中国农业科技导报 ›› 2025, Vol. 27 ›› Issue (6): 240-249.DOI: 10.13304/j.nykjdb.2024.0096
• 生物制造 资源生态 • 上一篇
陈士超1(), 王举1, 郭富强1(
), 郝瑞2, 石建平3
收稿日期:
2024-02-03
接受日期:
2024-04-17
出版日期:
2025-06-15
发布日期:
2025-06-23
通讯作者:
郭富强
作者简介:
陈士超 E-mail: chenshichao2005@126.com;
基金资助:
Shichao CHEN1(), Ju WANG1, Fuqiang GUO1(
), Rui HAO2, Jianping SHI3
Received:
2024-02-03
Accepted:
2024-04-17
Online:
2025-06-15
Published:
2025-06-23
Contact:
Fuqiang GUO
摘要:
为解决目前干旱半干旱地区蛋白桑生长缓慢、产量及水肥利用效率低等问题,开展蛋白桑水氮耦合试验,分析蛋白桑株高、基径、地上生物量和蛋白质含量等指标对不同水氮处理的响应特征;同时,以产量、水分利用效率及氮肥偏生产力为最优目标,采用回归分析法分析不同水氮耦合处理对蛋白桑产量及水、肥利用效率的影响,并提出促生水氮调控模式。结果表明,水氮耦合对20—40 cm土层土壤含水率影响显著;施氮量和灌水量的交互作用对蛋白桑的株高和基径影响显著,对地上生物量和叶片蛋白质含量影响极显著。回归分析表明,施氮量为67.24~82.06 kg·hm-2、灌水量为164.30~200.59 mm时,蛋白桑的产量、水分利用效率和氮肥偏生产力最优。以上研究成果为干旱半干旱地区蛋白桑高效种植及水肥科学管理提供了理论支撑,对提升蛋白桑生物产量及经济效益具有重要意义。
中图分类号:
陈士超, 王举, 郭富强, 郝瑞, 石建平. 不同水氮耦合对蛋白桑生理指标及产量的影响[J]. 中国农业科技导报, 2025, 27(6): 240-249.
Shichao CHEN, Ju WANG, Fuqiang GUO, Rui HAO, Jianping SHI. Effects of Different Water and Nitrogen Coupling on Physiological Indexes and Yield of Protein Mulberry[J]. Journal of Agricultural Science and Technology, 2025, 27(6): 240-249.
土层深度 Soil layer/cm | 碱解氮 Alkaline hydrolysis nitrogen/ (mg·kg-1) | 速效钾 Available potassium/ (mg·kg-1) | 速效磷 Available phosphorus/ (mg·kg-1) | 有机碳 Organic carbon/% | 容重 Volume weight/ (g·cm-3) | pH | 含水率 Water content/% |
---|---|---|---|---|---|---|---|
0—20 | 0.011 | 0.21 | 1.9 | 0.25 | 1.46 | 7.98 | 8.6 |
20—40 | 0.014 | 0.13 | 0.4 | 0.18 | 1.69 | 8.01 | 13.6 |
40—60 | 0.018 | 0.19 | 0.5 | 0.13 | 1.86 | 8.04 | 7.2 |
表1 研究区土壤理化性质
Table 1 Physical and chemical properties of soil in study area
土层深度 Soil layer/cm | 碱解氮 Alkaline hydrolysis nitrogen/ (mg·kg-1) | 速效钾 Available potassium/ (mg·kg-1) | 速效磷 Available phosphorus/ (mg·kg-1) | 有机碳 Organic carbon/% | 容重 Volume weight/ (g·cm-3) | pH | 含水率 Water content/% |
---|---|---|---|---|---|---|---|
0—20 | 0.011 | 0.21 | 1.9 | 0.25 | 1.46 | 7.98 | 8.6 |
20—40 | 0.014 | 0.13 | 0.4 | 0.18 | 1.69 | 8.01 | 13.6 |
40—60 | 0.018 | 0.19 | 0.5 | 0.13 | 1.86 | 8.04 | 7.2 |
因子Factor | 土层深度Soil layer/cm | |||||
---|---|---|---|---|---|---|
