中国农业科技导报 ›› 2023, Vol. 25 ›› Issue (4): 205-214.DOI: 10.13304/j.nykjdb.2022.0965
• 生物制造 资源生态 • 上一篇
陈春林(), 王琳洋, 单梦伟, 裴甜甜, 王吉庆, 肖怀娟, 李娟起, 李猛, 杜清洁(
)
收稿日期:
2022-11-08
接受日期:
2023-01-08
出版日期:
2023-04-01
发布日期:
2023-06-26
通讯作者:
杜清洁
作者简介:
陈春林 E-mail:ccl980401@163.com;
基金资助:
Chunlin CHEN(), Linyang WANG, Mengwei SHAN, Tiantian PEI, Jiqing WANG, Huaijuan XIAO, Juanqi LI, Meng LI, Qingjie DU(
)
Received:
2022-11-08
Accepted:
2023-01-08
Online:
2023-04-01
Published:
2023-06-26
Contact:
Qingjie DU
摘要:
为明确发酵花生壳和牛粪替代草炭基质用于番茄育苗的可行性,筛选出其最佳配比,以发酵花生壳和牛粪为主要原料,按花生壳∶牛粪∶珍珠岩(体积比)为0∶6∶3(T1)、2∶4∶3(T2)、4∶2∶3(T3)和6∶0∶3(T4)复配形成基质,以草炭∶珍珠岩为6∶3的基质作为对照(CK),测定不同基质的理化特性、植株形态指标和营养元素含量,分析影响番茄植株性状的关键基质理化特性,并对育苗效果进行综合评价。结果表明,与CK相比,T1~T4基质中总磷、总钾、有效磷、镁和过氧化氢酶活性均显著增加,而总氮、碱解氮和钙含量均显著下降。在不同的发酵花生壳和牛粪复配基质中,随花生壳比例增大,脲酶和磷酸酶活性增大,而电导率、容重和速效钾含量下降。植株各形态指标均在T3处理下具有最高值,且显著高于CK。各处理基质中植株钾含量均显著高于CK,但氮、钙和镁含量均显著低于CK。植株中磷含量在T4处理下最高,而在T2处理下最低。番茄植株综合性状与基质中pH、总钾、有效磷、镁、过氧化氢酶和脲酶呈显著正相关,而与电导率、有机质、总氮、碱解氮和速效钾呈负相关。通过综合评价可知,T3处理下番茄植株综合性状表现最优。因此,在番茄育苗中发酵花生壳和牛粪复配基质可替代草炭基质,且以花生壳∶牛粪∶珍珠岩为4∶2∶3效果最好。以上结果为农业废弃物基质化利用提供了理论依据和指导。
中图分类号:
陈春林, 王琳洋, 单梦伟, 裴甜甜, 王吉庆, 肖怀娟, 李娟起, 李猛, 杜清洁. 发酵花生壳和牛粪替代草炭基质的番茄育苗效果分析[J]. 中国农业科技导报, 2023, 25(4): 205-214.
Chunlin CHEN, Linyang WANG, Mengwei SHAN, Tiantian PEI, Jiqing WANG, Huaijuan XIAO, Juanqi LI, Meng LI, Qingjie DU. Effects of Fermented Peanut Shell and Cow Dung Instead of Peat Substrate on Tomato Seedling[J]. Journal of Agricultural Science and Technology, 2023, 25(4): 205-214.
