中国农业科技导报 ›› 2022, Vol. 24 ›› Issue (10): 99-108.DOI: 10.13304/j.nykjdb.2021.0868
杨贵川(), 张富贵, 郑乐(
), 王震, 孔曼曼, 章鑫鹏
收稿日期:
2021-10-12
接受日期:
2021-11-30
出版日期:
2022-10-15
发布日期:
2022-10-25
通讯作者:
郑乐
作者简介:
杨贵川 E-mail: 305164115@qq.com;
基金资助:
Guichuan YANG(), Fugui ZHANG, Le ZHENG(
), Zhen WANG, Manman KONG, Xinpeng ZHANG
Received:
2021-10-12
Accepted:
2021-11-30
Online:
2022-10-15
Published:
2022-10-25
Contact:
Le ZHENG
摘要:
为设计研究半夏撒播排种器,测定了半夏的本征物理特性参数,并对半夏离散元仿真参数进行标定。通过烘干试验、浸液试验、匀速压缩试验,确定了半夏种子的含水率为62.23%、密度为1 210 kg·m-3、泊松比为0.373 1、弹性模量为5.751 MPa;通过实际碰撞试验结合仿真试验建立了回归模型,测定半夏-半夏的碰撞恢复系数为0.472 0、半夏-不锈钢板间碰撞恢复系数为0.635 8;通过实际的斜面滑动试验结合仿真试验,确定了半夏-不锈钢板间的静摩擦系数为0.615 4;利用圆筒提升试验结合最陡爬坡试验和Box-Behnken试验,确定了半夏-不锈钢板间的滚动摩擦系数为0.150、半夏-半夏的静摩擦系数为0.554、半夏-半夏的滚动摩擦系数为0.157。该研究结果可为半夏机械化生产装备设计研究和结构优化提供理论参考及设计依据。
中图分类号:
杨贵川, 张富贵, 郑乐, 王震, 孔曼曼, 章鑫鹏. 半夏块茎物理特性研究及离散元仿真参数标定[J]. 中国农业科技导报, 2022, 24(10): 99-108.
Guichuan YANG, Fugui ZHANG, Le ZHENG, Zhen WANG, Manman KONG, Xinpeng ZHANG. Tuber Physical Characteristics and Calibration of Discrete Element Simulation Parameters of Pinellia ternata[J]. Journal of Agricultural Science and Technology, 2022, 24(10): 99-108.
压缩速率Compression rate/ (mm·min-1) | 参数 Paramter | 试验编号Test number | 平均值Average | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |||
1 | 泊松比μ1 | 0.369 5 | 0.328 7 | 0.360 0 | 0.322 6 | 0.424 4 | 0.290 4 | 0.364 1 | 0.398 8 | 0.366 5 | 0.358 3 |
弹性模量E/MPa | 4.441 4 | 4.861 7 | 4.903 9 | 5.273 5 | 6.529 2 | 5.546 5 | 4.607 9 | 4.523 4 | 5.155 0 | 5.093 6 | |
3 | 泊松比μ1 | 0.472 8 | 0.416 0 | 0.321 7 | 0.310 2 | 0.345 3 | 0.347 6 | 0.387 1 | 0.383 3 | 0.455 6 | 0.382 2 |
弹性模量E/MPa | 5.706 8 | 6.398 7 | 6.986 3 | 5.505 2 | 6.299 6 | 7.351 6 | 7.236 3 | 5.751 7 | 6.007 6 | 6.360 4 | |
5 | 泊松比μ1 | 0.298 8 | 0.461 9 | 0.347 0 | 0.358 4 | 0.335 6 | 0.418 6 | 0.343 4 | 0.424 0 | 0.432 2 | 0.378 7 |
弹性模量E/MPa | 4.777 2 | 6.739 2 | 5.968 6 | 6.707 3 | 7.255 8 | 6.491 0 | 4.481 3 | 4.773 9 | 5.160 5 | 5.817 2 |
表1 半夏压缩试验结果
Table 1 Result of P. ternata tuber compression
压缩速率Compression rate/ (mm·min-1) | 参数 Paramter | 试验编号Test number | 平均值Average | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |||
1 | 泊松比μ1 | 0.369 5 | 0.328 7 | 0.360 0 | 0.322 6 | 0.424 4 | 0.290 4 | 0.364 1 | 0.398 8 | 0.366 5 | 0.358 3 |
弹性模量E/MPa | 4.441 4 | 4.861 7 | 4.903 9 | 5.273 5 | 6.529 2 | 5.546 5 | 4.607 9 | 4.523 4 | 5.155 0 | 5.093 6 | |
