | 96.88 | 97.80 | 96.51 | 96.98 | |
P10 | 大豆Soybean | 98.45 | 99.96 | 98.87 | 99.68 | 96.42 | 98.98 | 96.82 | 97.82 | |
P11 | 南瓜Pumpkin | 97.87 | 96.84 | 97.56 | 98.60 | 96.82 | 97.56 | 98.23 | 98.62 | |
P12 | 草莓Strayberry | 95.39 | 98.93 | 99.53 | 98.89 | 94.32 | 98.26 | 96.95 | 97.88 | |
P13 | 番茄Tomato | 98.78 | 95.14 | 96.68 | 98.96 | 97.72 | 96.84 | 97.84 | 98.26 | |
平均Average | 97.35 | 97.86 | 98.26 | 98.73 | 95.87 | 96.68 | 96.77 | 97.49 |
病害等级 Disease level | 准确率 Accuracy/% | 召回率 Recall/% | |||||||
---|---|---|---|---|---|---|---|---|---|
MobileNetV3 | InceptionV3 | YOLOV7 | 本文Proposed | MobileNetV3 | InceptionV3 | YOLOV7 | 本文Proposed | ||
L1 | 92.88 | 93.78 | 93.97 | 95.86 | 93.26 | 94.68 | 95.36 | 96.82 | |
L2 | 91.90 | 92.18 | 93.12 | 93.49 | 92.56 | 92.45 | 93.26 | 93.89 | |
L3 | 90.50 | 91.05 | 91.35 | 92.68 | 91.46 | 92.42 | 92.39 | 92.76 | |
L4 | 92.56 | 93.88 | 93.99 | 93.92 | 94.65 | 95.68 | 96.83 | 97.98 | |
平均Average | 91.96 | 92.72 | 93.11 | 93.99 | 92.98 | 93.80 | 94.46 | 95.36 |
表 5 农作物病害程度识别结果
Table 5 Results of plant disease level recognition
病害等级 Disease level | 准确率 Accuracy/% | 召回率 Recall/% | |||||||
---|---|---|---|---|---|---|---|---|---|
MobileNetV3 | InceptionV3 | YOLOV7 | 本文Proposed | MobileNetV3 | InceptionV3 | YOLOV7 | 本文Proposed | ||
L1 | 92.88 | 93.78 | 93.97 | 95.86 | 93.26 | 94.68 | 95.36 | 96.82 | |
L2 | 91.90 | 92.18 | 93.12 | 93.49 | 92.56 | 92.45 | 93.26 | 93.89 | |
L3 | 90.50 | 91.05 | 91.35 | 92.68 | 91.46 | 92.42 | 92.39 | 92.76 | |
L4 | 92.56 | 93.88 | 93.99 | 93.92 | 94.65 | 95.68 | 96.83 | 97.98 | |
平均Average | 91.96 | 92.72 | 93.11 | 93.99 | 92.98 | 93.80 | 94.46 | 95.36 |
1 | KAUR S, PANDEY S, GOEL S. Plants disease identification and classification through leaf images: a survey [J]. Arch. Comp. Methods Eng., 2018, 26(4): 507-530. |
2 | ESGARIO J G, KROHLING R A, VENTURA J A, et al.. Deep learning for classification and severity estimation of coffee leaf biotic stress [J]. Comp. Electron. Agric., 2020, 16(9): 155-162. |
3 | 张帅堂,王紫烟,邹修国,等. 基于高光谱图像和遗传优化神经网络的茶叶病斑识别[J]. 农业工程学报, 2017, 33(22): 200-207. |
ZHANG S T, WANG Z Y, ZOU X G, et al.. Recognition of tea disease spot based on hyperspectral image and genetic optimization neural network [J]. Trans. Chin. Soc. Agric. Eng., 2017, 33(22): 200-207. | |
4 | 孙俊,谭文军,毛罕平,等. 基于改进卷积神经网络的多种植物叶片病害识别[J]. 农业工程学报, 2017, 33(19): 209-215. |
SUN J, TAN W J, MAO H P, et al. Recognition of multiple plant leaf diseases based on improved convolutional neural network [J]. Trans. Chin. Soc. Agric. Eng., 2017, 33(19): 209-215. | |
5 | MOHANTY S P, HUGHES D P, SALATHE M, et al.. Using deep learning for image-based plant disease detection [J]. Front. Plant Sci., 2016, 7(1): 1-10. |
