中国农业科技导报 ›› 2025, Vol. 27 ›› Issue (8): 215-226.DOI: 10.13304/j.nykjdb.2024.0145
• 生物制造 资源生态 • 上一篇
王璨1(), 崔强2, 时倩茹1, 唐浩3, 宁欣杰4, 张静静1, 杨素勤1(
), 张彪1(
)
收稿日期:
2024-02-28
接受日期:
2024-05-12
出版日期:
2025-08-15
发布日期:
2025-08-26
通讯作者:
杨素勤,张彪
作者简介:
王璨 E-mail:wangc_116@126.com
基金资助:
Can WANG1(), Qiang CUI2, Qianru SHI1, Hao TANG3, Xinjie NING4, Jingjing ZHANG1, Suqin YANG1(
), Biao ZHANG1(
)
Received:
2024-02-28
Accepted:
2024-05-12
Online:
2025-08-15
Published:
2025-08-26
Contact:
Suqin YANG,Biao ZHANG
摘要:
为安全利用镉(Cd)污染土壤,探究调理剂对Cd污染土壤的钝化效果,选用生物炭(BC)、无机调理剂(TB)、有机调理剂(OA)3种不同类型调理剂,以不施用调理剂为对照(CK),分别在豫北、豫东和豫南设置3个试验点,探究3种调理剂对不同Cd污染土壤的钝化效果及土壤微生物群落结构的影响。结果表明,3种调理剂均显著降低了土壤有效态Cd含量和小麦籽粒Cd含量;且酸性土壤在施用调理剂后pH均升高。与CK相比,调理剂处理后豫北、豫东和豫南土壤有效态Cd含量分别降低48.1%~86.1%、24.2%~33%、33.5%~54.3%;小麦籽粒Cd含量分别降低22.2%~84.7%、51.8%~58.2%、24.9%~44.1%。此外,施用调理剂显著改变了土壤细菌和真菌的群落组成和结构。在豫北试验点,3种调理剂均增加了真菌Solicoccozyma与紫孢霉属(Purpureocillium)的丰度;在豫东试验点,TB处理增加了细菌Chryseolinea的丰度,OA和TB处理显著增加了真菌锥囊菌属(Subulicystidium)的丰度;在豫南试验点, BC处理显著增加了土壤细菌Bradyrhizobium、Bryobacter、Reyranella等的丰度。综上,在豫东和豫北地区施用生物炭和有机调理剂效果显著,而在豫南地区施用无机调理剂效果显著,其中在豫北试验点施用生物炭和有机调理剂可使小麦籽粒Cd含量低于0.1 mg·kg-1(国家食品安全标准限值)。以上研究结果为实现粮食安全生产提供了参考。
中图分类号:
王璨, 崔强, 时倩茹, 唐浩, 宁欣杰, 张静静, 杨素勤, 张彪. 3种调理剂对不同镉污染土壤钝化效果及微生物群落的影响[J]. 中国农业科技导报, 2025, 27(8): 215-226.
Can WANG, Qiang CUI, Qianru SHI, Hao TANG, Xinjie NING, Jingjing ZHANG, Suqin YANG, Biao ZHANG. Deactivation of 3 Amendments and Their Effects on Microbial Coummunity in Different Contaminated Soils[J]. Journal of Agricultural Science and Technology, 2025, 27(8): 215-226.