处理 Treatment | 花生壳 Peanut shells | 牛粪 Cow dung | 草炭 Peat | 珍珠岩 Perlite |
---|---|---|---|---|
CK | 0 | 0 | 6 | 3 |
T1 | 0 | 6 | 0 | 3 |
T2 | 2 | 4 | 0 | 3 |
T3 | 4 | 2 | 0 | 3 |
T4 | 6 | 0 | 0 | 3 |
表1 不同处理基质中各组分配比
Table 1 Ratio of components in the substrates of different treatments
处理 Treatment | 花生壳 Peanut shells | 牛粪 Cow dung | 草炭 Peat | 珍珠岩 Perlite |
---|---|---|---|---|
CK | 0 | 0 | 6 | 3 |
T1 | 0 | 6 | 0 | 3 |
T2 | 2 | 4 | 0 | 3 |
T3 | 4 | 2 | 0 | 3 |
T4 | 6 | 0 | 0 | 3 |
处理 Treatment | pH | 电导率 EC/(mS·cm-1) | 容重 Bulk density/(g·cm-3) | 有机质 Organic matter/% |
---|---|---|---|---|
CK | 5.34±0.24 b | 0.81±0.01 d | 0.21±0.01 c | 21.91±1.4 ab |
T1 | 5.59±0.14 b | 3.12±0.01 a | 0.37±0.01 a | 22.01±2.23 ab |
T2 | 6.02±0.12 a | 2.76±0.04 b | 0.35±0.00 ab | 23.86±1.20 a |
T3 | 6.19±0.02 a | 1.60±0.00 c | 0.34±0.01 b | 20.10±2.61 bc |
T4 | 6.22±0.09 a | 0.67±0.00 d | 0.22±0.00 c | 18.13±0.44 c |
表2 不同基质的基本理化特性
Table 2 Basic physicochemical properties of different substrates
处理 Treatment | pH | 电导率 EC/(mS·cm-1) | 容重 Bulk density/(g·cm-3) | 有机质 Organic matter/% |
---|---|---|---|---|
CK | 5.34±0.24 b | 0.81±0.01 d | 0.21±0.01 c | 21.91±1.4 ab |
T1 | 5.59±0.14 b | 3.12±0.01 a | 0.37±0.01 a | 22.01±2.23 ab |
T2 | 6.02±0.12 a | 2.76±0.04 b | 0.35±0.00 ab | 23.86±1.20 a |
T3 | 6.19±0.02 a | 1.60±0.00 c | 0.34±0.01 b | 20.10±2.61 bc |
T4 | 6.22±0.09 a | 0.67±0.00 d | 0.22±0.00 c | 18.13±0.44 c |
处理 Treatment | 总氮 Total N | 总磷 Total P | 总钾 Total K | 碱解氮 Alkali N | 有效磷 Olsen P | 速效钾 Available K | 钙 Ca | 镁 Mg |
---|---|---|---|---|---|---|---|---|
CK | 24.73±1.46 a | 9.56±0.59 c | 2.45±0.27 d | 0.817±0.027 a | 0.14±0.01 d | 0.108±0.002 b | 22.16±2.76 a | 0.08±0.00 d |
T1 | 13.77±1.46 b | 12.28±0.36 ab | 9.48±0.25 a | 0.520±0.011 b | 1.68±0.04 b | 0.135±0.003 a | 15.62±0.14 b | 6.54±0.34 c |
T2 | 13.30±1.40 b | 12.68±0.80 a | 7.88±0.41 b | 0.511±0.019 b | 1.72±0.03 ab | 0.112±0.003 b | 15.01±1.71 b | 6.85±0.36 c |
T3 | 10.27±0.81 c | 11.32±0.72 b | 7.97±0.11 b | 0.506±0.029 b | 1.74±0.03 a | 0.079±0.001 c | 17.24±1.85 b | 9.34±0.67 a |
T4 | 9.33±1.07 c | 11.96±0.21 ab | 4.92±0.25 c | 0.455±0.007 c | 1.54±0.02 c | 0.029±0.002 d | 14.79±1.09 b | 8.57±0.33 b |
表3 不同基质的营养元素含量 (mg·g-1)
Table 3 Nutrient element content of different substrates
