中国农业科技导报 ›› 2022, Vol. 24 ›› Issue (2): 77-85.DOI: 10.13304/j.nykjdb.2020.0703
邹俊杰1,2(), 徐妙云1,2, 张兰1, 罗彦忠1, 刘源1,2, 郑红艳1, 王磊1,2(
)
收稿日期:
2020-07-10
接受日期:
2020-08-14
出版日期:
2022-02-15
发布日期:
2022-02-22
通讯作者:
王磊
作者简介:
邹俊杰 E-mail:zoujunjie@caas.cn;
基金资助:
Junjie ZOU1,2(), Miaoyun XU1,2, Lan ZHANG1, Yanzhong LUO1, Yuan LIU1,2, Hongyan ZHENG1, Lei WANG1,2(
)
Received:
2020-07-10
Accepted:
2020-08-14
Online:
2022-02-15
Published:
2022-02-22
Contact:
Lei WANG
摘要:
随着转基因作物的发展和推广,具有复合性状的转基因作物种植面积逐年增加。传统的转基因复合性状作物具有抗虫和耐除草剂性能,聚合其他性状的转基因作物培育逐渐受到重视。转基因玉米株系BBHTL8-1含有Cry1Ab、Cry3Bb、cp4epsps、ZmHPT和ZmTMT共5个基因表达框,外源插入片段位于玉米基因组第4染色体,插入基因区间,在3’侧翼序列有31 bp缺失。在BBHTL8-1中,这5个基因能够稳定遗传,在转录水平和蛋白水平上表达具有稳定性。BBHTL8-1高抗玉米螟,对草甘膦除草剂具有较高耐受性。BBHTL8-1籽粒中α-生育酚含量比非转基因对照郑58显著增加。BBHTL8-1与非转基因对照郑58在田间农艺性状方面无显著差异。因此,BBHTL8-1为转基因抗虫、耐除草剂和种子具有高α-生育酚含量的转基因新材料。
中图分类号:
邹俊杰, 徐妙云, 张兰, 罗彦忠, 刘源, 郑红艳, 王磊. 转基因抗虫、耐除草剂及品质改良复合性状玉米BBHTL8-1的分子特征及功能评价[J]. 中国农业科技导报, 2022, 24(2): 77-85.
Junjie ZOU, Miaoyun XU, Lan ZHANG, Yanzhong LUO, Yuan LIU, Hongyan ZHENG, Lei WANG. Molecular Characterizations of Stacked Transgenic Maize BBHTL8-1 with Insect Resistance, Glyphosate Tolerance and Improved Quality[J]. Journal of Agricultural Science and Technology, 2022, 24(2): 77-85.
引物名称 Primer name | 引物序列 Primer sequence (5’-3’) | 片段大小 Fragment size/bp | 说明 Explanation |
---|---|---|---|
Cry1Ab-1F | CTACTTGTACCAGAAGATCGAC | 356 | Cry1Ab片段鉴定 |
Cry1Ab-1R | GACCGGCAACAGGATTCAATC | Cry1Ab fragment identification | |
Cry3Bb-1F | CTGCTCTTCCTGAAGGAGTCG | 432 | Cry3Bb片段鉴定 |
Cry3Bb-1R | CAGACTCGCAAGAACTCGCAC | Cry3Bb fragment identification | |
cp4epsps-1F | ACCCATCTCGATCACCGCAT | 262 | cp4epsps片段鉴定 |
cp4epsps-1R | CTCAACACATGAGCGAAACCC | cp4epsps fragment identification | |
ZmHPT-1F | CAACTCTTCCATTGGCATCT | 750 | ZmHPT片段鉴定 |
Tglb1-1R | AGGCTCATGCTACGTACGCA | ZmHPT fragment identification | |
ZmTMT-1F | TGGTGGTAGCTCAAGGTACT | 716 | ZmTMT片段鉴定 |
Tglb1-1R | AGGCTCATGCTACGTACGCA | ZmTMT fragment identification | |
BBHTL8-1-3F | TGATTAGAGTCCCGCAATTAT | 240 | BBHTL8-1片段特异性PCR |
BBHTL8-1-3R | GATTAGTTGAGCGGTGGCAAC | BBHTL8-1 fragment specific PCR | |
Cry1Ab-qF | CTACTTGTACCAGAAGATCGAC | 256 | Cry1Ab qRT-PCR |
Cry1Ab-qR | TCAGTCCTCGTTCAGGTCGGTG | ||
Cry3Bb-qF | CTGCTCTTCCTGAAGGAGTCG | 327 | Cry3Bb qRT-PCR |
Cry3Bb-qR | GATGAACTCGATCTTGTCGATG | ||
cp4epsps-qF | ACCCATCTCGATCACCGCA | 166 | cp4epsps qRT-PCR |