0—10 | 10—20 | 20—30 | 30—40 | 40—50 | 50—60 | |
N | 0.800ns | 46.312* | 21.250* | 10.684* | 31.419* | 0.356ns |
W | 0.928ns | 37.661* | 15.785* | 13.512* | 30.081* | 0.558ns |
N×W | 0.086ns | 1.642ns | 55.591** | 55.263** | 2.129ns | 0.021ns |
表2 施氮量和灌水量对土壤含水率的方差分析
Table 2 Variance analysis of nitrogen application and irrigation on soil moisture content
因子Factor | 土层深度Soil layer/cm | |||||
---|---|---|---|---|---|---|
0—10 | 10—20 | 20—30 | 30—40 | 40—50 | 50—60 | |
N | 0.800ns | 46.312* | 21.250* | 10.684* | 31.419* | 0.356ns |
W | 0.928ns | 37.661* | 15.785* | 13.512* | 30.081* | 0.558ns |
N×W | 0.086ns | 1.642ns | 55.591** | 55.263** | 2.129ns | 0.021ns |
图2 不同处理下各土层的土壤含水率注:不同小写字母表示不同处理间在P<0.05水平差异显著。
Fig. 2 Soil moisture content of each soil layer under different treatmentsNote:Different lowercase letters indicate significant differences between different treatments at P<0.05 level.
图3 不同处理下蛋白桑的光合指标注:不同小写字母表示同一时期不同处理间在P<0.05水平差异显著。
Fig. 3 Photosynthetic index of protein mulberry under different treatmentsNote:Different lowercase letters indicate significant differences between different treatments of same stage at P<0.05 level.
因子Factor | 指标Index | ||||
---|---|---|---|---|---|
株高 Plant height | 基径 Basal diameter | 地上部生物量 Aboveground biomass | 蛋白质含量 Protein content | ||
N | 185.695* | 1.504ns | 488.966** | 561.440** | |
W | 1.436* | 4.217* | 332.951** | 360.909** | |
N×W | 2.103* | 0.177ns | 57.041** | 47.049** |
表3 不同水氮组合下蛋白桑各指标F值检验
Table 3 F value test of each index of protein mulberry under different water and nitrogen combinations
因子Factor | 指标Index | ||||
---|---|---|---|---|---|
株高 Plant height | 基径 Basal diameter | 地上部生物量 Aboveground biomass | 蛋白质含量 Protein content | ||
N | 185.695* | 1.504ns | 488.966** | 561.440** | |
W | 1.436* | 4.217* | 332.951** | 360.909** | |
N×W | 2.103* | 0.177ns | 57.041** | 47.049** |
图4 不同处理下蛋白桑的株高、基径、生物量、蛋白质含量注:不同小写字母表示不同处理间在P<0.05水平差异显著。
Fig. 4 Plant height, basal diameter, biomass and protein content of protein mulberry under different treatmentsNote:Different lowercase letters indicate significant differences between different treatments at P<0.05 level.