3 | 泊松比μ1 | 0.472 8 | 0.416 0 | 0.321 7 | 0.310 2 | 0.345 3 | 0.347 6 | 0.387 1 | 0.383 3 | 0.455 6 | 0.382 2 |
弹性模量E/MPa | 5.706 8 | 6.398 7 | 6.986 3 | 5.505 2 | 6.299 6 | 7.351 6 | 7.236 3 | 5.751 7 | 6.007 6 | 6.360 4 | |
5 | 泊松比μ1 | 0.298 8 | 0.461 9 | 0.347 0 | 0.358 4 | 0.335 6 | 0.418 6 | 0.343 4 | 0.424 0 | 0.432 2 | 0.378 7 |
弹性模量E/MPa | 4.777 2 | 6.739 2 | 5.968 6 | 6.707 3 | 7.255 8 | 6.491 0 | 4.481 3 | 4.773 9 | 5.160 5 | 5.817 2 |
序号 Number | x:恢复系数 Recovery coefficient | 碰撞后最大爬升高度Maximum climb height after collision/mm | |
---|---|---|---|
ya:块茎a Tuber a | yb:块茎b Tuber b | ||
1 | 0.20 | 8.96 | 17.91 |
2 | 0.30 | 6.40 | 19.84 |
3 | 0.35 | 6.51 | 22.55 |
4 | 0.40 | 4.29 | 21.98 |
5 | 0.45 | 4.68 | 26.50 |
6 | 0.50 | 4.21 | 27.48 |
7 | 0.60 | 1.81 | 30.81 |
8 | 0.70 | 1.36 | 34.45 |
9 | 0.80 | 1.36 | 39.74 |
10 | 1.00 | 0.00 | 50.00 |
表2 半夏-半夏碰撞仿真试验结果
Table 2 Simulation test results of P. ternata-P. ternata collision
序号 Number | x:恢复系数 Recovery coefficient | 碰撞后最大爬升高度Maximum climb height after collision/mm | |
---|---|---|---|
ya:块茎a Tuber a | yb:块茎b Tuber b | ||
1 | 0.20 | 8.96 | 17.91 |
2 | 0.30 | 6.40 | 19.84 |
3 | 0.35 | 6.51 | 22.55 |
4 | 0.40 | 4.29 | 21.98 |
5 | 0.45 | 4.68 | 26.50 |
6 | 0.50 | 4.21 | 27.48 |
7 | 0.60 | 1.81 | 30.81 |
8 | 0.70 | 1.36 | 34.45 |
9 | 0.80 | 1.36 | 39.74 |
10 | 1.00 | 0.00 | 50.00 |
序号 Number | x1:恢复系数Recovery coefficient | y1:回弹高度 |
---|---|---|
1 | 0.58 | 37.58 |
2 | 0.60 | 40.43 |
3 | 0.62 | 43.29 |
4 | 0.64 | 46.24 |
5 | 0.66 | 49.46 |
6 | 0.68 | 52.70 |
7 | 0.70 | 55.98 |
表3 半夏-不锈钢板碰撞仿真试验结果
Table 3 Simulation test result of P. ternata-stainless steel plate collision
序号 Number | x1:恢复系数Recovery coefficient | y1:回弹高度 |
---|---|---|
1 | 0.58 | 37.58 |
2 | 0.60 | 40.43 |
3 | 0.62 | 43.29 |
4 | 0.64 | 46.24 |
5 | 0.66 | 49.46 |
6 | 0.68 | 52.70 |
7 | 0.70 | 55.98 |
序号 Number | A:半夏-不锈钢板滚动 摩擦系数 Rolling friction coefficient of P. ternata-stainless steel plate | B:半夏-半夏静 摩擦系数 Static friction coefficient of P. ternata-P. ternata | C:半夏-半夏滚动 摩擦系数 Rolling friction coefficient of P. ternata-P. ternata | 堆积角 Stacking angle/(°) | 相对误差 Relative error/% |
---|---|---|---|---|---|
1 | 0.00 | 0.00 | 0.00 | 0.00 | 100.00 |
2 | 0.03 | 0.10 | 0.03 | 10.56 | 69.94 |
3 | 0.06 | 0.15 | 0.06 | 20.46 | 43.58 |
4 | 0.09 | 0.30 | 0.09 | 30.05 | 18.03 |
5 | 0.12 | 0.45 | 0.12 | 35.37 | 3.85 |
6 | 0.15 | 0.60 | 0.15 | 38.01 | 3.17 |
7 | 0.18 | 0.75 | 0.18 | 38.80 | 5.28 |
表4 最陡爬坡试验
Table 4 Steepest climbing test
