中国农业科技导报 ›› 2025, Vol. 27 ›› Issue (7): 161-171.DOI: 10.13304/j.nykjdb.2024.0235
• 食品质量 加工储运 • 上一篇
陈小伟(), 沙玉柱, 刘秀(
), 邵鹏阳, 王翻兄, 谢转回, 杨文鑫, 陈倩玲, 高敏, 黄薇
收稿日期:
2024-03-25
接受日期:
2024-10-30
出版日期:
2025-07-15
发布日期:
2025-07-11
通讯作者:
刘秀
作者简介:
陈小伟 E-mail:Cxw20002022@163.com;
基金资助:
Xiaowei CHEN(), Yuzhu SHA, Xiu LIU(
), Pengyang SHAO, Fanxiong WANG, Zhuanhui XIE, Wenxin YANG, Qianling CHEN, Min GAO, Wei HUANG
Received:
2024-03-25
Accepted:
2024-10-30
Online:
2025-07-15
Published:
2025-07-11
Contact:
Xiu LIU
摘要:
为分析不同物候期(返青期和青草期)牧草营养成分对放牧藏绵羊肉品质、营养成分及肉质相关基因表达特征的影响,通过测定返青期(5月)和青草期(8月)牧草的营养成分及藏绵羊背最长肌、前腿肌和后腿肌的肉品质、营养成分及肉质相关基因表达量。结果表明,青草期牧草的粗蛋白和粗脂肪含量显著高于返青期,返青期牧草的酸性洗涤纤维含量显著高于青草期。青草期藏绵羊背最长肌的剪切力、pH1 h(屠宰后1 h 肉样的pH)显著高于返青期,熟肉率显著高于返青期,失水率极显著低于返青期;肌肉的粗脂肪含量显著高于返青期,水分含量显著低于返青期。藏绵羊LPL和FABP3基因在青草期的表达量显著高于返青期,SCD、ADSL、CAST和MSTN基因在返青期的表达量显著高于青草期。相关性分析表明, ADSL基因表达量与蛋白含量呈极显著负相关(r=-0.995,P<0.01),与粗脂肪含量呈极显著正相关(r=0.865,P<0.01)。以上研究结果为不同物候期牧草的合理利用和藏绵羊肉品质改善提供重要参考。
中图分类号:
陈小伟, 沙玉柱, 刘秀, 邵鹏阳, 王翻兄, 谢转回, 杨文鑫, 陈倩玲, 高敏, 黄薇. 不同物候期藏绵羊肉品质、营养成分及肉质相关基因表达特征分析[J]. 中国农业科技导报, 2025, 27(7): 161-171.
Xiaowei CHEN, Yuzhu SHA, Xiu LIU, Pengyang SHAO, Fanxiong WANG, Zhuanhui XIE, Wenxin YANG, Qianling CHEN, Min GAO, Wei HUANG. Analysis of Gene Expression Characteristics Associated with Quality, Nutrient Composition, and Meat Quality of Tibetan Sheep Meat During Different Phenological Stages[J]. Journal of Agricultural Science and Technology, 2025, 27(7): 161-171.
基因 Gene | 引物序列 Primers sequence (5’-3’) | 扩增长度 Amplification length/bp | 基因索引号 Gene accession No. |
---|---|---|---|
β-actin | F:AGCCTTCCTTCCTGGGCATGGA R:GGACAGCACCGTGTTGGCGTAA | 113 | NM_001009428.3 |
MSTN | F:AACAGCGAGCAGAAGGAAAA R:GGTTAAATGCCAACCATTGC | 145 | NM_001009788.1 |
CAST | F:CGAGATTTCCGGTGGTGGAA R:GCTTGGATTCAACTGGCACG | 122 | NM_001009394.1 |
LPL | F:TGGAGTGACGGAATCTGTGG R:ACGTTGGAGTCTGGTTCCCT | 150 | NM_001267884.2 |
FABP3 | F:GTCTCTTTCCCGACCTAGCC R:TAGCAAAACCGACACCGAGT | 118 | XM_004007004.5 |
ADSL | F:CGCTTGCTTCCCGTTATGC R:CGCCAGGTCCGGAATTTGTA | 73 | AJ_001048 |
SCD | F:CCCAGCTGTCAGAGAAAAGG R:GATGAAGCACAACAGCTTGT | 115 | NM_001009428.3 |
表1 肉质相关基因检测引物序列
Table 1 Primer for detection of meat quality related genes
基因 Gene | 引物序列 Primers sequence (5’-3’) | 扩增长度 Amplification length/bp | 基因索引号 Gene accession No. |
---|---|---|---|
β-actin | F:AGCCTTCCTTCCTGGGCATGGA R:GGACAGCACCGTGTTGGCGTAA | 113 | NM_001009428.3 |
MSTN | F:AACAGCGAGCAGAAGGAAAA R:GGTTAAATGCCAACCATTGC | 145 | NM_001009788.1 |
CAST | F:CGAGATTTCCGGTGGTGGAA R:GCTTGGATTCAACTGGCACG | 122 | NM_001009394.1 |
LPL | F:TGGAGTGACGGAATCTGTGG R:ACGTTGGAGTCTGGTTCCCT | 150 | NM_001267884.2 |
FABP3 | F:GTCTCTTTCCCGACCTAGCC R:TAGCAAAACCGACACCGAGT | 118 | XM_004007004.5 |
ADSL | F:CGCTTGCTTCCCGTTATGC R:CGCCAGGTCCGGAATTTGTA | 73 | AJ_001048 |