cp4epsps-qR | CAGCCTTCGTATCGGAGAGTTC | ||
ZmHPT-qF | CTACCTCTTCCTGTTTGTGGAGCA | 252 | ZmHPT qRT-PCR |
Tglb1-qR | CTCATGCTACGTACGCACGTCG | ||
ZmTMT-qF | CGTGATAAAATCAGCGCTAACAT | 233 | ZmTMT qRT-PCR |
Tglb1-qR | CTCATGCTACGTACGCACGTCG | ||
ZmAct1-qF | CACCTTCTACAACGAGCTCCG | 404 | ZmAct1 qRT-PCR |
ZmAct1-qR | TAATCAAGGGCAACGTAGGCA |
表1 本研究中应用的引物序列
Table 1 Primers used in this study
引物名称 Primer name | 引物序列 Primer sequence (5’-3’) | 片段大小 Fragment size/bp | 说明 Explanation |
---|---|---|---|
Cry1Ab-1F | CTACTTGTACCAGAAGATCGAC | 356 | Cry1Ab片段鉴定 |
Cry1Ab-1R | GACCGGCAACAGGATTCAATC | Cry1Ab fragment identification | |
Cry3Bb-1F | CTGCTCTTCCTGAAGGAGTCG | 432 | Cry3Bb片段鉴定 |
Cry3Bb-1R | CAGACTCGCAAGAACTCGCAC | Cry3Bb fragment identification | |
cp4epsps-1F | ACCCATCTCGATCACCGCAT | 262 | cp4epsps片段鉴定 |
cp4epsps-1R | CTCAACACATGAGCGAAACCC | cp4epsps fragment identification | |
ZmHPT-1F | CAACTCTTCCATTGGCATCT | 750 | ZmHPT片段鉴定 |
Tglb1-1R | AGGCTCATGCTACGTACGCA | ZmHPT fragment identification | |
ZmTMT-1F | TGGTGGTAGCTCAAGGTACT | 716 | ZmTMT片段鉴定 |
Tglb1-1R | AGGCTCATGCTACGTACGCA | ZmTMT fragment identification | |
BBHTL8-1-3F | TGATTAGAGTCCCGCAATTAT | 240 | BBHTL8-1片段特异性PCR |
BBHTL8-1-3R | GATTAGTTGAGCGGTGGCAAC | BBHTL8-1 fragment specific PCR | |
Cry1Ab-qF | CTACTTGTACCAGAAGATCGAC | 256 | Cry1Ab qRT-PCR |
Cry1Ab-qR | TCAGTCCTCGTTCAGGTCGGTG | ||
Cry3Bb-qF | CTGCTCTTCCTGAAGGAGTCG | 327 | Cry3Bb qRT-PCR |
Cry3Bb-qR | GATGAACTCGATCTTGTCGATG | ||
cp4epsps-qF | ACCCATCTCGATCACCGCA | 166 | cp4epsps qRT-PCR |
cp4epsps-qR | CAGCCTTCGTATCGGAGAGTTC | ||
ZmHPT-qF | CTACCTCTTCCTGTTTGTGGAGCA | 252 | ZmHPT qRT-PCR |
Tglb1-qR | CTCATGCTACGTACGCACGTCG | ||
ZmTMT-qF | CGTGATAAAATCAGCGCTAACAT | 233 | ZmTMT qRT-PCR |
Tglb1-qR | CTCATGCTACGTACGCACGTCG | ||
ZmAct1-qF | CACCTTCTACAACGAGCTCCG | 404 | ZmAct1 qRT-PCR |
ZmAct1-qR | TAATCAAGGGCAACGTAGGCA |
图2 BBHTL8-1外源插入片段PCR鉴定A:BBHTL8-1株系外源目的基因鉴定;B:BBHTL8-1株系外源片段插入基因组特异性检测
Fig.2 Verification of the transgenic fragments in BBHTL8-1A: Identification of exogenous target gene in BBHTL8-1 lines; B: Specific detection of exogenous gene in BBHTL8-1 lines
组织材料Material | 死亡率Mortality rate/% | |||
---|---|---|---|---|
2 d | 4 d | 6 d | ||
BBHTL8-1 | 心叶 Whorl leaf | 63±3 | 85±4 | 100 |
花丝 Silk | 65±3 | 73±4 | 100 | |
籽粒 Seed | 60±2 | 71±3 | 100 | |
郑58 Zheng 58 | 心叶Whorl leaf | 0 | 0 | 5±1 |