序号 Number | A:半夏-不锈钢板滚动 摩擦系数 Rolling friction coefficient of P. ternata-stainless steel plate | B:半夏-半夏静 摩擦系数 Static friction coefficient of P. ternata-P. ternata | C:半夏-半夏滚动 摩擦系数 Rolling friction coefficient of P. ternata-P. ternata | 堆积角 Stacking angle/(°) | 相对误差 Relative error/% |
---|---|---|---|---|---|
1 | 0.00 | 0.00 | 0.00 | 0.00 | 100.00 |
2 | 0.03 | 0.10 | 0.03 | 10.56 | 69.94 |
3 | 0.06 | 0.15 | 0.06 | 20.46 | 43.58 |
4 | 0.09 | 0.30 | 0.09 | 30.05 | 18.03 |
5 | 0.12 | 0.45 | 0.12 | 35.37 | 3.85 |
6 | 0.15 | 0.60 | 0.15 | 38.01 | 3.17 |
7 | 0.18 | 0.75 | 0.18 | 38.80 | 5.28 |
序号 Number | A:半夏-不锈钢板滚动摩擦系数 Rolling friction coefficient of P. ternata-stainless steel plate | B:半夏-半夏静摩擦系数Static friction coefficient of P. ternata-P. ternata | C:半夏-半夏滚动摩擦系数 Rolling friction coefficient of P. ternata-P. ternata | 堆积角 Stacking angle/(°) |
---|---|---|---|---|
1 | -1(0.12) | -1(0.45) | 0(0.15) | 35.759 9 |
2 | 1(0.18) | -1 | 0 | 35.685 9 |
3 | -1 | 1(0.75) | 0 | 38.078 7 |
4 | 1 | 1 | 0 | 37.847 9 |
5 | -1 | 0(0.6) | -1(0.12) | 35.494 8 |
6 | 1 | 0 | -1 | 35.546 1 |
7 | -1 | 0 | 1(0.18) | 39.635 0 |
8 | 1 | 0 | 1 | 39.395 2 |
9 | 0(0.15) | -1 | -1 | 34.890 7 |
10 | 0 | 1 | -1 | 35.058 5 |
11 | 0 | -1 | 1 | 37.285 6 |
12 | 0 | 1 | 1 | 41.032 2 |
13 | 0 | 0 | 0 | 37.269 6 |
14 | 0 | 0 | 0 | 37.601 0 |
15 | 0 | 0 | 0 | 37.803 6 |
表5 堆积角Box-Behnken试验结果
Table 5 Result of stacking angle Box-Behnken test
序号 Number | A:半夏-不锈钢板滚动摩擦系数 Rolling friction coefficient of P. ternata-stainless steel plate | B:半夏-半夏静摩擦系数Static friction coefficient of P. ternata-P. ternata | C:半夏-半夏滚动摩擦系数 Rolling friction coefficient of P. ternata-P. ternata | 堆积角 Stacking angle/(°) |
---|---|---|---|---|
1 | -1(0.12) | -1(0.45) | 0(0.15) | 35.759 9 |
2 | 1(0.18) | -1 | 0 | 35.685 9 |
3 | -1 | 1(0.75) | 0 | 38.078 7 |
4 | 1 | 1 | 0 | 37.847 9 |
5 | -1 | 0(0.6) | -1(0.12) | 35.494 8 |
6 | 1 | 0 | -1 | 35.546 1 |
7 | -1 | 0 | 1(0.18) | 39.635 0 |
8 | 1 | 0 | 1 | 39.395 2 |
9 | 0(0.15) | -1 | -1 | 34.890 7 |
10 | 0 | 1 | -1 | 35.058 5 |
11 | 0 | -1 | 1 | 37.285 6 |
12 | 0 | 1 | 1 | 41.032 2 |
13 | 0 | 0 | 0 | 37.269 6 |
14 | 0 | 0 | 0 | 37.601 0 |
15 | 0 | 0 | 0 | 37.803 6 |
方差来源 Soruce of variation | 均方 Mean square | 自由度 Freedom | 平方和 Quadratic sum | P 值 P value |
---|---|---|---|---|
R2=0.995 6 | R2adj=0.987 8 | CV=0.544 1 | 精密度Adeq precision=37.422 2 | |
模型 Model | 46.880 0 | 9 | 5.210 0 | 0.000 1* |