处理 Treatment | 产量 Yield/(kg·hm-2) | 水分利用效率 WUE/(kg·m-3) | 氮肥偏生产力 NPFP/(kg·kg-1) | |
---|---|---|---|---|
CK | 16 176±7.54 i | 15.01±0.27 i | — | |
N1 | W1 | 19 428±4.39 g | 23.78±1.25 e | 2 158.89±9.55 b |
W2 | 21 072±3.24 f | 25.12±0.12 c | 2 341.11±7.15 a | |
W3 | 17 132±2.86 hi | 19.90±1.79 f | 1 903.33±6.33 e | |
N2 | W1 | 22 156±4.68 f | 25.01±0.55 c | 1 477.33±6.18 de |
W2 | 31 064±5.17 b | 27.51±0.58 a | 2 070.67±6.85 b | |
W3 | 28 170±4.20 c | 18.12±0.13 g | 1 878.00±5.59 c | |
N3 | W1 | 23 984±4.43 e | 26.43±0.29 b | 1 140.95±4.19 f |
W2 | 32 670±1.05 a | 28.01±0.39 a | 1 555.71±10.03 d | |
W3 | 29 102±4.91 c | 23.30±1.20 e | 1 385.71±4.68 e | |
N4 | W1 | 21 316±8.83 f | 24.38±0.86 d | 789.63±6.52 h |
W2 | 26 128±7.94 d | 25.97±0.38 b | 967.78±5.86 g | |
W3 | 18 130±3.32 gh | 16.22±0.34 h | 671.48±2.46 i | |
F值 F value | N | 488.966** | 16 999.975** | 2 962.603** |
W | 332.951** | 2 299.230* | 392.776** | |
N×W | 57.041** | 652.408** | 74.209** |
表4 不同水氮组合下蛋白桑产量及水肥利用效率
Table 4 Protein mulberry yield and water and fertilizer use efficiency under different water and nitrogen combinations
处理 Treatment | 产量 Yield/(kg·hm-2) | 水分利用效率 WUE/(kg·m-3) | 氮肥偏生产力 NPFP/(kg·kg-1) | |
---|---|---|---|---|
CK | 16 176±7.54 i | 15.01±0.27 i | — | |
N1 | W1 | 19 428±4.39 g | 23.78±1.25 e | 2 158.89±9.55 b |
W2 | 21 072±3.24 f | 25.12±0.12 c | 2 341.11±7.15 a | |
W3 | 17 132±2.86 hi | 19.90±1.79 f | 1 903.33±6.33 e | |
N2 | W1 | 22 156±4.68 f | 25.01±0.55 c | 1 477.33±6.18 de |
W2 | 31 064±5.17 b | 27.51±0.58 a | 2 070.67±6.85 b | |
W3 | 28 170±4.20 c | 18.12±0.13 g | 1 878.00±5.59 c | |
N3 | W1 | 23 984±4.43 e | 26.43±0.29 b | 1 140.95±4.19 f |
W2 | 32 670±1.05 a | 28.01±0.39 a | 1 555.71±10.03 d | |
W3 | 29 102±4.91 c | 23.30±1.20 e | 1 385.71±4.68 e | |
N4 | W1 | 21 316±8.83 f | 24.38±0.86 d | 789.63±6.52 h |
W2 | 26 128±7.94 d | 25.97±0.38 b | 967.78±5.86 g | |
W3 | 18 130±3.32 gh | 16.22±0.34 h | 671.48±2.46 i | |
F值 F value | N | 488.966** | 16 999.975** | 2 962.603** |
W | 332.951** | 2 299.230* | 392.776** | |
N×W | 57.041** | 652.408** | 74.209** |
图5 蛋白桑各指标的回归分析及空间分析A~C:回归分析;D:空间分析
Fig. 5 Regression analysis and spatial analysis of each index of protein mulberryA~C: Regression analysis; D: Spatial analysis
1 | 陈亚,代先强,袁玲,等.水氮耦合对土壤理化性状及作物生长的影响研究进展[J].河南农业科学,2009(5):11-15. |
CHEN Y, DAI X Q, YUAN L, et al.. Advances of researches on effects of coupling water with nitrogen fertilizers on the physicochemical property of soil and crops growth [J]. J. Henan Agric. Sci., 2009(5):11-15. | |