处理 Treatment | 总氮 Total N | 总磷 Total P | 总钾 Total K | 碱解氮 Alkali N | 有效磷 Olsen P | 速效钾 Available K | 钙 Ca | 镁 Mg |
---|---|---|---|---|---|---|---|---|
CK | 24.73±1.46 a | 9.56±0.59 c | 2.45±0.27 d | 0.817±0.027 a | 0.14±0.01 d | 0.108±0.002 b | 22.16±2.76 a | 0.08±0.00 d |
T1 | 13.77±1.46 b | 12.28±0.36 ab | 9.48±0.25 a | 0.520±0.011 b | 1.68±0.04 b | 0.135±0.003 a | 15.62±0.14 b | 6.54±0.34 c |
T2 | 13.30±1.40 b | 12.68±0.80 a | 7.88±0.41 b | 0.511±0.019 b | 1.72±0.03 ab | 0.112±0.003 b | 15.01±1.71 b | 6.85±0.36 c |
T3 | 10.27±0.81 c | 11.32±0.72 b | 7.97±0.11 b | 0.506±0.029 b | 1.74±0.03 a | 0.079±0.001 c | 17.24±1.85 b | 9.34±0.67 a |
T4 | 9.33±1.07 c | 11.96±0.21 ab | 4.92±0.25 c | 0.455±0.007 c | 1.54±0.02 c | 0.029±0.002 d | 14.79±1.09 b | 8.57±0.33 b |
处理 Treatment | 株高 Plant height/cm | 茎粗 Stem diameter/mm | 叶面积 Leaf area/cm2 | 总干重 Total dry weight/g | 壮苗指数 Seedling index |
---|---|---|---|---|---|
CK | 8.52±0.31 d | 2.96±0.13 b | 33.85±3.25 c | 0.34±0.03 c | 0.084±0.018 b |
T1 | 9.02±0.61 d | 3.41±0.21 a | 52.31±12.33 ab | 0.43±0.05 bc | 0.098±0.014 ab |
T2 | 10.48±1.76 c | 3.38±0.25 a | 51.70±8.48 ab | 0.40±0.06 bc | 0.087±0.017 ab |
T3 | 13.38±0.78 a | 3.44±0.22 a | 63.65±8.56 a | 0.55±0.12 a | 0.107±0.016 a |
T4 | 11.90±0.72 b | 3.06±0.31 b | 48.20±14.41 b | 0.46±0.11 ab | 0.094±0.020 ab |
表4 不同基质处理下的番茄植株形态指标
Table 4 Index of tomato plant morphology under different substrate treatments
处理 Treatment | 株高 Plant height/cm | 茎粗 Stem diameter/mm | 叶面积 Leaf area/cm2 | 总干重 Total dry weight/g | 壮苗指数 Seedling index |
---|---|---|---|---|---|
CK | 8.52±0.31 d | 2.96±0.13 b | 33.85±3.25 c | 0.34±0.03 c | 0.084±0.018 b |
T1 | 9.02±0.61 d | 3.41±0.21 a | 52.31±12.33 ab | 0.43±0.05 bc | 0.098±0.014 ab |
T2 | 10.48±1.76 c | 3.38±0.25 a | 51.70±8.48 ab | 0.40±0.06 bc | 0.087±0.017 ab |
T3 | 13.38±0.78 a | 3.44±0.22 a | 63.65±8.56 a | 0.55±0.12 a | 0.107±0.016 a |
T4 | 11.90±0.72 b | 3.06±0.31 b | 48.20±14.41 b | 0.46±0.11 ab | 0.094±0.020 ab |
图2 不同基质处理下的番茄植株营养元素含量注:同一指标内不同小写字母表示处理间差异在P<0.05水平显著。
Fig. 2 Content of nutrients in tomato plants under different substrate treatmentsNote:Different lowercase letters in same indicator mean significant differences among treatments at P<0.05 level.