A | 0.030 4 | 1 | 0.030 4 | 0.428 5 |
B | 8.810 0 | 1 | 8.810 0 | 0.000 1* |
C | 33.450 0 | 1 | 33.450 0 | 0.000 1* |
AB | 0.006 1 | 1 | 0.006 1 | 0.714 6 |
AC | 0.021 2 | 1 | 0.021 2 | 0.504 5 |
BC | 3.200 0 | 1 | 3.200 0 | 0.000 3* |
A2 | 0.064 3 | 1 | 0.064 3 | 0.265 9 |
B2 | 1.260 0 | 1 | 1.260 0 | 0.002 6* |
C2 | 0.031 0 | 1 | 0.031 0 | 0.424 2 |
残差 Residual | 0.205 1 | 5 | 0.041 0 | — |
失拟项 Lack of fit | 0.059 8 | 3 | 0.019 9 | 0.842 7 |
纯误差 Pure error | 0.145 3 | 2 | 0.072 7 | — |
总和 Sum | 47.080 0 | 14 | — | — |
表6 堆积角试验方差分析
Table 6 Analysis of variance in the stacking angle test
方差来源 Soruce of variation | 均方 Mean square | 自由度 Freedom | 平方和 Quadratic sum | P 值 P value |
---|---|---|---|---|
R2=0.995 6 | R2adj=0.987 8 | CV=0.544 1 | 精密度Adeq precision=37.422 2 | |
模型 Model | 46.880 0 | 9 | 5.210 0 | 0.000 1* |
A | 0.030 4 | 1 | 0.030 4 | 0.428 5 |
B | 8.810 0 | 1 | 8.810 0 | 0.000 1* |
C | 33.450 0 | 1 | 33.450 0 | 0.000 1* |
AB | 0.006 1 | 1 | 0.006 1 | 0.714 6 |
AC | 0.021 2 | 1 | 0.021 2 | 0.504 5 |
BC | 3.200 0 | 1 | 3.200 0 | 0.000 3* |
A2 | 0.064 3 | 1 | 0.064 3 | 0.265 9 |
B2 | 1.260 0 | 1 | 1.260 0 | 0.002 6* |
C2 | 0.031 0 | 1 | 0.031 0 | 0.424 2 |
残差 Residual | 0.205 1 | 5 | 0.041 0 | — |
失拟项 Lack of fit | 0.059 8 | 3 | 0.019 9 | 0.842 7 |
纯误差 Pure error | 0.145 3 | 2 | 0.072 7 | — |
总和 Sum | 47.080 0 | 14 | — | — |
方差来源 Soruce of variation | 均方 Mean square | 自由度 Freedom | 平方和 Quadratic sum | P 值 P value |
---|---|---|---|---|
模型 Model | 46.720 0 | 4 | 11.680 0 | 0.000 1* |
B | 8.810 0 | 1 | 8.810 0 | 0.000 1* |
C | 33.450 0 | 1 | 33.450 0 | 0.000 1* |
BC | 3.200 0 | 1 | 3.200 0 | 0.000 2* |
B2 | 1.260 0 | 1 | 1.260 0 | 0.002 6* |
残差 Residual | 0.365 6 | 10 | 0.036 6 | — |
失拟项 Lack of fit | 0.220 3 | 8 | 0.027 5 | 0.868 2 |
纯误差 Pure error | 0.145 3 | 2 | 0.072 7 | — |
总和 Sum | 47.080 0 | 14 | — | — |
R2=0.992 2 | R2adj=0.989 1 | CV=0.513 7 | 精密度Adeq precision=56.052 9 |
表7 二次优化后回归模型
Table 7 Regression model after second optimization
方差来源 Soruce of variation | 均方 Mean square | 自由度 Freedom | 平方和 Quadratic sum | P 值 P value |
---|---|---|---|---|
模型 Model | 46.720 0 | 4 | 11.680 0 | 0.000 1* |
B | 8.810 0 | 1 | 8.810 0 | 0.000 1* |
C | 33.450 0 | 1 | 33.450 0 | 0.000 1* |
BC | 3.200 0 | 1 | 3.200 0 | 0.000 2* |
B2 | 1.260 0 | 1 | 1.260 0 | 0.002 6* |
残差 Residual | 0.365 6 | 10 | 0.036 6 | — |
失拟项 Lack of fit | 0.220 3 | 8 | 0.027 5 | 0.868 2 |