SCD | F:CCCAGCTGTCAGAGAAAAGG R:GATGAAGCACAACAGCTTGT | 115 | NM_001009428.3 |
指标Index | 返青期Regreen stage | 青草期Grassy stage | P值P value |
---|---|---|---|
干物质DM | 94.567±0.135 | 86.698±0.095 | 0.001 |
粗蛋白质CP | 6.586±0.102 | 19.084±0.340 | <0.001 |
粗脂肪EE | 0.886±0.006 | 1.792±0.046 | <0.001 |
酸性洗涤纤维ADF | 31.640±0.669 | 30.820±0.382 | <0.001 |
中性洗涤纤维NDF | 48.432±0.382 | 52.623±0.709 | 0.001 |
表2 不同时期牧草常规营养含量(风干基础) (%)
Table 2 Conventional nutrient content of forage in different stages (on air-dried basis)
指标Index | 返青期Regreen stage | 青草期Grassy stage | P值P value |
---|---|---|---|
干物质DM | 94.567±0.135 | 86.698±0.095 | 0.001 |
粗蛋白质CP | 6.586±0.102 | 19.084±0.340 | <0.001 |
粗脂肪EE | 0.886±0.006 | 1.792±0.046 | <0.001 |
酸性洗涤纤维ADF | 31.640±0.669 | 30.820±0.382 | <0.001 |
中性洗涤纤维NDF | 48.432±0.382 | 52.623±0.709 | 0.001 |
指标 Index | 部位 Part | 返青期 Regreen stage | 青草期 Grassy stage | P值 P value |
---|---|---|---|---|
失水率 Water loss capacity/% | 背最长肌 Longissimus dorsi muscle | 38.7±0.000 | 23.3±0.010 | <0.001 |
前腿肌 Muscle of fore leg | 27.2±0.000 | 24.8±0.012 | 0.001 | |
后腿肌 Muscle of hind leg | 36.3±0.001 | 23.7±0.003 | <0.001 | |
剪切力 Shear force/N | 背最长肌 Longissimus dorsi muscle | 37.360±0.208 | 55.810±0.985 | <0.001 |
前腿肌 Muscle of fore leg | 60.293±0.305 | 59.045±2.954 | 0.691 | |
后腿肌 Muscle of hind leg | 46.512±0.28 | 75.207±0.557 | <0.001 | |
熟肉率 Cooked meat rate/% | 背最长肌 Longissimus dorsi muscle | 48.1±0.032 | 52.7±0.026 | 0.308 |
前腿肌 Muscle of fore leg | 55.8±0.028 | 65.5±0.038 | 0.066 | |
后腿肌 Muscle of hind leg | 58.5±0.30 | 50.1±0.001 | 0.037 | |
pH1 h | 背最长肌 Longissimus dorsi muscle | 7.193±0.189 | 6.202±0.086 | 0.020 |
前腿肌 Muscle of fore leg | 7.798±0.197 | 6.197±0.067 | <0.001 | |
后腿肌 Muscle of hind leg | 7.435±0.179 | 6.488±0.060 | 0.010 | |
pH24 h | 背最长肌 Longissimus dorsi muscle | 6.935±0.092 | 6.248±0.039 | <0.001 |
前腿肌 Muscle of fore leg | 7.022±0.432 | 6.280±0.018 | 0.117 | |
后腿肌 Muscle of hind leg | 7.145±0.326 | 6.352±0.062 | 0.038 |
表3 不同时期藏绵羊的肉质相关指标
Table 3 Meat quality indexes of Tibetan sheep in different stages
指标 Index | 部位 Part | 返青期 Regreen stage | 青草期 Grassy stage | P值 P value |
---|---|---|---|---|
失水率 Water loss capacity/% | 背最长肌 Longissimus dorsi muscle | 38.7±0.000 | 23.3±0.010 | <0.001 |
前腿肌 Muscle of fore leg | 27.2±0.000 | 24.8±0.012 | 0.001 | |
后腿肌 Muscle of hind leg | 36.3±0.001 | 23.7±0.003 | <0.001 | |
剪切力 Shear force/N | 背最长肌 Longissimus dorsi muscle | 37.360±0.208 | 55.810±0.985 | <0.001 |
前腿肌 Muscle of fore leg | 60.293±0.305 | 59.045±2.954 | 0.691 | |
后腿肌 Muscle of hind leg | 46.512±0.28 | 75.207±0.557 | <0.001 | |
熟肉率 Cooked meat rate/% | 背最长肌 Longissimus dorsi muscle | 48.1±0.032 | 52.7±0.026 | 0.308 |
前腿肌 Muscle of fore leg | 55.8±0.028 | 65.5±0.038 | 0.066 | |