试验点 Experimental site | 土壤类型 Soil type | pH | 有机质 Organic matter/(g·kg-1) | 全氮 Total nitrogen/(g·kg-1) | 有效磷 Available phosphorus/(mg·kg-1) | 速效钾 Available potassium/(mg·kg-1) | 全量Cd Total Cd/(mg·kg-1) | 有效态Cd Available Cd/(mg·kg-1) | 风险筛选值 Risk screening value/(mg·kg-1) |
---|---|---|---|---|---|---|---|---|---|
豫北 Northern Henan | 褐土Cinnamon soil | 8.4 | 14.3 | 0.6 | 15.5 | 74.2 | 2.2 | 0.7 | 0.6 |
豫东 Eastern Henan | 潮土Alluvial soil | 8.0 | 11.8 | 0.5 | 11.6 | 107.6 | 1.9 | 1.0 | 0.6 |
豫南 Southern Henan | 砂姜黑土Shajiang black soil | 4.6 | 14.1 | 0.7 | 13.9 | 122.2 | 0.7 | 0.3 | 0.3 |
表1 试验点土壤的基本理化性质和重金属含量
Table 1 Basic physicochemical properties and heavy metal content of soil at experimental sites
试验点 Experimental site | 土壤类型 Soil type | pH | 有机质 Organic matter/(g·kg-1) | 全氮 Total nitrogen/(g·kg-1) | 有效磷 Available phosphorus/(mg·kg-1) | 速效钾 Available potassium/(mg·kg-1) | 全量Cd Total Cd/(mg·kg-1) | 有效态Cd Available Cd/(mg·kg-1) | 风险筛选值 Risk screening value/(mg·kg-1) |
---|---|---|---|---|---|---|---|---|---|
豫北 Northern Henan | 褐土Cinnamon soil | 8.4 | 14.3 | 0.6 | 15.5 | 74.2 | 2.2 | 0.7 | 0.6 |
豫东 Eastern Henan | 潮土Alluvial soil | 8.0 | 11.8 | 0.5 | 11.6 | 107.6 | 1.9 | 1.0 | 0.6 |
豫南 Southern Henan | 砂姜黑土Shajiang black soil | 4.6 | 14.1 | 0.7 | 13.9 | 122.2 | 0.7 | 0.3 | 0.3 |
图1 不同处理土壤pH注:不同小写字母表示同一地点不同处理间在P<0.05水平差异显著。
Fig. 1 Soil pH of different treatmentsNote:Different lowercase letters indicate significant differences between different treatments of same site at P<0.05 level.
图2 不同处理的土壤有效态Cd含量和籽粒Cd含量注:不同小写字母表示同一地点不同处理间在P<0.05水平差异显著。
Fig. 2 Contents of soil available Cd and Cd in grains under different treatmentsNote:Different lowercase letters indicate significant differences between different treatments of same site at P<0.05 level.
因素Factor | F值F value | 贡献率Contribution rate/% |
---|---|---|
试验点Experimental site | 61.92*** | 14.49 |
调理剂Amendment | 138.85*** | 48.86 |
试验点×调理剂 Experimental site×amendment | 47.86** | 33.75 |
表2 籽粒镉含量的双因素方差分析
Table 2 Two-way ANOVA of grains Cd content
因素Factor | F值F value | 贡献率Contribution rate/% |
---|---|---|
试验点Experimental site | 61.92*** | 14.49 |
调理剂Amendment | 138.85*** | 48.86 |
试验点×调理剂 Experimental site×amendment | 47.86** | 33.75 |
试验点 Experimental site | 处理 Treatment | 细菌 Bacteria | 真菌Fungi | ||||||
---|---|---|---|---|---|---|---|---|---|
多样性指数 Diversity index | 丰富度指数 Richness index | 多样性指数 Diversity index | 丰富度指数 Richness index | ||||||
Shannon | Simpson | Chao | Ace | Shannon | Simpson | Chao | Ace | ||
豫北 Northern Henan | CK | 6.79 a | 0.002 6 c | 3 912.6 a | 3 936.7 a | 4.32 a | 0.043 a | 711.5 a | 718.5 a |
OA | 6.44 c | 0.003 9 a | 3 191.3 b | 3 184.1 b | 4.20 a | 0.041 a | 568.2 b | 569.2 b | |
BC | 6.60 b | 0.003 1 b | 3 431.3 b | 3 431.1 b | 4.59 a | 0.023 a | 730.4 a | 726.8 a | |
TB | 6.45 c | 0.004 0 a | 3 386.9 b | 3 329.4 b | 4.45 a | 0.032 a | 692.7 a | 694.5 a | |
豫东 Eastern Henan | CK | 6.92 a | 0.002 6 a | 4 728.5 a | 4 759.6 a | 4.13 a | 0.049 a | 781.1 a | 793.2 a |
OA | 6.92 a | 0.002 5 a | 4 773.9 a | 4 995.0 a | 4.34 a | 0.034 a | 800.9 a | 847.7 a | |