指标 Indicator | 主成分 Principal component | |
---|---|---|
1 | 2 | |
植株氮含量Plant N content | -0.31 | -0.37 |
植株磷含量Plant P content | -0.10 | 0.55 |
植株钾含量Plant K content | 0.29 | -0.41 |
植株钙含量Plant Ca content | -0.36 | 0.18 |
植株镁含量Plant Mg content | -0.31 | 0.10 |
株高Plant height | 0.30 | 0.37 |
茎粗Stem diameter | 0.34 | -0.33 |
叶面积Leaf area | 0.39 | -0.01 |
总干重Total dry weight | 0.35 | 0.26 |
壮苗指数Seedling index | 0.32 | 0.19 |
特征值Eigenvalues | 6.33 | 2.47 |
贡献率Contribution rate /% | 63.28 | 24.68 |
累计贡献率Cumulative contribution rate /% | 63.28 | 87.96 |
表5 植株性状指标主成分分析
Table 5 Principal component analysis of plant trait indicators
指标 Indicator | 主成分 Principal component | |
---|---|---|
1 | 2 | |
植株氮含量Plant N content | -0.31 | -0.37 |
植株磷含量Plant P content | -0.10 | 0.55 |
植株钾含量Plant K content | 0.29 | -0.41 |
植株钙含量Plant Ca content | -0.36 | 0.18 |
植株镁含量Plant Mg content | -0.31 | 0.10 |
株高Plant height | 0.30 | 0.37 |
茎粗Stem diameter | 0.34 | -0.33 |
叶面积Leaf area | 0.39 | -0.01 |
总干重Total dry weight | 0.35 | 0.26 |
壮苗指数Seedling index | 0.32 | 0.19 |
特征值Eigenvalues | 6.33 | 2.47 |
贡献率Contribution rate /% | 63.28 | 24.68 |
累计贡献率Cumulative contribution rate /% | 63.28 | 87.96 |
图3 各基质理化特性与植株性状指标间关系注:P-N—植株氮含量;P-P—植株磷含量;P-K—植株钾含量;P-Ca—植株钙含量;P-Mg—植株镁含量;PH—株高;SD—茎粗;LA—叶面积;DW—总干重;SI—壮苗指数;BD—基质容重;OM—基质有机质;TN—基质总氮;TP—基质总磷;TK—基质总钾;AN—碱解氮;OP—有效磷;AK—速效钾;INV—蔗糖转化酶;URE—脲酶;PHO—磷酸酶;CAT—过氧化氢酶。实线代表主成分分析原始变量,虚线代表主成分分析补充变量。*1表示该指标与主成分1显著相关,*2表示该指标与主成分2显著相关。
Fig. 3 Relationship between the physicochemical properties of substrate and the indicators of plant traitsNote: P-N—Plant N content; P-P—Plant P content; P-K—Plant K content; P-Ca—Plant Ca content; P-Mg— Plant Mg content; PH—Plant height; SD—Stem diameter; LA—Leaf area; DW—Total dry weight; SI—Seedling index; BD— Bulk density; OM—Organic matter; TN—Substrate total N; TP—Substrate total P; TK—Substrate total K; AN—Alkali N; OP—Olsen P; AK—Available K; INV—Invertase; URE—Urease; PHO— Phosphatase; CAT—Catalase. The solid line represents the original variables for principal component analysis, the dashed line represents the supplementary variables for principal component analysis. *1 represents that the index is significantly correlated with principal component 1 (PC1), *2 represents that the index is significantly correlated with principal component 2 (PC2).
处理 Treatment | C1 | C2 | U1 | U2 | W1 | W2 | 综合评价得分 Comprehensive evaluation score |
---|---|---|---|---|---|---|---|
CK | -2.88 | -9.98 | 0.00 | 0.58 | 0.72 | 0.28 | 0.16 |
T1 | 16.46 | -19.51 | 0.75 | 0.00 | 0.72 | 0.28 | 0.54 |
T2 | 16.39 | -18.40 | 0.75 | 0.07 | 0.72 | 0.28 | 0.56 |
T3 | 22.79 | -11.13 | 1.00 | 0.51 | 0.72 | 0.28 | 0.86 |
T4 | 12.54 | -3.13 | 0.60 | 1.00 | 0.72 | 0.28 | 0.71 |
表6 综合评价
Table 6 Comprehensive evaluation
处理 Treatment | C1 | C2 | U1 | U2 | W1 | W2 | 综合评价得分 Comprehensive evaluation score |
---|---|---|---|---|---|---|---|
CK | -2.88 | -9.98 | 0.00 | 0.58 | 0.72 | 0.28 | 0.16 |
T1 | 16.46 | -19.51 | 0.75 | 0.00 | 0.72 | 0.28 | 0.54 |
T2 | 16.39 | -18.40 | 0.75 | 0.07 | 0.72 | 0.28 | 0.56 |
T3 | 22.79 | -11.13 | 1.00 | 0.51 | 0.72 | 0.28 | 0.86 |
T4 | 12.54 | -3.13 | 0.60 | 1.00 | 0.72 | 0.28 | 0.71 |
图4 各基质理化特性与植株综合评价得分相关系数注:*和**分别表示相关在P<0.05和P<0.01水平显著;字母代号同图3。
Fig. 4 Coefficient of correlation between physicochemical properties of substrate and comprehensive evaluation score of plantsNote: * and ** indicate significant correlations at P<0.05 and P<0.01 levels, respectively;letter code is same to Figure 3.