后腿肌 Muscle of hind leg | 58.5±0.30 | 50.1±0.001 | 0.037 | |
pH1 h | 背最长肌 Longissimus dorsi muscle | 7.193±0.189 | 6.202±0.086 | 0.020 |
前腿肌 Muscle of fore leg | 7.798±0.197 | 6.197±0.067 | <0.001 | |
后腿肌 Muscle of hind leg | 7.435±0.179 | 6.488±0.060 | 0.010 | |
pH24 h | 背最长肌 Longissimus dorsi muscle | 6.935±0.092 | 6.248±0.039 | <0.001 |
前腿肌 Muscle of fore leg | 7.022±0.432 | 6.280±0.018 | 0.117 | |
后腿肌 Muscle of hind leg | 7.145±0.326 | 6.352±0.062 | 0.038 |
指标 Index | 部位 Part | 含量Content/% | P值 P value | |
---|---|---|---|---|
返青期 Regreen stage | 青草期Grassy stage | |||
水分 Moisture | 背最长肌 Longissimus dorsi muscle | 75.088±0.686 | 73.405±0.356 | 0.045 |
前腿肌 Muscle of fore leg | 76.917±0.713 | 75.371±0.506 | 0.017 | |
后腿肌 Muscle of hind leg | 76.701±0.740 | 74.525±0.588 | 0.044 | |
粗蛋白 Crude protein | 背最长肌 Longissimus dorsi muscle | 22.540±0.088 | 20.323±0.108 | <0.001 |
前腿肌 Muscle of fore leg | 19.903±0.160 | 19.359±0.090 | 0.014 | |
后腿肌 Muscle of hind leg | 20.298±0.209 | 20.337±0.088 | 0.869 | |
粗脂肪 Crude fat | 背最长肌 Longissimus dorsi muscle | 2.630±0.037 | 3.251±0.088 | <0.001 |
前腿肌 Muscle of fore leg | 2.999±0.044 | 3.608±0.121 | 0.001 | |
后腿肌 Muscle of hind leg | 3.995±0.044 | 4.021±0.014 | 0.590 | |
粗灰分 Ash | 背最长肌 Longissimus dorsi muscle | 1.087±0.005 | 1.075±0.005 | 0.231 |
前腿肌 Muscle of fore leg | 1.044±0.006 | 0.991±0.004 | <0.001 | |
后腿肌 Muscle of hind leg | 1.151±0.007 | 1.058±0.005 | <0.001 |
表4 不同时期不同部位肌肉的营养成分
Table 4 Nutrients of different muscles of Tibetan sheep in different stages
指标 Index | 部位 Part | 含量Content/% | P值 P value | |
---|---|---|---|---|
返青期 Regreen stage | 青草期Grassy stage | |||
水分 Moisture | 背最长肌 Longissimus dorsi muscle | 75.088±0.686 | 73.405±0.356 | 0.045 |
前腿肌 Muscle of fore leg | 76.917±0.713 | 75.371±0.506 | 0.017 | |
后腿肌 Muscle of hind leg | 76.701±0.740 | 74.525±0.588 | 0.044 | |
粗蛋白 Crude protein | 背最长肌 Longissimus dorsi muscle | 22.540±0.088 | 20.323±0.108 | <0.001 |
前腿肌 Muscle of fore leg | 19.903±0.160 | 19.359±0.090 | 0.014 | |
后腿肌 Muscle of hind leg | 20.298±0.209 | 20.337±0.088 | 0.869 | |
粗脂肪 Crude fat | 背最长肌 Longissimus dorsi muscle | 2.630±0.037 | 3.251±0.088 | <0.001 |
前腿肌 Muscle of fore leg | 2.999±0.044 | 3.608±0.121 | 0.001 | |
后腿肌 Muscle of hind leg | 3.995±0.044 | 4.021±0.014 | 0.590 | |
粗灰分 Ash | 背最长肌 Longissimus dorsi muscle | 1.087±0.005 | 1.075±0.005 | 0.231 |
前腿肌 Muscle of fore leg | 1.044±0.006 | 0.991±0.004 | <0.001 | |
后腿肌 Muscle of hind leg | 1.151±0.007 | 1.058±0.005 | <0.001 |
图1 藏绵羊不同时期背最长肌肉质相关基因的相对表达量注:*和**分别表示在P<0.05和P<0.01水平差异显著。
Fig. 1 Relative expression levels of longissimus dorsi muscle related genes in Tibetan sheep at different stagesNote:* and ** indicate significant differences at P<0.05 and P<0.01 levels, respectively.