BC | 6.91 a | 0.002 5 a | 4 698.0 a | 5 125.5 a | 4.50 a | 0.030 a | 809.4 a | 821.3 a | |
TB | 6.91 a | 0.002 5 a | 4 624.7 a | 4 673.0 a | 4.43 a | 0.029 a | 830.1 a | 813.8 a | |
豫南 Southern Henan | CK | 5.55 b | 0.010 6 a | 1 773.4 b | 1 778.9 b | 4.20 a | 0.037 a | 569.8 a | 570.6 a |
OA | 5.72 ab | 0.009 7 ab | 2 048.6 ab | 2 037.0 ab | 4.39 a | 0.026 a | 629.5 a | 627.9 a | |
BC | 5.70 ab | 0.009 7 ab | 1 989.8 ab | 1 963.6 ab | 4.30 a | 0.034 a | 616.0 a | 618.3 a | |
TB | 5.83 a | 0.008 5 b | 2 207.8 a | 2 205.3 a | 4.10 a | 0.049 a | 630.3 a | 644.2 a |
表3 不同处理下细菌和真菌的Alpha多样性
Table 3 Alpha diversity of bacteria and fungi under different treatments
试验点 Experimental site | 处理 Treatment | 细菌 Bacteria | 真菌Fungi | ||||||
---|---|---|---|---|---|---|---|---|---|
多样性指数 Diversity index | 丰富度指数 Richness index | 多样性指数 Diversity index | 丰富度指数 Richness index | ||||||
Shannon | Simpson | Chao | Ace | Shannon | Simpson | Chao | Ace | ||
豫北 Northern Henan | CK | 6.79 a | 0.002 6 c | 3 912.6 a | 3 936.7 a | 4.32 a | 0.043 a | 711.5 a | 718.5 a |
OA | 6.44 c | 0.003 9 a | 3 191.3 b | 3 184.1 b | 4.20 a | 0.041 a | 568.2 b | 569.2 b | |
BC | 6.60 b | 0.003 1 b | 3 431.3 b | 3 431.1 b | 4.59 a | 0.023 a | 730.4 a | 726.8 a | |
TB | 6.45 c | 0.004 0 a | 3 386.9 b | 3 329.4 b | 4.45 a | 0.032 a | 692.7 a | 694.5 a | |
豫东 Eastern Henan | CK | 6.92 a | 0.002 6 a | 4 728.5 a | 4 759.6 a | 4.13 a | 0.049 a | 781.1 a | 793.2 a |
OA | 6.92 a | 0.002 5 a | 4 773.9 a | 4 995.0 a | 4.34 a | 0.034 a | 800.9 a | 847.7 a | |
BC | 6.91 a | 0.002 5 a | 4 698.0 a | 5 125.5 a | 4.50 a | 0.030 a | 809.4 a | 821.3 a | |
TB | 6.91 a | 0.002 5 a | 4 624.7 a | 4 673.0 a | 4.43 a | 0.029 a | 830.1 a | 813.8 a | |
豫南 Southern Henan | CK | 5.55 b | 0.010 6 a | 1 773.4 b | 1 778.9 b | 4.20 a | 0.037 a | 569.8 a | 570.6 a |
OA | 5.72 ab | 0.009 7 ab | 2 048.6 ab | 2 037.0 ab | 4.39 a | 0.026 a | 629.5 a | 627.9 a | |
BC | 5.70 ab | 0.009 7 ab | 1 989.8 ab | 1 963.6 ab | 4.30 a | 0.034 a | 616.0 a | 618.3 a | |
TB | 5.83 a | 0.008 5 b | 2 207.8 a | 2 205.3 a | 4.10 a | 0.049 a | 630.3 a | 644.2 a |
图5 不同处理间细菌和真菌在属水平的差异物种A:豫北;B:豫东;C:豫南;*、**和***分别表示在P<0.05、P<0.01和P<0.001水平显著
Fig. 5 Species with significant differences in bacteria and fungi of different treatmentsA:Northern Henan;B:Easthern Henan;C:Southern Henan;*, ** and *** indicate significant at P<0.05, P<0.01 and P<0.001 levels, respectively
类别 Type | 属 Genus | pH | 有机质 Organic matter | 有效态Cd Available Cd |
---|---|---|---|---|
细菌 Bacteria | Norank_f__norank_o__Vicinamibactera | 0.738*** | 0.383** | 0.384** |
Candidatus_Solibacter | -0.586*** | -0.661*** | -0.498*** | |
芽孢杆菌属Bacillus | 0.084 | 0.020 | -0.031 | |
Gaiella | 0.581*** | 0.720*** | 0.690*** | |
类诺卡氏属Nocardioides | 0.705*** | 0.510*** | 0.376** | |
真菌 Fungi | 被孢霉属Mortierella | 0.431** | -0.304 | -0.097 |
枝孢菌属Cladosporium | 0.608*** | 0.680*** | 0.255 | |
篮状菌属Talaromyces | -0.212 | 0.104 | -0.069 | |
毛壳菌属Chaetomium | -0.809*** | -0.567*** | -0.428** | |