2 | 韩晓增,裴宇峰,王守宇,等.水氮耦合对大豆生长发育的影响Ⅱ.水氮耦合对大豆生理特征的影响[J].大豆科学,2006,25(2):103-108. |
HAN X Z, PEI Y F, WANG S Y, et al.. Effects of water-nitrogen coupling on the growth and development of soybean Ⅱ.effects of water-nitrogen coupling on the physiological characteristics of soybean [J]. Soybean Sci., 2006, 25(2):103-108. | |
3 | 李广浩,赵斌,董树亭,等.控释尿素水氮耦合对夏玉米产量和光合特性的影响[J].作物学报,2015,41(9):1406-1415. |
LI G H, ZHAO B, DONG S T, et al.. Effects of coupling controlled release urea with water on yield and photo-synthetic characteristics in summer maize [J]. Acta Agron. Sin., 2015, 41(9):1406-1415. | |
4 | 唐锐,韩宜秀,易树生,等.不同水氮组合对冬小麦产量及水氮利用效率的调控效应[J].植物营养与肥料学报,2023,29(10):1944-1955. |
TANG R, HAN Y X, YI S S, et al.. Optimal water and nitrogen rate combination for winter wheat yield and water-nitrogen efficiency in Guanzhong area of Shaanxi [J]. J. Plant Nutr. Fert., 2023, 29(10):1944-1955. | |
5 | 何进尚,张维军,王小亮,等.返青期水氮耦合对宁夏灌区早熟冬小麦物质积累、氮素运移及产量的影响[J].江苏农业科学, 2023,51(12):72-77. |
HE J S, ZHANG W J, WANG X L, et al.. Effects of water and nitrogen coupling on matter accumulation, nitrogen transport and yield of early-maturing winter wheat in Ningxia irrigation area [J]. Jiangsu Agric. Sci., 2023, 51(12):72-77. | |
6 | 张腾,邢英英,密菲瑶,等.根区深层水氮耦合对玉米生长和生理的影响[J].西北农业学报,2023, 32(11):1707-1717. |
ZHANG T, XING Y Y, MI F Y, et al.. Effects of water and nitrogen couplingin deep root zone on growthand physiology in maize [J]. Acta Agric. Bor-Occid. Sin., 2023, 32(11):1707-1717. | |
7 | AL-OGAIDI A A M, WAYAYOK A, ROWSHON M K, et al.. The influence of magnetized water on soil water dynamics under drip irrigation systems [J]. Agric. Water Manag., 2017, 180:70-77. |
8 | 张慧,杨霞庄,胡冬南,等.不同保水措施下油茶林地土壤水分的日变化规律[J].经济林研究,2012,30(2):95-98. |
ZHANG H, YANG X Z, HU D N, et al.. Daily variation regularity of soil moisture of Camellia oleifera forest land under different water-retention treatments [J]. Non Wood For. Res., 2012, 30(2):95-98. | |
9 | 樊吴静,杨鑫,李丽淑,等.不同灌水方式对冬种马铃薯土壤理化性状、水分利用效率及块茎产量的影响[J].西南农业学报,2022,35(5):1069-1078. |
FAN W J, YANG X, LI L S, et al.. Effects of different irrigation methods on soil physical and chemical properties, water use efficiency and tuber yield of winter potato [J]. Southwest Chin. J. Agric. Sci., 2022, 35(5):1069-1078. | |
10 | 汪耀富,邵孝侯,孙德梅,等.基于微区设计的多雨地区烟田土壤氮素平衡研究[J].烟草科技,2019,52(3):18-25. |