表2 室内饲喂BBHTL8-1不同组织玉米螟幼虫死亡率
Table 2 Mortality of corn borer by feeding BBHTL8-1 different tissues
组织材料Material | 死亡率Mortality rate/% | |||
---|---|---|---|---|
2 d | 4 d | 6 d | ||
BBHTL8-1 | 心叶 Whorl leaf | 63±3 | 85±4 | 100 |
花丝 Silk | 65±3 | 73±4 | 100 | |
籽粒 Seed | 60±2 | 71±3 | 100 | |
郑58 Zheng 58 | 心叶Whorl leaf | 0 | 0 | 5±1 |
材料 Material | α-生育酚 α-tocopherol | γ-生育酚 γ-tocopherol | δ-生育酚 δ-tocopherol |
---|---|---|---|
郑58 Zheng 58 | 0.71±0.11 | 5.27±0.22 | 2.20±0.18 |
BBHTL8-1(BC4F1) | 9.59±0.53 | 0.29±0.06 | 0.08±0.01 |
郑58 Zheng 58 | 1.51±0.19 | 4.27±0.22 | 1.20±0.12 |
BBHTL8-1(BC5F1) | 8.59±1.53 | 0.46±0.16 | 0.04±0.01 |
郑58 Zheng 58 | 1.81±0.19 | 4.22±0.22 | 1.22±0.12 |
BBHTL8-1(BC6F1) | 8.21±0.69 | 0.32±0.12 | 0.14±0.03 |
表3 BBHTL8-1籽粒中维生素E组分含量 (mg·100 g?1)
Table 3 Content of VE composition of maize seeds in BBHTL8-1 and Zheng 58
材料 Material | α-生育酚 α-tocopherol | γ-生育酚 γ-tocopherol | δ-生育酚 δ-tocopherol |
---|---|---|---|
郑58 Zheng 58 | 0.71±0.11 | 5.27±0.22 | 2.20±0.18 |
BBHTL8-1(BC4F1) | 9.59±0.53 | 0.29±0.06 | 0.08±0.01 |
郑58 Zheng 58 | 1.51±0.19 | 4.27±0.22 | 1.20±0.12 |
BBHTL8-1(BC5F1) | 8.59±1.53 | 0.46±0.16 | 0.04±0.01 |
郑58 Zheng 58 | 1.81±0.19 | 4.22±0.22 | 1.22±0.12 |
BBHTL8-1(BC6F1) | 8.21±0.69 | 0.32±0.12 | 0.14±0.03 |
农艺性状 Agronomic trait | 郑58 Zheng 58 | BBHTL8-1 |
---|---|---|
生育周期Growth period/d | 110.0±8.0 | 109.0±6.0 |
抽雄期Tasseling stage/d | 57.0±2.0 | 57.0±2.0 |
株高Plant height/m | 1.80±0.20 | 1.79±0.18 |
穗位高Ear height/m | 0.80±0.15 | 0.88±0.16 |
穗行数 Rows per era | 14±0 | 14±0 |
百粒重 100-kernel weight/g | 29.5±2.4 | 28.9±2.2 |
萌发率 Germination rate/% | 96.0±1.7 | 95.0±1.8 |
表4 BBHTL8-1与郑58农艺性状比较 (BBHTL8-1 and Zheng 58)
Table 4 Comparison of agronomic trais between
农艺性状 Agronomic trait | 郑58 Zheng 58 | BBHTL8-1 |
---|---|---|
生育周期Growth period/d | 110.0±8.0 | 109.0±6.0 |
抽雄期Tasseling stage/d | 57.0±2.0 | 57.0±2.0 |
株高Plant height/m | 1.80±0.20 | 1.79±0.18 |
穗位高Ear height/m | 0.80±0.15 | 0.88±0.16 |
穗行数 Rows per era | 14±0 | 14±0 |
百粒重 100-kernel weight/g | 29.5±2.4 | 28.9±2.2 |
萌发率 Germination rate/% | 96.0±1.7 | 95.0±1.8 |
1 | 周大荣,何康来.玉米螟综合防治技术[M].北京:金盾出版社,1995:1-102. |
ZHOU D R, HE K L. Corn Borer Comprehensive Prevention and Control Technology [M]. Beijing: Jindun Publishing House, 1995. | |
2 | 赫福霞,郎志宏,张杰,等.转Bt cry1Ah/2mG2⁃epsps双价基因抗虫/耐除草剂玉米研究[J].作物杂志,2012(6):29-33. |