Solicoccozyma | -0.815*** | -0.571*** | -0.589*** |
表4 优势菌群与环境因子的相关性分析
Table 4 Correlation analysis between dominant microflora and environmental factors
类别 Type | 属 Genus | pH | 有机质 Organic matter | 有效态Cd Available Cd |
---|---|---|---|---|
细菌 Bacteria | Norank_f__norank_o__Vicinamibactera | 0.738*** | 0.383** | 0.384** |
Candidatus_Solibacter | -0.586*** | -0.661*** | -0.498*** | |
芽孢杆菌属Bacillus | 0.084 | 0.020 | -0.031 | |
Gaiella | 0.581*** | 0.720*** | 0.690*** | |
类诺卡氏属Nocardioides | 0.705*** | 0.510*** | 0.376** | |
真菌 Fungi | 被孢霉属Mortierella | 0.431** | -0.304 | -0.097 |
枝孢菌属Cladosporium | 0.608*** | 0.680*** | 0.255 | |
篮状菌属Talaromyces | -0.212 | 0.104 | -0.069 | |
毛壳菌属Chaetomium | -0.809*** | -0.567*** | -0.428** | |
Solicoccozyma | -0.815*** | -0.571*** | -0.589*** |
[1] | JIA X L, HU B F, MARCHANT B P,et al..A methodological framework for identifying potential sources of soil heavy metal pollution based on machine learning:a case study in the Yangtze Delta, China [J]. Environ. Pollut., 2019,250:601-609. |
[2] | ANDERSON S N, STITZER M C, BROHAMMER A B,et al..Transposable elements contribute to dynamic genome content in maize [J]. Plant J., 2019,100(5):1052-1065. |
[3] | GOMES H I, DIAS-FERREIRA C, RIBEIRO A B.Overview of in situ and ex situ remediation technologies for PCB-contaminated soils and sediments and obstacles for full-scale application [J]. Sci. Total Environ., 2013,445:237-260. |
[4] | SONG B, ZENG G M, GONG J L,et al..Evaluation methods for assessing effectiveness of in situ remediation of soil and sediment contaminated with organic pollutants and heavy metals [J]. Environ. Int., 2017,105:43-55. |
[5] | 陈鸿鹄,蔡润.探究矿山地质环境现状与生态修复技术的应用[J].中国金属通报,2022(8):204-206. |
[6] | LIU L W, LI W, SONG W P,et al..Remediation techniques for heavy metal-contaminated soils:principles and applicability [J].Sci. Total Environ., 2018,633:206-219. |
[7] | HUSSAIN B, ASHRAF M N,SHAFEEQ-UR-RAHMAN,et al..Cadmium stress in paddy fields:effects of soil conditions and remediation strategies [J/OL]. Sci. Total Environ., 2021,754:142188 [2024-01-20]. . |
[8] | ALBUQUERQUE A R L, ANGELICA R S, MERINO A, et al.. Chemical and mineralogical characterization and potential use of ash from Amazonian biomasses as an agricultural fertilizer and for soil amendment [J/OL]. J. Clean, 2021, 295(5):126472 [2024-01-20]. . |
[9] | 韩云昌,张乃明.施用钝化剂对土壤重金属污染修复的研究进展[J].江苏农业科学,2020,48(10):52-56. |
[10] | 张小凯,何丽芝,陆扣萍,等.生物质炭修复重金属及有机物污染土壤的研究进展[J].土壤,2013,45(6):970-977. |
ZHANG X K, HE L Z, LU K P,et al..Use of biochar for remediation of soils contaminated with heavy metals and organic pollutants: a review [J]. Soils, 2013, 45(6):970-977. | |
[11] | HODSON M E, VALSAMI-JONES É, COTTER-HOWELLS J D.Bonemeal additions as a remediation treatment for metal contaminated soil [J]. Environ. Sci. Technol., 2000,34(16):3501-3507. |
[12] | OK Y S, OH S E, AHMAD M,et al..Effects of natural and calcined oyster shells on Cd and Pb immobilization in contaminated soils [J].Environ.Earth Sci., 2010,61(6):1301-1308. |