1 | 冯文倩, 胡志成, 屠人凤, 等. 金银花扦插育苗基质复配及验证[J]. 中国土壤与肥料, 2021 (5): 275-282. |
FENG W Q, HU Z C, TU R F, et al.. The compound substrates and test verification on cutting propagation of Lonicera japonica [J]. Soil Fert. Sci. China, 2021 (5): 275-282. | |
2 | 田鸿, 韦小丽, 罗旋. 基质配比对花榈木容器苗生长及生理生化的影响 [J]. 东北林业大学学报, 2022, 50(2): 1-5. |
TIAN H, WEI X L, LUO X. Effects of substrate ratios on growth and photosynthetic physiology of Ormosia henryi prain containerized seedlings [J]. J. Northeast For. Univ., 2022, 50(2): 1-5. | |
3 | 张婧, 吴慧, 程云霞, 等. 椰糠复合基质对番茄穴盘幼苗生长效应的综合评价[J]. 土壤通报, 2021, 52(5): 1156-1164. |
ZHANG J, WU H, CHENG Y X, et al.. Comprehensive evaluation of the growth effect of coconut-bran compound substrate on tomato plug seedling [J]. Chin. J. Soil Sci., 2021, 52(5): 1156-1164. | |
4 | 赵秀云, 赵昕宇, 杨津津, 等. 堆肥过程中木质素的降解机理及影响因素研究进展[J]. 环境工程, 2021, 39(6): 128-136. |
ZHAO X Y, ZHAO X Y, YANG J J, et al.. Research progress on lignin degradation mechanism and influencing factors during composting [J]. Environ. Eng., 2021, 39(6): 128-136. | |
5 | 王德明. 研制牛粪与玉米秸秆搅拌专用设备的必要性探析[J]. 农机使用与维修, 2022 (2): 17-19. |
6 | 魏益华, 邱素艳, 张金艳, 等. 农业废弃物中重金属含量特征及农用风险评估[J]. 农业工程学报, 2019, 35(14): 212-220. |
WEI Y H, QIU S Y, ZHANG J Y, et al.. Characteristic of heavy metal contents in agricultural wastes and agricultural risk assessment [J]. Trans. Chin. Soc. Agric. Eng., 2019, 35(14): 212-220. | |
7 | 殷泽欣, 张璐, 郝丹, 等. 牛粪堆肥替代泥炭用于3种茄科植物育苗的可行性[J]. 浙江农业学报, 2021, 33(9): 1700-1709. |
YIN Z X, ZHANG L, HAO D, et al.. Feasibility of cow dung compost substituting peat in seedling nursery of three Solanaceae plants [J]. Acta Agric. Zhejiangensis, 2021, 33(9): 1700-1709. | |
8 | 盖旭, 李伟, 刘庆超, 等. 不同菌剂及发酵时间的花生壳基质对矮牵牛生长发育的影响 [J]. 土壤通报, 2018, 49(5): 1157-1164. |
GAI X, LI W, LIU Q C, et al.. Effect of peanut shell substrate with different microbial agents and fermentation time on growth and development of P. hybrida [J]. Chin. J. Soil Sci., 2018, 49(5): 1157-1164. | |
9 | 张立伟, 王辽卫. 我国花生产业发展状况、存在问题及政策建议[J]. 中国油脂, 2020, 45(11): 116-122. |
ZHANG L W, WANG L W. Development status, existing problems and policy recommendations of peanut industry in China [J]. China Oils Fats, 2020, 45(11): 116-122. | |
10 | CAMARGO A C D, REGITANO-D'ARCE M A B, RASERA G B, et al.. Phenolic acids and flavonoids of peanut by-products: antioxidant capacity and antimicrobial effects [J]. Food Chem., 2017, 237: 538-544. |