纯误差 Pure error | 0.145 3 | 2 | 0.072 7 | — |
总和 Sum | 47.080 0 | 14 | — | — |
R2=0.992 2 | R2adj=0.989 1 | CV=0.513 7 | 精密度Adeq precision=56.052 9 |
1 | 黄凤英,高健美,龚其海.半夏药理作用及其毒性研究进展[J].天然产物研究与开发,2020,32(10):1773-1781. |
HUANG F Y, GAO J M, GONG Q H. Research progress on pharmacological effects and toxicity of Pinellia ternate [J]. Nat. Prod. Res. Dev., 2020,32(10):1773-1781. | |
2 | 蔡世珍,邹忠梅,徐丽珍,等.半夏属药用植物的研究进展[J].国外医学(中医中药分册),2004(1):17-24. |
3 | WANG Y P. Chinese pharmacopoeia [J]. China Standardization, 2015,4(73):132-135. |
4 | 中药材天地网半夏市场价格[EB/OL]. (2021-09-01)[2021-09-15]. . |
5 | 王小勇.赫章半夏:打开药材“基因库”推动地方品牌“出圈”[EB/OL]. (2020-07-27) [2021-09-15]. . |
6 | 文恩杨,李玉华,牛子孺,等.蒜种颗粒离散元模型参数标定[J].农机化研究,2021,43(5):160-167. |
WEN E Y, LI Y H, NIU Z R, et al.. Parameters calibration of discrete element model for garlic particles [J]. J. Agric. Mech. Res., 2021,43(5):160-167. | |
7 | 文恩杨.大蒜播种机排种与扶正装置仿真模拟与试验研究[D].泰安:山东农业大学,2020. |
WEN E Y. Simulation and experimental study on metering and righting device of garlic planter [D]. Tai’an: Shandong Agricultural University,2020. | |
8 | 文恩杨,吴彦强,李天华,等.牵引式大蒜播种机的设计[J].农机化研究,2020,42(1):96-100. |
WEN E Y, WU Y Q, LI T H, et al.. Design of traction garlic sowing machine [J]. J. Agric. Mech. Res., 2020,42(1):96-100. | |
9 | 刘文政,何进,李洪文,等.基于振动排序的马铃薯微型种薯播种机设计与试验[J].农业机械学报,2019,50(8):70-80. |
LIU W Z, HE J, LI H W, et al.. Design and experiment of vibration-arranging based seeder for potato micro-seed [J]. Trans. Chin. Soc. Agric. Mach., 2019,50(8):70-80. | |
10 | 刘文政,何进,李洪文,等.马铃薯微型种薯振动排序播种装置播种性能优化[J].农业工程学报,2019,35(7):1-11. |
LIU W Z, HE J, LI H W, et al.. Seeding performance optimization on vibration-arranging type seeding device for potato micro-seed [J]. Trans. Chin. Soc. Agric. Eng., 2019,35(7):1-11. | |
11 | 刘文政,何进,李洪文,等.基于离散元的微型马铃薯仿真参数标定[J].农业机械学报,2018,49(5):125-135. |
LIU W Z, HE J, LI H W, et al.. Calibration of simulation parameters for potato minituber based on EDEM [J]. Trans. Chin. Soc. Agric. Mach., 2018,49(5):125-135. | |
12 | 温翔宇,袁洪方,王刚,等.颗粒肥料离散元仿真摩擦系数标定方法研究[J].农业机械学报,2020,51(2):115-122. |
WEN X Y, YUAN H F, WANG G, et al.. Calibration method of friction coefficient of granular fertilizer by discrete element simulation [J]. Trans. Chin. Soc. Agric. Mach., 2020,51(2):115-122. | |
13 | 刘彩玲,黎艳妮,宋建农,等.基于EDEM的离心甩盘撒肥器性能分析与试验[J].农业工程学报,2017,33(14):32-39. |
LIU C L, LI Y N, SONG J N, et al.. Performance analysis and experiment on fertilizer spreader with centrifugal swing disk based on EDEM [J]. Trans. Chin. Soc. Agric. Eng., 2017, 33(14): 32-39. | |