图2 藏绵羊不同时期前腿肌肉质相关基因的相对表达量注:*和**分别表示在P<0.05和P<0.01水平差异显著。
Fig. 2 Relative expression levels of musculi cruralis anterior related genes in Tibetan sheep at different stageNote:* and ** indicate significant differences at P<0.05 and P<0.01 levels, respectively.
图3 藏绵羊不同时期后腿肌肉质相关基因的相对表达量注:*和**分别表示在P<0.05和P<0.01水平差异显著。
Fig. 3 Relative expression levels of muscular-related genes in muscle of hind leg of Tibetan sheep at different stagesNote:* and ** indicate significant differences at P<0.05 and P<0.01 levels, respectively.
指标 Index | 粗蛋白 Crude protein | 粗脂肪 Crude fat | 失水率 Water loss capacity | 剪切力 Shear force | 熟肉率 Cooked meat rate | LPL | SCD | FABP3 | ADSL | CAST |
---|---|---|---|---|---|---|---|---|---|---|
粗脂肪 Crude fat | -0.576* | |||||||||
失水率 Water loss capacity | -0.364 | 0.956** | ||||||||
剪切力 Shear force | 0.336 | -0.935** | -0.994** | |||||||
熟肉率 Cooked meat rate | -0.108 | 0.388 | 0.365 | -0.308 | ||||||
LPL | -0.989** | 0.827** | 0.318 | -0.056 | -0.216 | |||||
SCD | -0.991** | 0.847** | 0.315 | -0.063 | -0.227 | 0.999** | ||||
FABP3 | -0.991** | 0.854** | 0.329 | -0.047 | -0.214 | 0.998** | 1.000** | |||
ADSL | -0.995** | 0.865** | 0.266 | -0.115 | -0.267 | 0.991** | 0.995** | 0.995** | ||
CAST | -0.978** | 0.828** | 0.305 | 0.008 | -0.161 | 0.988** | 0.988** | 0.988** | 0.983** | |
MSTN | -0.991** | 0.839** | 0.312 | -0.077 | -0.237 | 0.999** | 1.000** | 0.999** | 0.994** | 0.985** |
表5 各指标间的相关性分析
Table 5 Correlation analysis among different indexes
指标 Index | 粗蛋白 Crude protein | 粗脂肪 Crude fat | 失水率 Water loss capacity | 剪切力 Shear force | 熟肉率 Cooked meat rate | LPL | SCD | FABP3 | ADSL | CAST |
---|---|---|---|---|---|---|---|---|---|---|
粗脂肪 Crude fat | -0.576* | |||||||||
失水率 Water loss capacity | -0.364 | 0.956** | ||||||||
剪切力 Shear force | 0.336 | -0.935** | -0.994** | |||||||
熟肉率 Cooked meat rate | -0.108 | 0.388 | 0.365 | -0.308 | ||||||
LPL | -0.989** | 0.827** | 0.318 | -0.056 | -0.216 | |||||
SCD | -0.991** | 0.847** | 0.315 | -0.063 | -0.227 | 0.999** | ||||
FABP3 | -0.991** | 0.854** | 0.329 | -0.047 | -0.214 | 0.998** | 1.000** | |||
ADSL | -0.995** | 0.865** | 0.266 | -0.115 | -0.267 | 0.991** | 0.995** | 0.995** | ||
CAST | -0.978** | 0.828** | 0.305 | 0.008 | -0.161 | 0.988** | 0.988** | 0.988** | 0.983** | |
MSTN | -0.991** | 0.839** | 0.312 | -0.077 | -0.237 | 0.999** | 1.000** | 0.999** | 0.994** | 0.985** |
[1] | JING X P, WANG W J, DEGEN A A, et al.. Small intestinal morphology and sugar transporters expression when consuming diets of different energy levels:comparison between Tibetan and small-tailed Han sheep [J/OL]. Animal, 2022,16(3):100463 [2024-02-20]. . |