HE F X, LANG Z H, ZHANG J, et al.. Insect-resistant and glyphosate-tolerant transgenic maize transformed by Bt cry1Ah and 2mG2-epsps genes [J]. Crops, 2012 (6):29-33. | |
3 | 沈平,章秋艳,林友华,等.推进我国转基因玉米产业化的思考[J].中国生物工程杂志,2016,36(4):24-29. |
SHEN P, ZHANG Q Y, LIN Y H, et al.. Thinking to promote the industrialization of genetically modified corn of our country [J]. China Biotechnol., 2016, 36(4):24-29. | |
4 | 国际农业生物技术应用服务组织.2018年全球生物技术/转基因作物商业化发展态势[J].中国生物工程杂志,2019,39(8):1-6. |
ISAAA. Global status of commercialized biotech/GM crops in 2018 [J]. China Biotechnol., 2019, 39(8):1-6. | |
5 | 王旭静,张欣,刘培磊,等.复合性状转基因植物的应用现状与安全评价[J].中国生物工程杂志,2016,36(4):18‒23. |
WANG X J, ZHANG X, LIU P L, et al.. The application and safe assessment of stacked transgenic plants [J]. China Biotechnol., 2016, 36(4):18-23. | |
6 | 余桂容,曹颖,杜文平,等.抗虫耐草甘膦双价基因表达载体的构建及玉米转化[J].西南农业学报,2015,28(2):475-479. |
YU G R, CAO Y, DU W P, et al.. Construction of binary vector obtaining insect and herbicide resistance genes and transformation of maize [J]. Southwest China J. Agric. Sci., 2015, 28(2):475-479. | |
7 | 刘洋,刘相国,汪洋洲,等.抗虫抗除草剂转基因玉米HiII-NGc-1的遗传稳定性分析[J].生物技术进展,2016,6(6):428-434,489. |
LIU Y, LIU X G, WANG Y Z, et al.. Genetic stability analysis of insect-resistant and herbicide-tolerance transgenic maize HiII-NGc-1 [J]. Curr. Biotechnol., 2016, 6(6): 428-434,489. | |
8 | 谢彦博,谭喜昌,邢珍娟,等.转基因抗虫、耐除草剂复合性状玉米SK12-5生存竞争能力评价[J].玉米科学,2017,25(5):40-44. |
XIE Y B, TAN X C, XING Z J, et al.. Survival competition ability of transgenic maize SK12-5 with insect and herbicide resistance [J]. J. Maize Sci., 2017, 25(5):40-44. | |
9 | 张欣,董玉凤,王旭静,等.抗虫耐除草剂转基因玉米SW-1目标性状测试及多重PCR检测[J].生物技术进展,2017,7(4):296-303,353. |
ZHANG X, DONG Y F, WANG X J, et al.. Target trait test and multiple PCR detection of insect-resistance and herbicide tolerance transgenic maize SW-1 [J]. Curr. Biotechnol., 2016, 7(4):296-303,353. | |
10 | 李国平,刘冰,黄建荣,等.转聚合cry1A.105、cry2Ab2和cp4epsps基因抗虫耐除草剂玉米的田间抗性评价[J].植物保护,2019,45(1):142-147. |
LI G P, LIU B, HUANG J R, et al.. Field evaluation of Bt corn expression cry1A.105+cry2Ab2+cp4epspsagainst lepidoptera pests and tolerance to glyphosate [J]. Plant Prot., 2019, 45(1):142-147. | |
11 | 孙越,刘秀霞,李丽莉,等.兼抗虫、除草剂、干旱转基因玉米的获得和鉴定[J].中国农业科学,2015,48(2):215-228. |