WANG Y F, SHAO X H, SUN D M, et al.. Study on nitrogen balance of tobacco-planting soils in rainy regions based on micro-area design [J]. Tob. Sci. Technol., 2019, 52(3):18-25. | |
11 | 李佳蓓,张富仓,段晨骁,等.氮肥溶液磁化灌水下土壤入渗特征和水氮迁移规律研究[J].农业机械学报,2022,53(7):316-324. |
LI J B, ZHANG F C, DUAN C X, et al.. Characteristics of soil infiltration and water and nitrogen transport under irrigation with magnetized nitrogen fertilizer solution [J]. Trans. Chin. Soc. Agric. Mach., 2022, 53(7):316-324. | |
12 | 马怡璠,吕德生,王振华,等.磁氮耦合对膜下滴灌加工番茄产量及水肥利用效率的影响[J].干旱区研究,2023,40(11):1855-1864. |
MA Y F, LYU D S, WANG Z H, et al.. Effects of magnetic and nitrogen coupling on the yield and water and fertilizer usage efficiency of processed tomatoes under mulched drip irrigation [J]. Arid Zone Res., 2023, 40(11):1855-1864. | |
13 | WU W X, FU W X, ALATALO J H, et al.. Effects of coupling water and fertilizer on agronomic traits, sugar content and yield of Sugarcane in Guangxi, China [J/OL]. Agronomy, 2022, 12(2):321[2024-01-10]. . |
14 | ZHAO Y G, WANG S J, LI Y, et al.. Effects of straw layer and flue gas desulfurization gypsum treatments on soil salinity and sodicity in relation to sunflower yield [J]. Geoderma, 2019, 352:13-21. |
15 | 任亚,汪耀富,刘占卿,等.水氮耦合对烟田土壤水分时空分布和利用效率的影响[J].中国农学通报,2005,21(4):194-197. |
REN Y, WANG Y F, LIU Z Q, et al.. Effects of coupling water with N fertilizers on spatio-temporal distributing of soil moisture and water using efficiency in tobacco fields [J]. Chin.Agric. Sci. Bull., 2005, 21(4):194-197. | |
16 | 尹志荣,柯英,蔡进军.水肥耦合对设施番茄土壤水分、养分运移及产量和水分利用效率影响[J].灌水排水学报,2023,42(6):33-44. |
YIN Z R, KE Y, CAI J J. The combined effect of irrigation and fertilization on soil water, nutrient transport, yield and water use efficiency of greenhouse tomato [J]. J. Irrigation Drain., 2023, 42(6):33-44. | |
17 | 李夏,汪玉瑛,吕豪豪,等.炭基有机肥对设施番茄生长及其土壤性质的影响[J].农业环境科学学报,2023,42(3):568-577. |
LI X, WANG Y Y, LYU H H, et al.. Effects of biochar-based organic fertilizer on the growth and soil properties of greenhouse tomatoes [J]. J. Agro-Environ. Sci., 2023, 42(3):568-577. | |
18 | 郭彬,莫彦,吴忠东,等.覆膜与水分控制对宁夏设施滴灌番茄产量与品质的影响[J].灌水排水学报,2021,40(3):48-55. |
GUO B, MO Y, WU Z D, et al.. Combined effects of film mulching and water-controlled drip irrigation on yield and quality of facility-cultivated tomato in Ningxia [J]. J. Irrigation Drain., 2021, 40(3): 48-55. | |
19 | 窦允清,王振华,张金珠,等.水肥耦合对滴灌加工番茄生理生长及产量的影响[J].江苏农业科学,2019,47(7):124-129. |
20 | 李建明,潘铜华,王玲慧,等.水肥耦合对番茄光合、产量及水分利用效率的影响[J].农业工程学报,2014,30(10):82-90. |