[2] | LIU X, SHA Y Z, LYU W B, et al.. Multi-omics reveals that the rumen transcriptome,microbiome,and its metabolome co-regulate cold season adaptability of Tibetan sheep [J/OL]. Front. Microbiol., 2022,13: 859601 [2024-02-20]. . |
[3] | JIAO J X, WANG T, ZHOU J W, et al.. Carcass parameters and meat quality of Tibetan sheep and Small-tailed Han sheep consuming diets of low-protein content and different energy yields [J]. J. Anim. Physiol. Anim. Nutr., 2020, 104(4):1010-1023. |
[4] | 董轩.羊肉品质评价指标、影响因素及不同烹调方式对品质的影响[J].现代食品,2020,12(23):16-19. |
DONG X. Evaluation indexes, influencing factors and effects of different cooking methods on mutton quality [J]. Mod. Food, 2020, 12(23):16-19. | |
[5] | 卫智军,杨静,苏吉安,等.荒漠草原不同放牧制度群落现存量与营养物质动态研究[J].干旱地区农业研究,2003,21(4):53-57. |
WEI Z J, YANG J, SU J A, et al.. A study on the standing forages and nutrient dynamics of community on Stipa breviflora grassland under different systems [J]. Agric. Res. Arid Areas, 2003, 21(4):53-57. | |
[6] | YANG C T, GAO P, HOU F J, et al.. Relationship between chemical composition of native forage and nutrient digestibility by Tibetan sheep on the Qinghai-Tibetan Plateau [J]. J. Anim.Sci., 2018, 96(3):1140-1149. |
[7] | 贺福全,陈懂懂,李奇,等.三江源高寒草地牧草营养时空分布[J].生态学报,2020, 40(18): 6304-6313. |
HE F Q, CHEN C J, LI Q, et al.. Temporal and spatial distribution of herbage nutrition in alpine grassland of Sanjiangyuan [J]. Acta Ecol. Sin., 2020, 40(18): 6304-6313. | |
[8] | ZHANG X, HAN L, HOU S, et al.. Metabolomics approach reveals high energy diet improves the quality and enhances the flavor of black Tibetan sheep meat by altering the composition of rumen microbiota [J]. Front. Nutr., 2022, 9: 915558-915572. |
[9] | PRACHE S, SCHREURS N, GUILLIER L.Review:Factors affecting sheep carcass and meat quality attributes [J/OL].Animal, 2022,16(S1):100330 [2024-02-20].. |
[10] | 刘秀,魏红,史浩, 等. 草地放牧藏绵羊不同月份肉品质及脂肪酸特征分析[J].家畜生态学报,2024,45(5):35-43. |
LIU X, WEI H, SHI H . et al .. Analysis of meat quality and fatty acid characteristics of Tibetan sheep grazed on grassland in different months [J]. J. Livest. Ecol., 2024, 45(5): 35-43. | |
[11] | 王莉梅,梁俊芳,王德宝,等.自然放牧条件下不同月龄乌珠穆沁羊的肉品质分析[J].食品科技,2018,43(12):118-124, 130. |
WANG L M, LIANG J F, WANG D B, et al.. Effect of different age on meat quality in Ujumqin sheep under natural grazing condition [J]. Food Sci. Technol., 2018, 43(12):118-124, 130. | |
[12] | 曹阳,赵雪,于永生,等.肉羊心型脂肪酸结合蛋白基因第2外显子多态性与肉质性状相关分析[J].东北农业大学学报,2013,44(9):30-34. |
CAO Y, ZHAO X, YU Y S, et al.. Correlation analysis on polymorphisms and meat quality trait at the exon 2 of H-FABP gene in sheep [J]. J. Northeast. Agric. Univ., 2013, 44(9):30-34. | |
[13] | 曲桂娟,杨连玉,秦贵信,等.不同杂交品种肉牛背最长肌LPL基因表达的发育性变化及其对IMF的影响[J].中国兽医学报,2011,31(2):272-274. |