SUN Y, LIU X X, LI L L, et al.. Production of transgenic maize germplasm with multi-traits of insect-resistance, glyphosate-resistance and drought-tolerance [J]. Sci. Agric. Sin., 2015, 48(2):215-228. | |
12 | FALK J, MUNNE-BOSCH S. Tocochromanol functions in plants: antioxidation and beyond [J]. J. Exp. Bot., 2010, 61(6):1549-1566. |
13 | XIE L, YU Y, MAO J, et al.. Evaluation of biosynthesis, accumulation and antioxidant activity of vitamin E in sweet corn (Zea mays L.) during kernel development [J/OL]. Int. J. Mol. Sci., 2017, 18(12):2780[2020-08-20]. . |
14 | MUNOZ P, MUNNE-BOSCH S. Vitamin E in plants: biosynthesis, transport, and function [J]. Trends Plant Sci., 2019, 24(11):1040-1051. |
15 | SHINTANI D, DELLAPENNA D. Elevating the vitamin E content of plants through metabolic engineering [J]. Science, 1998, 282(5396):2098-2100. |
16 | LVAN EENENNAAM A, LINCOLN K, DURRETT T P, et al.. Engineering vitamin E content: from arabidopsis mutant to soy oil [J]. Plant Cell, 2003, 15(12):3007-3019. |
17 | COLLAKOVA E, DELLAPENNA D. Homogentisate phytyltransferase activity is limiting for tocopherol biosynthesis in arabidopsis [J]. Plant Physiol., 2003, 131(2):632-642. |
18 | SEO Y S, KIM S J, HARN C H, et al.. Ectopic expression of apple fruit homogentisate phytyltransferase gene (MdHPT1) increases tocopherol in transgenic tomato (Solanum lycopersicum cv. Micro-Tom) leaves and fruits [J]. Phytochem., 2011, 72(4-5):321-329. |
19 | ZHANG L, LUO Y, ZHU Y, et al.. GmTMT2a from soybean elevates the α-tocopherol content in corn and Arabidopsis [J]. Transgenic Res., 2013, 22(5):1021-1028. |
20 | ZHANG L, LUO Y, LIU B, et al.. Overexpression of the maize γ-tocopherol methyltransferase gene (ZmTMT) increases α-tocopherol content in transgenic Arabidopsis and maize seeds [J]. Transgenic Res., 2020, 29(1):95-104. |
21 | 农业转基因生物安全评价管理办法(2017年11月30日修订版)[EB/OL].[2020-08-07].. |
22 | FRAME B R, SHOU H X, CHIKWAMBA R K, et al.. Agrobacterium tumefaciens-mediated transformation of maize embryos using a standard binary vector system [J]. Plant Physiol., 2002, 129(1):13-22. |
23 | GUTTIKONDA S K, MARRI P, MAMMADOV J, et al.. Molecular characterization of transgenic events using next generation sequencing approach [J/OL]. PLoS One, 2016, 11(2):e0149515 [2020-08-07]. . |
24 | 柳晓丹,许文涛,黄昆仑,等.复合性状转基因植物安全性评价的研究进展[J].生物技术通报,2016,32(6):1-6. |