11 | 孙治强, 赵永英, 倪相娟. 花生壳发酵基质对番茄幼苗质量的影响[J]. 华北农学报, 2003, 18(4): 86-90. |
SUN Z Q, ZHAO Y Y, NI X J. Effect of fermented peanut shells substrates on tomato seedling [J]. Acta Agric. Boreali-Sin., 2003, 18(4): 86-90. | |
12 | 冯臣飞. 有机废弃物作为黄瓜育苗基质不同配方的筛选[D]. 郑州: 河南农业大学, 2018. |
FENG C F. The selection of organic wastes as substrate for cucumber seedling [D]. Zhengzhou: Henan Agricultural University, 2018. | |
13 | 魏代国. 不同基质配比对黄瓜幼苗生长的影响[J]. 蔬菜, 2017(4): 22-24. |
WEI D G. Effects of different compound substrate on seedling growth of cucumber [J]. Vegetables, 2017 (4): 22-24. | |
14 | 张崇洋, 赵颖, 刘世亮, 等. 屋顶农业栽培基质配比的筛选及对生菜生长、品质的影响 [J]. 中国农学通报, 2019, 35(12): 112-117. |
ZHANG C Y, ZHAO Y, LIU S L, et al.. Roof agricultural substrates: proportion and effects on growth and quality of lettuce [J]. Chin. Agric. Sci. Bull., 2019, 35(12): 112-117. | |
15 | 梁秋玲, 张能, 郭振粤, 等. 珍珠番石榴简易设施扦插育苗技术[J]. 中国南方果树, 2019, 48(3): 80-84. |
16 | 冯雪锋, 许雷, 张梦恩, 等. 不同配比育苗基质对番茄幼苗生长的影响[J]. 农业研究与应用, 2021, 34(4): 73-78. |
FENG X F, XU L, ZHANG M E, et al.. Effects of different substrate proportions on tomato seedlings growth [J]. Agric. Res. Appl., 2021, 34(4): 73-78. | |
17 | 陈菲, 梁芳芳, 李胜利, 等. 菇渣复配基质对番茄育苗品质的影响[J]. 北方园艺, 2021 (24): 38-44. |
CHEN F, LIANG F F, LI S L, et al.. Effects of mushroom residue compound substrate on tomato seedling quality [J]. Nor. Hortic., 2021 (24): 38-44. | |
18 | 郭世荣. 无土栽培学[M]. 北京:中国农业出版社, 2003:1-442. |
19 | 鲁如坤. 土壤农业化学分析方法[M]. 北京:中国农业科技出版社, 2000:1-638. |
20 | 关松荫. 土壤酶及其研究法[M]. 北京:农业出版社, 1986:1-376. |
21 | 鲍士旦. 土壤农化分析[M].第3版. 北京:中国农业出版社, 2000:1-495. |
22 | 张睿, 刘华民, 寇欣, 等. 内蒙古高原湖滨湿地优势植物功能性状特征及其适应性[J]. 生态学报, 2022, 42(19): 7773-7784. |
ZHANG R, LIU H M, KOU X, et al.. Functional traits of dominant plants and their adaptations in lakeshore wetlands of the Inner Mongolia plateau [J]. Acta Ecol. Sin., 2022, 42(19): 7773-7784. | |
23 | 杨洋, 王先宏, 杨清辉. 不同采集地割手密种质资源的耐寒性评价[J]. 热带作物学报, 2019, 40(4): 638-648. |
YANG Y, WANG X H, YANG Q H. Evaluation of cold tolerance of Saccharum spontaneum L. clones collected from different habitats [J]. Chin. J. Trop. Crops, 2019, 40(4): 638-648. | |
24 | SALEEM S, MUSHTAQ N U, SHAH W H, et al.. Morpho-physiological, biochemical and molecular adaptation of millets to abiotic stresses: a review [J]. Phyton-Int. J. Exp. Bot., 2021, 90(5): 1363-1385. |
25 | 郝丹, 张璐, 孙向阳, 等. 金盏菊栽培中园林废弃物堆肥与牛粪替代泥炭的效果分析[J]. 植物营养与肥料学报, 2020, 26(8): 1556-1564. |