14 | 刘彩玲,魏丹,宋建农,等.颗粒肥料离散元仿真边界参数系统化研究[J].农业机械学报,2018,49(9):82-89. |
LIU C L, WEI D, SONG J N, et al.. Systematic study on boundary parameters of discrete element simulation of granular fertilizer [J]. Trans. Chin. Soc. Agric. Mach., 2018,49(9):82-89. | |
15 | 吴孟宸,丛锦玲,闫琴,等.花生种子颗粒离散元仿真参数标定与试验[J].农业工程学报,2020,36(23):30-38. |
WU M C, CONG J L, YAN Q, et al.. Calibration and experiments for discrete element simulation parameters of peanut seed particles [J]. Trans. Chin. Soc. Agric. Eng., 2020,36(23):30-38. | |
16 | 赖庆辉,贾广鑫,苏微,等.凸包异形孔窝眼轮式人参精密排种器设计与试验[J].农业机械学报,2020,51(7):60-71. |
LAI Q H, JIA G X, SU W, et al.. Design and test of ginseng precision special-hole type seed-metering device with convex hull [J]. Trans. Chin. Soc. Agric. Mach., 2020,51(7):60-71. | |
17 | 赖庆辉,于庆旭,苏微,等.三七超窄行气吸式精密排种器设计与试验[J].农业机械学报,2019,50(4):102-112. |
LAI Q H, YU Q X, SU W, et al.. Design and experiment of air-suction ultra-narrow-row device for precise Panax notoginseng seed metering [J]. Trans. Chin. Soc. Agric. Mach.,2019,50(4):102-112. | |
18 | 赖庆辉,袁海阔,胡子武,等.三七种苗物料特性研究及离散元法参数标定[J].扬州大学学报(农业与生命科学版),2018,39(2):74-79. |
LAI Q H, YUAN H K, HU Z W, et al.. Experimental study of physical characteristics and parameters calibration of Panax notoginseng seedling [J]. J. Yangzhou Univ. (Agric. Life Sci.),2018,39(2):74-79. | |
19 | 赖庆辉,袁海阔,胡子武,等.滚筒板齿式三七种苗分离装置结构设计与试验[J].农业机械学报,2018,49(4):121-129. |
LAI Q H, YUAN H K, HU Z W, et al.. Design and experiment on seedling separation device of Panax notoginseng seedlings based on roller zigzag mechanism [J]. Trans. Chin. Soc. Agric. Mach., 2018,49(4):121-129. | |
20 | 马彦华,宋春东,宣传忠,等.苜蓿秸秆压缩仿真离散元模型参数标定[J].农业工程学报,2020,36(11):22-30. |
MA Y H, SONG C D, XUAN C Z, et al.. Parameters calibration of discrete element model for alfalfa straw compression simulation [J]. Trans. Chin. Soc. Agric. Eng.,2020,36(11):22-30. | |
21 | 马秋成,郭耿君,马婕,等.莲仁力学特性参数测定及挤压破碎特性试验[J].农业工程学报,2018,34(6):263-271. |
MA Q C, GUO G J, MA J, et al.. Determination of mechanical characteristic parameters and extrusion crushing characteristics test for lotus seed kernel [J]. Trans. Chin. Soc. Agric. Eng.,2018,34(6):263-271. | |
22 | 成大先.机械设计手册第1卷[M]. 第三版.北京:化学工业出版社,2017:1-365. |
23 | GHODKI B M, GOSWAMI T K. DEM simulation of flow of black pepper seeds in cryogenic grinding system [J]. J. Food. Eng., 2017,196: 36-51. |