6 | 马浚诚,杜克明,郑飞翔,等. 基于卷积神经网络的温室黄瓜病害识别系统[J]. 农业工程学报, 2018, 34(12): 186-192. |
MA J C, DU K M, ZHENG F X, et al.. Disease recognition system for greenhouse cucumbers based on deep convolutional neural network [J]. Trans. Chin. Soc. Agric. Eng., 2018, 34(12):186-192 | |
7 | 张建华,孔繁涛,吴建寨,等. 基于改进VGG卷积神经网络的棉花病害识别模型[J].中国农业大学学报, 2018, 23(11): 167-177. |
ZHANG J H, KONG F T, WU J Z, et al.. Image recognition of cotton leaf diseases based on improved VGG convolutional neural network [J]. J. Chin. Agric. Univ., 2018,23(11):167-177. | |
8 | 刘瑾蓉,林剑辉,李婷婷. 基于卷积神经网络的银杏叶片患病程度识别[J]. 中国农业科技导报, 2018, 20(6):55-61. |
LIU J R, LIN J H, LI T T. Identification of leaf disease grade based on convolutional neural network [J]. J. Agric. Sci. Tech., 2018, 20(6):55-61. | |
9 | 曾伟辉,李淼,张健,等.面向农作物病害识别的高阶残差卷积神经网络研究[J].中国科学技术大学学报,2019,49(10):781-791. |
ZENG W H, LI M, HUANG J, et al.. Research on high-order residual convolution neural network for crop disease recognition application [J]. J. Univ. Sci. Tech. Chin. 2019, 49(10):781-791. | |
10 | 李淼,王敬贤,李华龙,等.基于CNN 和迁移学习的农作物病害识别方法研究[J].智慧农业, 2019, 1(3): 46-55. |
LI M, WANG J X, LI H L, et al.. Method for identifying crop disease based on CNN and transfer learning [J]. Smart Agric., 2019, 1(3):46-55. | |
11 | 魏超,范自柱,张泓,等. 基于深度学习的农作物病害检测[J]. 江苏大学学报(自然科学版), 2019, 40(2): 71-77. |
WEI C, WEI C, FAN Z Z, ZHANG H, et al.. Crop disease detection based on deep learning [J]. J. Jiangsu Univ. (Nat. Sci.), 2019, 40(2):71-77. | |
12 | 刘洋,冯全,王书志. 基于轻量级CNN的植物病害识别方法及移动端应用[J]. 农业工程学报, 2019, 35(17): 194-204. |
LIU Y, FENG Q, WANG S Z. Plant disease identification method based on lightweight CNN and mobile application [J]. Trans. Chin. Soc. Agric. Eng., 2019, 35(17):194-204. | |
13 | JIANG P, CHEN Y, LIU B, et al.. Real-time detection of apple leaf diseases using deep learning approach based on improved convolutional neural networks [J]. IEEE Access, 2019, 7: 59069-59080. |
14 | 许景辉,邵明烨,王一琛,等.基于迁移学习的卷积神经网络玉米病害图像识别[J].农业机械学报,2020,51(2):230-236. |
XU J H, SHAO M Y, WANG Y C, et al.. Recognition of corn leaf spot and rust based on transfer learning with convolutional neural network [J]. Tans. Chin. Soc. Agric. Mach., 2020, 51(2):230-236. | |
15 | CHEN J, ZHANG D, NANEHKARAN Y A. Identifying plant diseases using deep transfer learning and enhanced lightweight network [J]. Multimedia Tools App., 2020, 79(7): 31497-31515. |
16 | 赵立新,侯发东,吕正超,等.基于迁移学习的棉花叶部病虫害图像识别[J]. 农业工程学报,2020,36(7):184-191. |
ZHAO L X, HOU F D, LYU Z C, et al.. Image recognition of cotton leaf diseases and pests based on transfer learning [J]. Trans. Chin. Soc. Agric. Eng., 2020, 36(7):184-191. | |
17 | 王春山,周冀,吴华瑞,.改进Multi-scale ResNet的蔬菜叶部病害识别[J].农业工程学报,2020, 36(20):217-225. |