[13] | SOARES M A R, QUINA M J, QUINTA-FERREIRA R M.Immobilisation of lead and zinc in contaminated soil using compost derived from industrial eggshell [J].J.Environ. Manage., 2015,164:137-145. |
[14] | HRISTOZKOVA M, GIGOVA L, GENEVA M, et al.. Mycorrhizal fungi and microalgae modulate antioxidant capacity of basil plants [J]. J. Plant Prot. Res., 2018, 57(4):417-426. |
[15] | BEATTIE R E, HENKE W, CAMPA M F,et al..Variation in microbial community structure correlates with heavy-metal contamination in soils decades after mining ceased [J].Soil Biol. Biochem., 2018,126:57-63. |
[16] | JANKAIT E, VASAREVICIUS S A. Remediation technologies for soils contaminated with heavy metals [J] Environ. Eng. Landsc. J., 2005, 13(2):109-113. |
[17] | ZHAO Y F, GAO J F, WANG Z Q, et al.. Responses of bacterial communities and resistance genes on microplastics to antibiotics and heavy metals in sewage environment [J/OL].J.Hazard. Mater., 2020,402:123550 [2024-01-20]. . |
[18] | NADEEM N, ASIF R, AYYUB S, et al.. Role of rhizobacteria in phytoremediation of heavy metals [J]. Biol. Clin. Sci. Res. J., 2020, 2020(1):220-232. |
[19] | CHEN Q L, CUI H L, SU J Q,et al..Antibiotic resistomes in plant microbiomes [J]. Trends Plant Sci., 2019, 24(6):530-541. |
[20] | 刘沙沙,付建平,蔡信德,等.重金属污染对土壤微生物生态特征的影响研究进展[J].生态环境学报,2018,27(6):1173-1178. |
LIU S S, FU J P, CAI X D, et al.. Effect of heavy metals pollution on ecological characteristics of soil microbes:a review [J]. Ecol. Environ. Sci., 2018, 27(6):1173-1178. | |
[21] | 刘香香,王琳,江棋,等.调理剂对Cd污染农田土壤环境质量的影响及修复效果评价[J].农产品质量与安全,2021(2):25-29. |
[22] | LI L J, WANG S T, LI X Z,et al..Effects of Pseudomonas chenduensis and biochar on cadmium availability and microbial community in the paddy soil [J]. Sci.Total Environ., 2018, 640:1034-1043. |
[23] | 武琳,林小兵,刘晖,等.土壤调理剂对Cd污染农田土壤生物因子、有效态Cd及糙米Cd的影响[J].环境生态学,2020,2(4):78-84, 100. |
WU L, LIN X B, LIU H,et al..Soil biological factors,available Cd and brown rice Cd under different soil conditioners in Cd-contaminated farmland [J]. Environ. Ecol., 2020, 2(4):78-84, 100. | |
[24] | 陈兆进,李英军,邵洋,等.新乡市镉污染土壤细菌群落组成及其对镉固定效果[J].环境科学,2020,41(6):2889-2897. |
CHEN Z J, LI Y J, SHAO Y,et al..Bacterial community composition in cadmium-contaminated soils in Xinxiang city and its ability to reduce cadmium bioaccumulation in pak choi (Brassica chinensis L.) [J]. Environ. Sci., 2020, 41(6):2889-2897. | |
[25] | XU C R, HE S B, LIU Y M,et al..Bioadsorption and biostabilization of cadmium by Enterobacter cloacae TU [J].Chemosphere, 2017, 173:622-629. |
[26] | 生态环境部,国家市场监督管理总局. 土壤环境质量 农用地土壤污染风险管控标准: [S].北京:中国标准出版社,2018. |
[27] | 鲍士旦.土壤农化分析[M].第2版.北京:中国农业出版社,1999:34-108. |
[28] | 宋正国,唐世荣,丁永祯,等.田间条件下不同钝化材料对玉米吸收镉的影响研究[J].农业环境科学学报,2011,30(11):2152-2159. |
SONG Z G, TANG S R, DING Y Z,et al..Effects of different amendments on cadmium uptake by maize under field conditions [J]. J. Agro-Environ. Sci., 2011, 30(11):2152-2159. | |
[29] | 孙国红,李剑睿,徐应明,等.不同水分管理下镉污染红壤钝化修复稳定性及其对氮磷有效性的影响[J].农业环境科学学报,2015,34(11):2105-2113. |