HAO D, ZHANG L, SUN X Y, et al.. Effect analysis of garden waste compost and cow manure substituting peat in Calendula officinalis cultivation [J]. J. Plant Nutr. Fert., 2020, 26(8): 1556-1564. | |
26 | 刘峰, 王紫琦, 吴文, 等. 不同基质配比对乌桕容器苗矿质元素和非结构性碳水化合物的影响[J]. 林业与生态科学, 2022, 37(3): 275-278. |
LIU F, WANG Z Q, WU W, et al.. Effect of different substrates formulation on mineral element and non-structural carbohydrate concentration of Sapium sebiferum container seedlings [J]. For. Ecol. Sci., 2022, 37(3): 275-278. | |
27 | 董文召, 韩锁义, 徐静, 等. 花生壳研究现状与应用前景分析[J]. 中国农学通报, 2019, 35(32): 14-19. |
DONG W Z, HAN S Y, XU J, et al.. Research status and application prospect of peanut shell [J]. Chin. Agric. Sci. Bull., 2019, 35(32): 14-19. | |
28 | 卜晓莉, 姬慧娟, 马青林, 等. 生物炭-泥炭复合基质对马缨杜鹃生长和生理的影响[J]. 植物资源与环境学报, 2021, 30(5): 58-68. |
BU X L, JI H J, MA Q L, et al.. Effects of biochar-peat composite substrates on growth and physiology of Rhododendron delavayi [J]. J. Plant Resour. Environ., 2021, 30(5): 58-68. | |
29 | 董桂春, 陈琛, 袁秋梅, 等. 氮肥处理对氮素高效吸收水稻根系性状及氮肥利用率的影响[J]. 生态学报, 2016, 36(3): 642-651. |
DONG G C, CHEN C, YUAN Q M, et al.. The effect of nitrogen fertilizer treatments on root traits and nitrogen use efficiency in indica rice varieties with high nitrogen absorption efficiency [J]. Acta Ecol. Sin., 2016, 36(3): 642-651. | |
30 | 王杰, 张春燕, 卢加文, 等. 广安区柑橘土壤养分状况及综合肥力评价[J]. 土壤通报, 2021, 52(6): 1360-1367. |
WANG J, ZHANG C Y, LU J W, et al.. Nutrient status and comprehensive fertility evaluation of the citrus soil in Guang’an district [J]. Chin. J. Soil Sci., 2021, 52(6): 1360-1367. | |
31 | LI Z, ZHANG R, XIA S, et al.. Interactions between N, P and K fertilizers affect the environment and the yield and quality of satsumas [J/OL]. Glob. Ecol. Conserv., 2019, 19: e00663 [2022-10-10]. . |
32 | 林葆, 周卫, 李书田, 等. 长期施肥对潮土硫、钙和镁组分与平衡的影响[J]. 土壤通报, 2001, 32(3): 126-128. |
LIN B, ZHOU W, LI S T, et al.. Long-term effects of fertilization on the balance of soil S, Ca and Mg in fluvio-aguic soil [J]. Chin. J. Soil Sci., 2001, 32(3): 126-128. | |
33 | 张竹青, 鲁剑巍. 施钾水平对油菜吸收钙和镁的影响[J]. 安徽农业大学学报, 2003, 30(3): 276-279. |
ZHANG Z Q, LU J W. Influence of potassium fertilization on calcium and magnesium absorption in cole [J]. J. Anhui Agric. Univ., 2003, 30(3): 276-279. | |
34 | 张晗, 欧阳真程, 赵小敏, 等. 江西省不同农田利用方式对土壤碳、氮和碳氮比的影响 [J]. 环境科学学报, 2018, 38(6): 2486-2497. |