QU G J, YANG L Y, QIN G X, et al.. Developmental changes of LPL gene expression of longissimusdorsi and their effects on IMF in different crossbred cattle breeds [J]. Chin. J. Vet. Sci., 2011, 31(2):272-274. | |
[14] | 张静静,宋玉芹,李桢,等.中国西门塔尔牛SCD1基因多态性与肉质性状的相关分析[J].华北农学报,2013,28(1):54-57. |
ZHANG J J, SONG Y Q, LI Z, et al.. Polymorphisms of SCD1 gene and its association with meat quality traits in Chinese Simmental [J]. Acta Agric. Boreali Sin., 2013, 28(1):54-57. | |
[15] | 张丽英.饲料分析及饲料质量检测技术[M].3版.北京:中国农业大学出版社,2007:1-435. |
[16] | 刘素英,尤华,刘勇军,等. 畜禽肉质的测定: [S].北京:中国标准出版社,2007. |
[17] | 中华人民共和国农业部. 肉嫩度的测定 剪切力测定法: [S].北京:中国农业出版社,2006. |
[18] | 陈泽勇,杨万颖,罗美中,等. 肉与肉制品 水分含量测定: [S].北京:中国标准出版社,2008. |
[19] | 国家卫生和计划生育委员会,国家食品药品监督管理总局. 食品安全国家标准 食品中蛋白质的测定: [S].北京:中国标准出版社,2017. |
[20] | 国家质量监督检验检疫总局,中国国家标准化管理委员会. 肉与肉制品 总脂肪含量测定: [S].北京:中国标准出版社,2008. |
[21] | 国家质量监督检验检疫总局,中国国家标准化管理委员会. 肉与肉制品 总灰分测定: [S].北京:中国标准出版社,2009. |
[22] | LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-△△Ct method [J]. Methods, 2001, 25(4):402-408. |
[23] | 扎西卓玛,王宏博,李桂香,等.高寒草甸草场牧草营养成分测定与分析[J].湖北农业科学,2018,57(1):109-111. |
Zhaxizhuoma, WANG H B, LI G X, et al.. Determination and analysis of forage nutrients in alpine meadow [J]. Hubei Agric. Sci., 2018, 57(1):109-111. | |
[24] | 程财. 乌拉盖草原牧草营养价值评定及不同饲喂水平对肉牛生产性能的影响[D].呼和浩特:内蒙古农业大学, 2020. |
CHENG C. Nutritional value assessment and different feeding levels of forage grass in Wulagai Grassland effect on the performance of beef cattle [D]. Hohhot: Inner Mongolia Agricultural University, 2020. | |
[25] | DESTEFANIS G, BRUGIAPAGLIA A, BARGE M T, et al.. Relationship between beef consumer tenderness perception and Warner-Bratzler shear force [J].Meat Sci., 2008,78(3):153-156. |
[26] | 曾志宏.肉的品质与pH值的相关性[J].肉类工业,2001,1(1):31-32. |
[27] | MOON S S, YANG H S, PARK G B, et al.. The relationship of physiological maturity and marbling judged according to Korean grading system to meat quality traits of Hanwoo beef females [J]. Meat Sci., 2006, 74(3):516-521. |
[28] | 赵丽, 沈继源, 包高良, 等. 藏绵羊不同部位骨骼肌营养成分、肌纤维特性及与相关基因表达的关联分析[J]. 西北农业学报, 2023, 32(6): 825-834. |
ZHAO L, SHEN J Y, BAO G L, et al.. Correlation analysis of nutrient components and muscle fibers in skeletal muscle of Tibetan sheep and their gene expression [J]. Acta Agric. Bor-Occid. Sin., 2023, 32(6): 825-834. | |
[29] | 卜振鲲,都帅,降晓伟,等.饲草比例对羔羊生产性能、肌肉营养成分和脂肪酸组成与含量的影响[J].黑龙江畜牧兽医,2021(11):92-96, 102. |
BU Z K, DU S, JIANG X W, et al.. Effect of forage ratio on production performance, muscle nutritional component and fatty acid composition and content of lambs [J]. Heilongjiang Anim. Sci. Vet. Med., 2021(11): 92-96, 102 | |
[30] | BU Z K, GE G T, JIA Y S, et al.. Effect of hay with or without concentrate or pellets on growth performance and meat quality of Ujimqin lambs on the Inner Mongolian Plateau [J/OL]. Anim.Sci. J., 2021,92(1):e13553 [2024-02-20]. . |