SUN G H, LI J R, XU Y M, et al.. Effects of water management on cadmium stability and nitrogen and phosphorus availability in cadmium polluted red soil after immobilization remediation [J]. J. Agro-Environ. Sci., 2015, 34(11):2105-2113. | |
[30] | 贺前锋,桂娟,刘代欢,等.淹水稻田中土壤性质的变化及其对土壤镉活性影响的研究进展[J].农业环境科学学报,2016,35(12):2260-2268. |
HE Q F, GUI J, LIU D H,et al..Research progress of soil property’s changes and its impacts on soil cadmium activity in flooded paddy field [J]. J. Agro-Environ. Sci., 2016,35(12):2260-2268. | |
[31] | 王林,徐应明,孙国红,等.海泡石和磷酸盐对镉铅污染稻田土壤的钝化修复效应与机理研究[J].生态环境学报,2012,21(2):314-320. |
WANG L, XU Y M, SUN G H,et al..Effect and mechanism of immobilization of paddy soil contaminated by cadmium and lead using sepiolite and phosphate [J]. Ecol. Environ. Sci., 2012, 21(2):314-320. | |
[32] | 张倩茹,冀琳宇,高程程,等.改性生物炭的制备及其在环境修复中的应用[J].农业环境科学学报,2021,40(5):913-925. |
ZHANG Q R, JI L Y, GAO C C,et al..Preparation of modified biochar and its application in environmental remediation [J]. J. Agro-Environ. Sci., 2021, 40(5):913-925. | |
[33] | HOODA P S, ALLOWAY B J.Cadmium and lead sorption behaviour of selected English and Indian soils [J].Geoderma, 1998, 84(1/2/3):121-134. |
[34] | 张剑,孔繁艺,卢升高.无机钝化剂对镉污染酸性水稻土的修复效果及其机制[J].环境科学,2022,43(10):4679-4686. |
ZHANG J, KONG F Y, LU S G.Remediation effect and mechanism of inorganic passivators on cadmium contaminated acidic paddy soil [J]. Environ. Sci., 2022, 43(10):4679-4686. | |
[35] | KUBIER A, PICHLER T.Cadmium in groundwater-A synopsis based on a large hydrogeochemical data set [J].Sci. Total Environ., 2019, 689:831-842. |
[36] | 孙花,谭长银,黄道友,等.土壤有机质对土壤重金属积累、有效性及形态的影响[J].湖南师范大学自然科学学报,2011,34(4):82-87. |
SUN H, TAN C Y, HUANG D Y,et al..Effects of soil organic matter on the accumulation availability and chemical speciation of heavy metal [J].J.Nat.Sci.Hunan Norm.Univ., 2011, 34(4):82-87. | |
[37] | 杜明阳,赵秀兰.土壤有机质与重金属迁移转化关系文献综述[J].南方农业,2016,10(17):3. |
[38] | 徐龙君,袁智.土壤重金属污染及修复技术[J].环境科学与管理,2006,31(8):67-69. |
XU L J, YUAN Z.The soil pollution of heavymetal and remediation techniques [J]. Environ. Sci. Manage., 2006, 31(8):67-69. | |
[39] | UCHIMIYA M, CHANG S, KLASSON K T.Screening biochars for heavy metal retention in soil:role of oxygen functional groups [J]. J. Hazard. Mater., 2011, 190(1/2/3):432-441. |
[40] | 杨素勤,魏森,张彪,等.连续施用改性生物质炭对镉铅土壤修复效果及其对微生物群落结构的影响[J].农业环境科学学报,2022,41(7):1460-1471. |
YANG S Q, WEI S, ZHANG B,et al..Remediation effect of continuous application of modified biochar on cadmium-and lead-contaminated soil and its effect on microbial community structure [J]. J. Agro-Environ. Sci., 2022, 41(7):1460-1471. | |
[41] | 国家卫生健康委员会,国家市场监督管理总局. 食品安全国家标准 食品中污染物限量: [S].北京:中国标准出版社,2022. |
[42] | 程金金,宋静,陈文超,等.镉污染对红壤和潮土微生物的生态毒理效应[J].生态毒理学报,2013,8(4):577-586. |
CHENG J J, SONG J, CHEN W C, et al.. The ecotoxicity effects of cadmium on microorganism in udic-ferrosols and aquic-cambosols [J]. Asian J. Ecotoxicol., 2013, 8(4):577-586. | |
[43] | LAUBER C L, HAMADY M, KNIGHT R,et al..Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale [J]. Appl. Environ. Microbiol., 2009, 75(15):5111-5120. |
[44] | 张丽丽,李继蕊,毕焕改,等.不同土壤pH和磷水平下黄腐酸对番茄产量和根际土壤微生态的影响[J].中国蔬菜,2021(11):45-52. |