WANG C S, ZHOU J, WU H R, et al.. Identification of vegetable leaf diseases based on improved multi-scale ResNet [J]. Trans. Chin. Soc. Agric. Eng., 2020, 36(20):217-225. | |
18 | 刘阳,高国琴. 采用改进的 SqueezeNet 模型识别多类叶片病害[J]. 农业工程学报,2021,37(2) :187-195. |
LIU Y, GAO G Q. Identification of multiple leaf diseases using improved SqueezeNet model [J]. Trans. Chin. Soc. Agric. Eng., 2021,37(2) :187-195. | |
19 | HOWARD A., SANDLER M., CHEN B., et al.. Searching for MobileNetV3 [C]// Proceedigns of IEEE/CVF International Conference on Computer Vision (ICCV). South Korea, 2019: 1314-1324. |
20 | SANGHYUN W, JONGCHAN P, JOON-YOUNG L, et al.. CBAM: convolutional block attention module [C]// Proceedings of European Conference on Computer Vision. Munich, Germany: 2018: 3-19. |
21 | SENER O, KOLTUN V. Multi-task learning as multi-objective optimization [J/OL]. arXiv:1810.04650v2 [cs.LG]. [2023-08-30] . . |
22 | LIN T Y, DOLLAR P, GIRSHICK R., et al.. Feature pyramid networks for object detection [C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE Computer Society, 2017:936-944. |
23 | SZEGEDY C, VANHOUCKE V, IOFFE S, et al.. Rethinking the inception architecture for computer vision [C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2016: 2818-2826. |
24 | WANG C Y, ALEXEY B, LIAO H Y., YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors [J/OL]. arXiv:2207.02696v1 [cs.CV] [2023-08-30]. . |
[1] | 钱政, 杨孙哲, 张国卿, 郭紫微, 张林朋, 万家兴, 杨红云. 基于卷积神经网络的水稻氮素营养诊断[J]. 中国农业科技导报, 2023, 25(9): 113-121. |
[2] | 林开颜, 梅飞, 吴军辉, 郭文刚, 陈杰, 司慧萍. 基于计算机视觉的作物病害监测服务平台设计与研究[J]. 中国农业科技导报, 2023, 25(6): 89-96. |
[3] | 杨超, 韩海斌, 韦波, 张衡, 商宸, 苏冰, 刘思源, 蒋沛雯, 相德龙. 北太平洋远东拟沙丁鱼年龄鉴定方法的构建[J]. 中国农业科技导报, 2023, 25(4): 225-233. |
[4] | 赵越, 卫勇, 单慧勇, 穆志民, 张健欣, 吴海云, 赵辉, 胡建龙. 基于深度学习的高分辨率麦穗图像检测方法[J]. 中国农业科技导报, 2022, 24(9): 96-105. |
[5] | 刘海涛, 韩鑫, 兰玉彬, 伊丽丽, 王宝聚, 崔立华. 基于YOLOv4网络的棉花顶芽精准识别方法[J]. 中国农业科技导报, 2022, 24(8): 99-108. |
[6] | 方逵, 李成, 何潇, 陈益能. 基于三维重建的多角度葡萄叶病害识别方法研究[J]. 中国农业科技导报, 2022, 24(7): 86-96. |
[7] | 郑建华, 赵瑞雪, 赵华, 李思经, 王国刚. 智慧农业信息服务发展的国际经验与启示[J]. 中国农业科技导报, 2022, 24(6): 9-18. |
[8] | 李炜, 朱德利, 王青, 曾绍华. 监测生长状态和环境响应的作物数字孪生系统研究综述[J]. 中国农业科技导报, 2022, 24(6): 90-105. |
[9] | 吴建伟, 黄杰, 熊晓菲, 高晗, 秦向阳. 基于AI的桃树病害智能识别方法研究与应用[J]. 中国农业科技导报, 2022, 24(5): 111-118. |
[10] | 高姻燕, 孙义, 李葆春. 基于无人机RGB影像估测田间小麦穗数[J]. 中国农业科技导报, 2022, 24(3): 103-110. |
[11] | 黄昊, 谢圣桥, 陈度, 王恒. 深度学习在苹果产业链中的应用与研究进展[J]. 中国农业科技导报, 2022, 24(10): 79-89. |
[12] | 周惠汝, 吴波明. 深度学习在作物病害图像识别方面应用的研究进展[J]. 中国农业科技导报, 2021, 23(5): 61-68. |
[13] | 吕纯阳, 刘升平, 郭秀明, 肖顺夫, 刘大众, 杨菲菲, 李路华. 基于SSD模型的巢门蜜蜂检测[J]. 中国农业科技导报, 2021, 23(5): 98-107. |
[14] | 郭阳, 许贝贝, 陈桂鹏, 丁建, 严志雁, 梁华, 吴昌华. 基于卷积神经网络的水稻虫害识别方法[J]. 中国农业科技导报, 2021, 23(11): 99-109. |
[15] | 许贝贝1,王文生1,2*,郭雷风1,陈桂鹏3. 基于非接触式的牛只身份识别研究进展与展望[J]. 中国农业科技导报, 2020, 22(7): 79-89. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||