LIU X D, XU W T, HUANG K L, et al.. Research progress on the safety assessment of stacked genetically modified plants [J]. Biotechnol. Bull., 2016, 32(6):1-6. | |
25 | HALPIN C. Gene stacking in transgenic plants—the challenge for 21st century plant biotechnology [J]. Plant Biotechnol. J., 2005, 3(2):141-155. |
26 | COLLIER R, THOMSON J G, THILMONY R. A versatile and robust agrobacterium-based gene stacking system generates high-quality transgenic rabidopsis plants [J]. Plant J., 2018, 95(4):573-583. |
27 | SHEHRYAR K, KHAN R S, IQBAL A, et al.. Transgene stacking as effective tool for enhanced disease resistance in plants [J]. Mol. Biotechnol., 2020, 62(1):1-7. |
[1] | 邹俊杰, 徐妙云, 张兰, 郑红艳, 王磊. 转基因复合抗虫耐除草剂玉米BFL4-1的分子特征及功能评价[J]. 中国农业科技导报, 2022, 24(1): 31-37. |
[2] | 陈媛, 刘震宇, 周明园, 张晨霞, 田巧凤, 张中宁, 张祥, 陈德华. 种植密度对转Bt棉纤维杀虫蛋白表达量及氮代谢的影响[J]. 中国农业科技导报, 2021, 23(7): 45-53. |
[3] | 刘建凤1,姚莹1,赵婕1,苏智2,魏建荣*. 沙棘抗虫性机制及其分子育种研究进展[J]. 中国农业科技导报, 2020, 22(8): 108-115. |
[4] | 马硕1,焦悦2,王旭静1,翟勇2,王志兴1*. 高通量测序技术在转基因植物分子特征评价中的应用[J]. 中国农业科技导报, 2020, 22(5): 6-14. |
[5] | 李夏莹1,武玉花2,李俊2,肖晓琳1,张飞燕1,梁晋刚1,王顥潜1,张旭冬1,张秀杰1*. 转基因玉米T25数字PCR方法的建立与验证[J]. 中国农业科技导报, 2020, 22(2): 173-178. |
[6] | 徐晓丽1,姜媛媛1,王鹏飞2,来勇敏1,陈笑芸1,徐俊锋1*. 表达Cry1Ab和Cry2Ab蛋白的转基因玉米GAB-3对四种主要鳞翅目害虫的抗性评价[J]. 中国农业科技导报, 2020, 22(12): 97-104. |
[7] | 梁晋刚1,2,辛龙涛2,栾颖2,宋新元3,张正光2*. 转cry1Ie基因抗虫玉米对根际微生物群落碳代谢的影响[J]. 中国农业科技导报, 2019, 21(2): 104-110. |
[8] | 梅闯1,2,闫鹏1*,艾沙江·买买提1,韩立群1,张彦龙3,马凯1,王继勋1. 新疆野苹果营养及次生代谢物与苹果小吉丁虫抗性的关系[J]. 中国农业科技导报, 2018, 20(7): 26-33. |
[9] | 董雪1,2,赵英铭1,2,3*,黄雅茹1,2,刘禹廷1,2,马迎宾1,2,4,王志刚1,2,郝玉光1,2,刘芳1,2. 乌兰布和沙漠引种抗虫杨树品种中龄期生长适应性评价[J]. 中国农业科技导报, 2018, 20(7): 123-129. |
[10] | 杨羊1,2,梁成真2,孟志刚2,陈全家1,罗淑萍1,张锐2,郭三堆2*. 基于GR79 EPSPS筛选标记的抗虫抗除草剂表达载体构建及抗性鉴定 [J]. 中国农业科技导报, 2018, 20(11): 22-28. |
[11] | 赵英铭1,2,3,高君亮1,2,3,杨文斌2*,黄雅茹1,3,马迎宾1,3,包春燕4,张 格1,3,李炜1,3,吕永军1,3,王志刚1,3,刘芳1,3,郝玉光1. 16个抗虫杨品种在林分补植中的性状差异比较[J]. 中国农业科技导报, 2017, 19(3): 72-81. |
[12] | 梅闯1,闫鹏1,艾沙江·买买提1,马凯1,韩立群1,许正2,钟海霞1,刁永强2,王继勋1*. 新疆野苹果(Malus sieversii)受苹小吉丁虫危害程度与树皮厚度、径阶的关系[J]. 中国农业科技导报, 2016, 18(4): 24-30. |
[13] | 赵越1,2,张石来2,胡建3,黄立钰4,张静2,. 利用分子标记辅助选择技术培育抗虫水稻品种的研究[J]. 中国农业科技导报, 2016, 18(3): 25-31. |
[14] | 满坤1,2§,杨兵1§,薛静1§,覃湘婕1,2,周宏专1,徐福洲1,许承扬1,杨凤萍1,张立全1,李向龙1,张晓东1*,王金洛1*. 利用玉米作为生物反应器表达PEDV中和表位抗原蛋白[J]. , 2014, 16(6): 28-35. |
[15] | 薛计雄1,2|张锐1,张桦2,孙国清1,孟志刚1,周焘1,郭三堆1*. 高效双价(Bt+cpti)表达载体的构建及其表达分析[J]. , 2013, 15(3): 91-97. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||