ZHANG L L, LI J R, BI H G,et al..Effects of fulvic acid on tomato yield and hizosphere soil microecology under different soil pH and phosphorus levels [J]. China Veg., 2021(11):45-52. | |
[45] | 钟珍梅.圆叶决明对果园红壤可溶性氮及细菌群落动态变化的影响[D].福州:福建农林大学, 2019. |
ZHONG Z M. Effects of chamaecrista rotundifolia on dynamic changes of soil soluble nitrogen and bacterial communities in orchard red earth [D]. Fuzhou: Fujian Agriculture and Forestry University, 2019. | |
[46] | YONEYAMA T, TERAKADO T, MINAMISAWA K. Exploration of bacterial N2-fixation systems in association with soil-grown sugarcane, sweet potato, and paddy rice: a review and synthesis [J]. Soil Sci. Plant Nutr., 2017, 63(6):578-590. |
[47] | 李巧玲,李爱博,黄志远,等.解磷微生物在林业土壤生态修复中的应用进展[J].世界林业研究,2022, 35(1):15-20. |
LI Q L, LI AB, HUANG Z Y, et al.. Application of phosphorus solubilizing microorganisms in forestry soil ecological restoration [J]. World For. Res., 2022, 35(1):15-20. | |
[48] | 陈志谊,刘永峰,刘邮洲,等.植物病害生防芽孢杆菌研究进展[J].江苏农业学报,2012, 28(5):999-1006. |
CHEN Z Y, LIU Y F, LIU Y Z,et al..Research progress in biocontrol of Bacillus spp. against plant diseases [J]. Jiangsu J.Agric. Sci., 2012, 28(5):999-1006. | |
[49] | YANG F C, CHEN Y L, TANG S L, et al.. Integrated multi-omics analyses reveal the biochemical mechanisms and phylogenetic relevance of anaerobic androgen biodegradation in the environment [J]. ISME J., 2016, 10(8):1967-1983. |
[50] | SAKAI M, HOSODA A, OGURA K,et al..The growth of Steroidobacter agariperforans sp.nov.,a novel agar-degrading bacterium isolated from soil,is enhanced by the diffusible metabolites produced by bacteria belonging to rhizobiales [J]. Microbes Environ., 2014, 29(1):89-95. |
[51] | GEBERS R, BEESE M. Pedomicrobium americanum sp. nov. and pedomicrobium australicum sp. nov. from aquatic habitats, pedomicrobium gen. emend, and Pedomicrobium ferrugineum sp. emend. [J]. Int. J. Syst. Evol. Microbiol., 1988, 38(3):303-315. |
[52] | COX T L, SLY L I.Phylogenetic relationships and uncertain taxonomy of Pedomicrobium species [J].Polymers,1997,47(2):377-380. |
[53] | 商鸿生.现代植物免疫学[M].北京:中国农业出版社,2013 1-433. |
[54] | LEHMANN J, RILLIG M C, THIES J, et al.. Biochar effects on soil biota-a review [J]. Soil Biol. Biochem., 2011, 43(9):1812-1836. |
[55] | ZHU X M, CHEN B L, ZHU L Z,et al.. Effects and mechanisms of biochar-microbe interactions in soil improvement and pollution remediation:a review [J]. Environ. Pollut., 2017, 227:98-115. |
[56] | 殷全玉,刘健豪,刘国顺,等.连续4年施用生物炭对植烟褐土微生物群落结构的影响[J].中国农业科技导报,2021,23(1):176-185. |
YIN Q Y, LIU J H, LIU G S, et al.. Effects of biochar application for four consecutive years on microbial community structure of tobacco cinnamon soil [J]. J. Agric. Sci. Technol., 2021, 23(1):176-185. | |
[57] | 张英英,魏玉杰,吴之涛,等.不同种植年限对特殊药材土壤化学性质和微生物多样性的影响[J].干旱地区农业研究,2023,41(1):150-159. |
ZHANG Y Y, WEI Y J, WU Z T,et al..Effects of different cropping years on soil chemical properties of special medicine source plant [J]. Agric. Res. Arid Areas, 2023, 41(1):150-159. | |