ZHANG H, OUYANG Z C, ZHAO X M, et al.. Effects of different land use types on soil organic carbon,nitrogen and ratio of carbon to nitrogen in the plow layer of farmland soil in Jiangxi province [J]. Acta Sci. Circum., 2018, 38(6): 2486- 2497. | |
35 | 杨龙元. 牛粪堆肥制备成型基质及其育苗试验研究[D]. 武汉: 华中农业大学, 2017. |
YANG L Y. Research of dairy manure compost compressing into sunstrate and its effects on seedling [D]. Wuhan: Huazhong Agricultural University, 2017. | |
36 | 孙慧, 张建锋, 胡颖, 等. 土壤过氧化氢酶对不同林分覆盖的响应[J]. 土壤通报, 2016, 47(3): 605-610. |
SUN H, ZHANG J F, HU Y, et al.. Research on the response of soil catalase to different forest stand covers [J]. Chin. J. Soil Sci., 2016, 47(3): 605-610. | |
37 | FELIPE C S, FELIPE V A, RENATO R P, et al.. Nitrogen fertilizers and volatilization of ammonia, carbonic gas emissions and urease activity [J]. Commun. Soil Sci. Plant Anal., 2022, 53(4): 426-438. |
[1] | 李世民, 董琼, 金友帆, 李树萍, 李猛, 刘廷彪, 赵兴杰, 陈静, 叶平, 吕梦. 树番茄幼苗叶片性状和生理参数对遮阴的响应及评价[J]. 中国农业科技导报, 2023, 25(1): 72-82. |
[2] | 夏秀波, 李涛, 曹守军, 姚建刚, 王虹云, 张丽莉. 液态有机肥部分替代化肥对设施番茄根区细菌群落的影响[J]. 中国农业科技导报, 2022, 24(7): 187-196. |
[3] | 刘迁杰,程云霞,贾凯,时振宇,张婧,魏少伟,吴慧*. 施氮量对复合沙培番茄氮代谢酶活性及品质和产量的影响[J]. 中国农业科技导报, 2021, 23(4): 183-191. |
[4] | 顾惠敏1,陈波浪1*,孙锦2. 菌根化育苗对盐胁迫下加工番茄生长和生理特征的影响[J]. 中国农业科技导报, 2021, 23(3): 166-177. |
[5] | 陈潇洁, 吕德生, 王振华, 李文昊, 宗睿, 温越, 邹杰. 加气灌溉及水氮耦合滴灌对加工番茄产量及品质的影响[J]. 中国农业科技导报, 2021, 23(11): 191-200. |
[6] | 李艳梅1,周亚文2,张琳1,廖上强1*,孙焱鑫1*. 抗逆与渗透物质耦合对番茄产量及水分利用的调控及机制探讨[J]. 中国农业科技导报, 2021, 23(1): 43-50. |
[7] | 崔华星1§,王宁2,3§,侯敏2,3,许俊锋1,郭文超2,3,安康4,陈阳辉4,崔卫东2,3*. 枯草芽孢杆菌DNKAS对加工番茄分枝列当的防治应用[J]. 中国农业科技导报, 2020, 22(12): 105-114. |
[8] | 杨佳佳1,刘义飞1*,刘文科1,2*. 垄沟填埋秸秆发酵物对SSC番茄根区温度、CO2释放及番茄生长的影响[J]. 中国农业科技导报, 2020, 22(12): 137-145. |
[9] | 李传友1,窦硕2,熊波1,张莉1,李震1,滕飞1,刘京蕊1,杨烨1,陈玉梅1. 温室番茄不同生长期常温烟雾机的作业方式及参数研究[J]. 中国农业科技导报, 2020, 22(11): 87-94. |
[10] | 师建华1§,齐连芬1§,王丹丹1,李燕1,张庆银1,葛喜珍2,田东良1*. 不同防控措施对温室番茄品质、产量及发病率的影响[J]. 中国农业科技导报, 2019, 21(4): 88-95. |
[11] | 尚超1,2,徐凡2,3,韩莹琰1,郭文忠2,3*. 岩棉营养液栽培条件下温室番茄耗水规律的研究[J]. 中国农业科技导报, 2019, 21(3): 109-117. |
[12] | 刘中良1,谷端银1,张艳艳1,焦娟1,高俊杰1*,刘世琦2,田晓飞3. 水氮因子耦合对日光温室基质栽培番茄品质、产量及水氮利用率的影响[J]. 中国农业科技导报, 2019, 21(2): 111-119. |
[13] | 国世佳1,段玉2*,张君2,张润生1,史有国3. 不同类型尿素配施对加工番茄产量、品质及氮肥利用率的影响[J]. 中国农业科技导报, 2018, 20(6): 96-103. |
[14] | 王健,谢南. 基于变论域模糊理论的温室番茄智能控温策略[J]. 中国农业科技导报, 2018, 20(3): 71-79. |
[15] | 张国占. 碳源调理剂对牛粪高温好氧堆肥发酵的影响[J]. 中国农业科技导报, 2018, 20(12): 99-106. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||