LI J M, PAN T H, WANG L H, et al.. Effects of water-fertilizer coupling on tomato photosynthesis,yield and water use efficiency [J]. Trans. Chin. Soc. Agric. Eng., 2014,30(10):82-90. | |
21 | 赵志华,李建明,张大龙,等.水钾耦合对大棚厚皮甜瓜产量和可溶性固形物含量的影响[J].西北农林科技大学学报(自然科学版),2013,41(8):161-167. |
ZHAO Z H, LI J M, ZHANG D L, et al.. Interactive effects of water and potassium on yield and soluble solid content of plastic greenhouse muskmelon [J]. J.Northwest A&F Univ. (Nat. Sci.), 2013, 41(8):161-167. | |
22 | 邢英英,张富仓,吴立峰,等.基于番茄产量品质水肥利用效率确定适宜滴灌灌水施肥量[J].农业工程学报,2015,31():110-121. |
XING Y Y, ZHANG F C, WU L F, et al.. Determination of optimal amount of irrigation and fertilizer under drip fertigated system based on tomato yield, quality, water and fertilizer use efficiency [J]. Trans. Chin. Soc. Agric. Eng., 2015, 31(S1):110-121. |
[1] | 吴艳, 邹乐萍, 宋惠洁, 胡丹丹, 柳开楼, 梁万里. 控释氮肥和尿素配施对田面水铵态氮和早稻产量的影响[J]. 中国农业科技导报, 2025, 27(4): 192-200. |
[2] | 李大荣, 李小玲, 周武先, 张美德, 蒋小刚, 由金文, 王华. 有机肥替代部分化肥对湖北贝母生长及土壤性质的影响[J]. 中国农业科技导报, 2025, 27(3): 216-226. |
[3] | 吴强, 吴聪连, 吴小云, 吴剑, 徐选美, 赖俊声, 胡伟云, 龚榜初, 江锡兵. 不同施肥处理对锥栗产量及果实品质的影响[J]. 中国农业科技导报, 2025, 27(2): 228-237. |
[4] | 刘婷婷, 郝曦煜, 王辉, 冷静文, 宫世航, 刘伟. 吉林西部半干旱地区不同谷子品种产量与农艺性状的分析[J]. 中国农业科技导报, 2025, 27(1): 50-60. |
[5] | 石纹碹, 谭金芳, 张倩, 李岚涛, 王宜伦. 一次性施肥对不同生态区夏玉米产量和氮肥效率的影响[J]. 中国农业科技导报, 2024, 26(9): 193-202. |
[6] | 吴梅, 张金珠, 王振华, 刘健, 温越, 李宣志. 水气互作对膜下滴灌玉米生理生长及产量的影响[J]. 中国农业科技导报, 2024, 26(8): 189-200. |
[7] | 庞博, 李生梅, 李彦霖, 杨涛, 梁维维, 张茹, 黄雅婕, 任丹, 崔进鑫, 李静, 马晶晶, 高文伟. 192份陆地棉杂交种的遗传多样性分析[J]. 中国农业科技导报, 2024, 26(8): 34-50. |
[8] | 孙亮, 徐益, 蔡沁, 郭靖豪, 赵灿, 郭保卫, 邢志鹏, 霍中洋, 张洪程, 胡雅杰. 中微量元素对水稻产量和品质的影响研究进展[J]. 中国农业科技导报, 2024, 26(8): 9-19. |
[9] | 孙宪印, 牟秋焕, 米勇, 吕广德, 亓晓蕾, 孙盈盈, 尹逊栋, 王瑞霞, 吴科, 钱兆国, 赵岩, 高明刚. 基于GT双标图对小麦新品系的分类评价[J]. 中国农业科技导报, 2024, 26(7): 14-24. |
[10] | 秦宇坤, 陈俊英, 张丽娟. 赣北棉区棉花干物质积累特征和产量对减氮措施的响应[J]. 中国农业科技导报, 2024, 26(6): 191-199. |
[11] | 彭守华, 许铭铭, 尉继强, 梁丽君, 叶全, 迟晓元, 张少峰, 董向丽. 生物菌肥FBR1不同施用方式对花生生长发育及产量的影响[J]. 中国农业科技导报, 2024, 26(6): 200-205. |
[12] | 陈雨欣, 赵红梅, 杨卫君, 杨梅, 郭颂, 宋世龙, 惠超. 生物质炭对土壤微生物碳源利用及春小麦产量的影响[J]. 中国农业科技导报, 2024, 26(5): 174-183. |
[13] | 高丽敏, 顾泽辰, 贡雪菲, 崔联明, 郭东森, 周影, 王琳, 魏启舜. 果园生草对中国果树-土壤系统生产性能影响的Meta分析[J]. 中国农业科技导报, 2024, 26(4): 184-194. |
[14] | 韩秀丽, 李嘉伟, 张杰, 郭艳杰, 张丽娟, 吉艳芝. 生物有机肥替代化肥对葡萄生长与土壤肥力的影响[J]. 中国农业科技导报, 2024, 26(4): 195-205. |
[15] | 阿什日轨, 张荣萍, 周宁宁, 冯婷煜, 周林, 马鹏, 阿尔力色, 廖雪环, 张坷塬. 硅钙钾镁肥和密度对水稻产量形成的影响[J]. 中国农业科技导报, 2024, 26(3): 155-163. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||