[58] | 刘峰.高效解磷真菌的筛选鉴定及促进玉米磷吸收的机制[D].青岛:青岛农业大学,2022. |
LIU F. Screening and identification of high-efficiency phosphate-solubilizing fungus and the mechanism of promoting phosphorus absorption in maize [D]. Qingdao: Qingdao Agricultural University, 2022. | |
[59] | SARABIA M, CAZARES S, GONZÁLEZ-RODRÍGUEZ A, et al.. Plant growth promotion traits of rhizosphere yeasts and their response to soil characteristics and crop cycle in maize agroecosystems [J]. Rhizosphere, 2018, 6:67-73. |
[60] | NOORMOHAMADI H R, FAT'HI M R, GHAEDI M,et al..Potentiality of white-rot fungi in biosorption of nickel and cadmium:modeling optimization and kinetics study [J].Chemosphere, 2019, 216:124-130. |
[61] | MENDES GD, DE FREITAS ALM, PEREIRA OL, et al.. Mechanisms of phosphate solubilization by fungal isolates when exposed to different P sources [J]. Ann. Microbiol., 2014, 64(1):239-249. |
[62] | ADAMS P, DE-LEIJ F A A M, LYNCH J M. Trichoderma harzianum rifai 1295-22 mediates growth promotion of crack willow (Salix fragilis) saplings in both clean and metal-contaminated soil [J]. Microb. Ecol., 2007, 54(2):306-313. |
[63] | SIDDIQUEE S, ROVINA K, AZAD S A. Heavy metal contaminants removal from wastewater using the potential filamentous fungi biomass: a review [J]. J. Microb. Biochem. Technol., 2015, 6:384-393. |
[64] | MAZROU Y S, NEHA B, KANDOLIYA U K, et al.. Selection and characterization of novel zinc-tolerant Trichoderma strains obtained by protoplast fusion [J]. J. Environ. Biol., 2020, 41(4):718-726. |
[65] | 蔚杰.河北峰峰矿区DSE真菌物种多样性和耐重金属性研究[D].保定:河北大学,2019. |
WEI J. Species diversity and heavy metal tolerance of DSE fungi in Fengfeng mining area, Hebei province [D]. Baoding: Hebei University. 2019. |
[1] | 齐潇雨, 郭艳杰, 柳鹭, 张子涛, 张丽娟, 吉艳芝. 种植年限对设施葡萄园土壤盐渍化及微生物群落的影响[J]. 中国农业科技导报, 2025, 27(6): 218-228. |
[2] | 方泰军, 侯璐, 白露超. 柴达木地区患根腐病枸杞根际土壤微生物多样性分析[J]. 中国农业科技导报, 2024, 26(1): 133-139. |
[3] | 肖锐, 谭璐, 吴亮, 张皓, 郭佳源, 杨海君. 镉胁迫下地肤根际与非根际土壤微生物群落结构及多样性[J]. 中国农业科技导报, 2023, 25(8): 203-215. |
[4] | 杨学瑾, 周媛媛, 彭欣怡, 刘建凤, 张爱民, 井爱芹, 赵钢勇, 曹丹丹. 根结线虫危害与健康黄瓜根际土壤微生物群落结构差异分析[J]. 中国农业科技导报, 2023, 25(1): 109-118. |
[5] | 范鹤龄, 朱清, 孙雪冰, 张丽, 李长江, 陈萍, 黄小龙, 张荣萍. 不同农用酵素的微生物多样性和群落结构[J]. 中国农业科技导报, 2022, 24(11): 179-189. |
[6] | 张磊, 罗泽华, 杨明川, 李世贵, 辛玉华, 蔡斌, 刘好宝, 曾代龙, 顾金刚, 段碧华. 雪茄烟叶原料发酵微生物多样性及酶活变化研究[J]. 中国农业科技导报, 2021, 23(10): 171-180. |
[7] | 刘倩1,2,李纪潮1,左应梅1,杨天梅1,杨美权1,张金渝*. 有机覆盖三七对土壤养分及微生物多样性的影响[J]. 中国农业科技导报, 2021, 23(1): 162-175. |
[8] | 廖雄辉1,2,周晓溦1,蔡丹1,王惠群1,2,易自力1,2,薛帅1,2*. 南荻炭基土壤调理剂施用对水稻光合特性及产量的影响[J]. 中国农业科技导报, 2019, 21(8): 132-139. |
[9] | 林李华,支胡钰. 蚕沙土壤调理剂对酸性土壤改良及豆角生长的影响[J]. 中国农业科技导报, 2018, 20(4): 108-114. |
[10] | 张国占. 碳源调理剂对牛粪高温好氧堆肥发酵的影响[J]. 中国农业科技导报, 2018, 20(12): 99-106. |
[11] | 淡俊豪1,齐绍武1,2*,黎娟1,朱益3,靳辉勇4,梁仲哲1. 土壤调理剂对植烟土壤微生物碳代谢指纹的影响[J]. 中国农业科技导报, 2018, 20(10): 36-43. |
[12] | 靳辉勇1,齐绍武2*,朱益1,和七红1,梁仲哲1,淡俊豪1. 土壤调理剂对土壤养分含量及微生物功能多样性的影响[J]. 中国农业科技导报, 2017, 19(5): 100-105. |
[13] | 李燕婷[1] 白灯莎·买买提艾力[2] 等. 根际施肥调控技术研究初探[J]. , 2002, 4(5): 55-58. |
[14] | 郑毅 张福锁. 石灰性土壤上花生缺铁黄化与土壤水分和重碳酸盐的关系[J]. , 2000, 2(3): 73-76. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||