[31] | 何林芳,李宁.不同饲养方式对南江黄羊肉营养成分的影响[J].畜禽业,2022,33(7):18-20. |
[32] | 吕亚宁, 叶文文, 兰旅涛. 牛肌内脂肪沉积影响因素及相关基因研究进展[J]. 中国草食动物科学, 2019, 39(4): 55-57. |
LYU Y N, YE W W, LAN L T, et al.. Research progress on influencing factors and related genes of fat deposition in bovine muscle [J]. Chin. J. Herbiv. Sci., 2019, 39(4): 55-57. | |
[33] | 乔永,黄治国,李齐发,等.绵羊肌肉LPL基因表达的发育性变化及其对肌内脂肪含量的影响[J].中国农业科学,2007,40(10):2323-2330. |
QIAO Y, HUANG Z G, LI Q F, et al.. Developmental changes of the LPL mRNA expression and the effect on IMF content in sheep muscle [J]. Sci. Agric. Sin., 2007, 40(10):2323-2330. | |
[34] | 马晓燕,祖玲玲,吐来力江·哈木太,等.新疆也木勒白羊MSTN基因在不同组织中的表达定量研究[J].中国草食动物科学,2015,35(5):4-7. |
MA X Y, ZU L L, Hamutai Tulailijiang, et al.. Study on the expression of MSTN gene in different tissues of yemule lambs [J]. China Herbiv. Sci., 2015, 35(5):4-7. | |
[35] | 李度, 章晓炜, 袁琼雨, 等. 7种地方鸡屠宰性能、肉品质及肌苷酸相关基因表达的比较研究[J]. 中国畜牧杂志, 2023, 59(9): 215-219. |
[36] | 方钱海, 郭帅, 任红艳, 等. 猪SCD1和SCD5双基因敲除细胞系的构建及其对脂肪沉积的影响[J]. 农业生物技术学报, 2024,32(4):795-806. |
FANG Q H, GUO S, REN H Y, et al.. Construction of porcine (SUS scrofa) SCD1 and SCD5 double knockout cell lines and their effects on fat deposition [J]. J. Agric. Biotechnol., 2024,32(4):795-806. | |
[37] | 陈春华,赵生国,雷赵民,等.甘肃肉牛CAST基因的多态性及其与肉质性状的相关性研究[J].中国农学通报,2013,29(35):17-22. |
CHEN C H, ZHAO S G, LEI Z M, et al.. Analysis on polymorphism of CAST gene in Gansu local cattle and its relationships with meat quality trait [J]. Chin. Agric. Sci. Bull., 2013, 29(35):17-22. | |
[38] | 潘兴云, 薛妍君, 蒋林惠, 等. 肉多汁性的研究及核磁共振技术在多汁性检测中的前景[J]. 科技信息, 2010(24): 6-7. |
[39] | PUNIA BANGAR S, SINGH SANDHU K, TRIF M, et al.. Enrichment in different health components of barley flour using twin-screw extrusion technology to support nutritionally balanced diets [J/OL]. Front. Nutr., 2021,8:823148 [2024-02-20]. . |
[40] | PALMA-ACEVEDO A, PÉREZ-WON M, TABILO-MUNIZAGA G, et al.. Effects of PEF-assisted freeze-drying on protein quality,microstructure,and digestibility in Chilean abalone “loco” (Concholepas concholepas) mollusk [J/OL].Front.Nutr., 2022, 9:810827 [2024-02-20]. . |
[41] | 李晓丽, 朱宇旌, 李方方, 等. 钙蛋白酶抑制蛋白在动物营养中的研究进展[J]. 饲料与畜牧, 2014(12): 43-45. |
[42] | 张淑静.肉质候选基因在不同品种猪中的表达差异及与肉质的关系[D].合肥:安徽农业大学,2016. |
ZHANG S J. The difference analysis of the gene expression of meat quality candidate genes and it’s the relation of meat quality in different porcine breeds [D]. Hefei: Anhui Agricultural University, 2016 | |
[43] | 刘孟君,扎西央宗,尼珍,等.天然放牧条件下河谷型藏绵羊及其与萨福克羊杂交后代肉品质的比较[J].动物营养学报,2022,34(5):3077-3095. |
LIU M J, Zhaxiyangzong, NI Z, et al.. Comparison of meat quality of valley-type Tibetan sheep and its hybrid progeny with suffolk sheep under natural grazing condition [J]. J. Anim. Nutr., 2022, 34(5): 3077-3095. | |