24 | YANG C H, KUANG X, LI B, et al.. Study on release mechanism of inhibitory components from cinnamon and clove powders [J]. J. Food. Safe., 2012,32(2):189-197. |
25 | ZHOU Y C, XU B H, YU A B, et al.. An experimental and numerical study of the angle of repose of coarse spheres [J]. Power Technol., 2002,125(1):45-54. |
26 | 石林榕,吴建民,孙伟,等.基于离散单元法的水平圆盘式精量排种器排种仿真试验[J].农业工程学报,2014,30(8):40-48. |
SHI L R, WU J M, SUN W, et al.. Simulation test for metering process of horizontal disc precision metering device based on discrete element method [J]. Trans. Chin. Soc. Agric. Eng., 2014,30(8):40-48. | |
27 | 贾富国,韩燕龙,刘扬,等.稻谷颗粒物料堆积角模拟预测方法[J].农业工程学报,2014(11):254-260. |
JIA F G, HAN Y L, LIU Y, et al.. Simulation prediction method of repose angle for rice particle materials [J]. Trans. Chin. Soc. Agric. Eng., 2014(11):254-260. | |
28 | 周德义,马成林,左春柽,等.散粒农业物料孔口出流成拱的离散单元仿真[J].农业工程学报,1996, 12(2):190-193. |
ZHOU D Y, MA C L, ZUO C C, et al.. Discrete element simulation for arch flowing of agricultural particle material in outlet [J]. Trans. Chin. Soc. Agric. Eng., 1996, 12(2):190-193. | |
29 | 陆仲华.散粒农业物料孔口出流成拱机理分析[J].农业工程学报,1991, 7(1):78-85. |
LU Z H. The mechanism analysis of flowing agricultural particle material arching in hole [J]. Trans. Chin. Soc. Agric. Eng., 1991, 7(1):78-85. |
[1] | 李飞翔, 王鹏, 王云飞, 葛越锋, 唐凯怿, 李得志. 基于堆积试验的玉米包衣种子离散元参数标定[J]. 中国农业科技导报, 2022, 24(7): 97-107. |
[2] | 宋世圣, 孙松林, 方芹, 彭才望, 周婷, 朱海英. 黑水虻生物转化餐厨垃圾有机肥离散元模型参数标定[J]. 中国农业科技导报, 2022, 24(6): 123-132. |
[3] | 闫建伟, 魏松, 胡冬军, 刘启合, 张富贵. 白萝卜种子颗粒模型离散元接触参数标定与试验[J]. 中国农业科技导报, 2022, 24(5): 119-128. |
[4] | 全伟, 吴明亮, 官春云, 罗海峰. 油菜钵苗移栽机成穴器外形优化试验研究[J]. 中国农业科技导报, 2021, 23(10): 97-106. |
[5] | 刘妤,刘羽平,张拓. 基于离散元与多体动力学的微耕机旋耕刀轴负荷分析[J]. 中国农业科技导报, 2020, 22(11): 79-86. |
[6] | 向伟1,2,吴明亮1*,吕江南2,马兰2,全伟1,刘佳杰2,肖乐3. 基于EDEM的油菜移栽成穴装置作业性能仿真与试验研究[J]. 中国农业科技导报, 2019, 21(7): 70-81. |
[7] | 刘羽平,张拓,刘妤*. 稻谷颗粒模型离散元接触参数标定与试验[J]. 中国农业科技导报, 2019, 21(11): 70-76. |
[8] | 占俊文1,2,沈雪婷3,何宽信4,梁淑平1,李立新4,焦绍赫4,于建军2*. 江西烤烟柔软度与物理特性的关系分析及适宜区间研究[J]. 中国农业科技导报, 2017, 19(1): 131-137. |
[9] | 齐永杰1,邓小华2*,徐文兵1,罗建钦1,黄崇峻1,黄聪光1,李宏光3,王生才3. 种植密度和施氮量对上部烟叶物理性状的影响效应分析[J]. 中国农业科技导报, 2016, 18(6): 129-137. |
[10] | 贾明良1,方荷芳1,张本厚2,陈集双2,徐玲玲1,廖亮1*. 三叶半夏丛生块茎途径扩繁及块茎分离技术研究[J]. 中国农业科技导报, 2016, 18(6): 181-186. |
[11] | 史双双1,叶协锋1,周雅宁2,罗定棋3,张永辉3,王栋3,于建军1. 烟叶出片率的预测及其与其他物理特性的关系[J]. , 2012, 14(2): 62-66. |
[12] | . 利用信息技术改造传统农业——智能化农业信息技术应用示范工程[J]. , 2001, 3(2): 49-53. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||