[44] | 周雨.西藏苏格绵羊不同部位肉品质特征与主要营养成分分析[J].黑龙江畜牧兽医,2019(5):55-58. |
[45] | 周雨,罗章,张文会,等.西藏不同品种藏系绵羊育肥屠宰后肉品质的分析[J].畜牧与饲料科学,2019,40(3):21-27. |
ZHOU Y, LUO Z, ZHANG W H, et al.. Meat quality analysis of different breeds of fattening Tibetan sheep after slaughtering [J].Anim. Husb. Feed. Sci., 2019, 40(3):21-27. | |
[46] | 德庆卓嘎, 央金, 扎西, 等. 西藏多玛绵羊羊肉品质研究[J]. 家畜生态学报, 2014, 35(9): 78-82. |
Deqingzhuoga, Yangjin, Zhaxi, et al.. Research progress on mutton quality of Duoma sheep in Tibet [J]. J. Domestic Anim. Ecol., 2014, 35(9): 78-82. | |
[47] | 姚亮伟, 沙玉柱, 郭新羽, 等. 不同海拔藏绵羊肉品质、营养成分及肉质相关基因表达特征分析[J]. 中国农业科技导报, 2024, 26(3): 66-75. |
YAO L W, SHA Y Z, GUO X Y, et al.. Analysis of meat quality, nutritional components and expression characteristics of meat quality-related genes in Tibetan sheep at different altitudes [J]. J. Agric. Sci. Technol., 2024, 26(3): 66-75. | |
[48] | 田佳. MyoG、H-FABP、LPL基因对新疆两个地方绵羊品种产肉量及肉质的影响[D].乌鲁木齐:新疆农业大学,2014. |
TIAN J. Effects of MyoG, H-FABP, LPL genes on meat production and meat quality in two Xinjiang sheep breeds [D]. Urumqi: Xinjiang Agricultural University, 2014. |
[1] | 毛桃桃, 赵小强, 柏小栋, 余斌. 低温胁迫对玉米幼苗光合性能、抗氧化酶系统及相关基因表达的影响[J]. 中国农业科技导报, 2025, 27(5): 49-60. |
[2] | 郭肖蓉, 刘颖, 樊佳珍, 黄涛, 周荣. 猪CREBRF基因生物信息学和表达规律分析[J]. 中国农业科技导报, 2024, 26(9): 44-53. |
[3] | 王翻兄, 徐英, 沙玉柱, 邵鹏阳, 谢转回, 李文浩, 王继卿, 李少斌, 陈小伟, 杨文鑫, 刘秀. 不同年龄藏绵羊肌肉脂肪酸特征分析[J]. 中国农业科技导报, 2024, 26(8): 74-83. |
[4] | 刘崇涛, 李同, 李洋洋, 刘壮壮, 蔡阳扬, 宋建超, 张万通, 尚斌, 陶秀萍. 紫外线对栽培营养废液的抑菌效应及营养成分影响研究[J]. 中国农业科技导报, 2024, 26(7): 166-173. |
[5] | 蒋飞, 施永海, 徐嘉波, 严银龙, 刘永士, 袁新程. 2种饲料投喂下美洲鲥幼鱼肌肉营养成分分析及评价[J]. 中国农业科技导报, 2024, 26(5): 223-233. |
[6] | 徐英, 任越, 沙玉柱, 蒲小宁, 郭新羽, 姚亮伟, 邵鹏阳, 王继卿, 李少斌, 刘秀. 不同海拔藏绵羊肉质脂肪酸特征分析[J]. 中国农业科技导报, 2024, 26(4): 67-76. |
[7] | 表达特征分析, 姚亮伟, 沙玉柱, 郭新羽, 蒲小宁, 徐英, 王继卿, 李少斌, 郝志云, 刘秀. 不同海拔藏绵羊肉品质、营养成分及肉质相关基因[J]. 中国农业科技导报, 2024, 26(3): 66-75. |
[8] | 刘化冰, 党伟, 李奇, 张晓兵, 徐志强, 钟永健, 任志广, 张勇刚, 袁凯龙, 杨浩, 王辉, 孙聚涛. 烟草品种间氮素吸收和同化差异研究[J]. 中国农业科技导报, 2024, 26(11): 66-78. |
[9] | 程珍, 牛建龙, 马玉婷, 柳维扬, 蒋学玮, 梁雪齐, 董红强. 1990—2020年南疆阿拉尔垦区棉花物候期的动态变化[J]. 中国农业科技导报, 2024, 26(10): 206-214. |
[10] | 闫艺薇, 田洁. 大蒜NAC基因家族的鉴定与低温表达分析[J]. 中国农业科技导报, 2023, 25(4): 67-76. |
[11] | 刘宇鹏, 陈芳, 古书鸿, 王芳. 贵州不同产地冬荪营养成分及品质评价[J]. 中国农业科技导报, 2023, 25(11): 143-153. |
[12] | 程名, 朱莹, 王晓楠, 罗平, 陈勇, 郝转芳, 席章营. 玉米ZmSNAC13等位变异对抗旱性的调控研究[J]. 中国农业科技导报, 2022, 24(5): 24-31. |
[13] | 杨涛, 马小倩, 张全, 张洪亮. 组蛋白修饰在水稻中的研究进展[J]. 中国农业科技导报, 2022, 24(4): 11-20. |
[14] | 闫伟, 王玉涛, 张永浩, 刘海霞, 韩大勇, 朱爱文. 绵羊肌内前体脂肪细胞CNR1和FABP4基因表达研究[J]. 中国农业科技导报, 2022, 24(3): 95-102. |
[15] | 孙晓春, 黄文静, 李铂. 水杨酸对干旱胁迫下桔梗幼苗生理生化指标及相关基因表达的影响[J]. 中国农业科技导报, 2022, 24(1): 63-70. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||