中国农业科技导报 ›› 2024, Vol. 26 ›› Issue (10): 186-194.DOI: 10.13304/j.nykjdb.2024.0060
收稿日期:
2024-01-22
接受日期:
2024-06-04
出版日期:
2024-10-15
发布日期:
2024-10-18
通讯作者:
高永
作者简介:
杨娟 E-mail:yjhaom@163.com;
基金资助:
Juan YANG(), Yong GAO(
), Ruidong WANG, Tianxiao GAO, Wenyuan YANG, Min HAN
Received:
2024-01-22
Accepted:
2024-06-04
Online:
2024-10-15
Published:
2024-10-18
Contact:
Yong GAO
摘要:
为探究草原风蚀坑发育土壤质量的演化特征及对草原生态系统结构和功能的影响,以多伦县典型沙质草原不同发育阶段的风蚀坑为研究对象,周围未风蚀草地为对照(CK),通过野外实地观测、室内指标测定等手段分析草原风蚀坑的土壤粒度组成及养分特征。结果表明,研究区土壤平均粒径为1.65~3.55 μm,未风蚀草地、消亡阶段土壤的平均粒径显著高于其他发育阶段,其中活跃发展阶段的土壤平均粒径最低。风蚀坑在发育过程中土壤粒径逐渐粗化,至活跃发展阶段粗砂含量增至9.72%,土壤颗粒分布情况最差。粉粒在活跃发展阶段和活化阶段分别降低至0.87%和0.88%。当风蚀坑逐渐走向消亡,至消亡阶段时土壤颗粒变细,粗砂减少,黏粒不断增加。风蚀坑的土壤有机质、速效钾、速效磷含量间存在显著差异,而碱解氮含量差异不显著。风蚀坑发育会造成土壤有机质和速效钾大量流失,速效磷含量在风蚀坑开始发展时减少,至活跃发展阶段时又有所增加,碱解氮含量在整个发育过程中变化较小。
中图分类号:
杨娟, 高永, 王瑞东, 高天笑, 杨文源, 韩敏. 沙质草原风蚀坑土壤粒度组成及养分特征[J]. 中国农业科技导报, 2024, 26(10): 186-194.
Juan YANG, Yong GAO, Ruidong WANG, Tianxiao GAO, Wenyuan YANG, Min HAN. Soil Particle Composition and Nutrient Characteristics of Wind Erosion Pits in Sandy Grassland[J]. Journal of Agricultural Science and Technology, 2024, 26(10): 186-194.
发育阶段 Developmental stage | 土层 Soil layer/cm | 黏粒 Clay | 粉粒 Powder particle | 砂粒Grit | |||
---|---|---|---|---|---|---|---|
极细砂 Very fine sand | 细砂 Fine sand | 中砂 Medium sand | 粗砂 Coarse sand | ||||
未风蚀草地 Unwind-eroded grassland | 0—10 | 13.71±2.02 a | 20.60±9.41 a | 0.16±0.26 a | 33.78±19.30 a | 30.21±7.40 b | 1.54±1.97 b |
10—20 | 10.98±2.78 a | 11.11±2.68 a | 0.51±0.88 a | 39.61±18.36 a | 35.56±15.05 a | 2.23±3.05 a | |
0—20 | 12.34±2.17 a | 15.85±5.24 a | 0.34±0.57 a | 36.70±18.75 a | 32.88±11.16 b | 1.89±2.50 b | |
裸地沙斑 Bare sand spots | 0—10 | 7.10±1.36 b | 2.93±1.41 b | 0.19±0.29 a | 44.30±12.10 a | 43.43±11.90 ab | 2.05±1.56 b |
10—20 | 5.71±0.24 b | 1.53±0.72 c | 0.19±0.16 a | 49.26±12.76 a | 41.59±10.41 a | 1.71±2.00 a | |
0—20 | 6.40±0.71 b | 2.23±0.89 b | 0.19±0.20 a | 46.79±11.77 a | 42.51±10.15 ab | 1.88±1.65 b | |
活跃发展 Active development | 0—10 | 3.82±0.64 b | 1.04±0.55 b | 0.01±0.00 a | 25.03±9.29 a | 58.87±4.59 a | 11.24±6.30 a |
10—20 | 3.15±1.01 b | 0.70±0.98 c | 0.09±0.09 a | 36.72±21.56 a | 51.13±11.82 a | 8.21±11.39 a | |
0—20 | 3.48±0.80 b | 0.87±0.75 b | 0.05±0.04 a | 30.88±14.86 a | 55.00±8.19 a | 9.72±8.01 a | |
固定阶段 Stationary stage | 0—10 | 7.29±2.85 b | 1.53±0.74 b | 0.09±0.09 a | 42.85±12.60 a | 45.62±12.36 ab | 2.62±3.02 b |
10—20 | 5.03±1.58 b | 0.60±0.48 c | 0.28±0.48 a | 44.22±18.87 a | 46.54±15.47 a | 3.32±3.21 a | |
0—20 | 6.11±1.79 b | 1.07±0.29 b | 0.27±0.32 a | 43.53±13.73 a | 46.06±12.54 ab | 2.96±2.31 b | |
消亡阶段 Extinction stage | 0—10 | 12.24±5.03 a | 4.03±3.00 b | 0.04±0.03 a | 42.36±8.05 a | 40.35±5.81 ab | 0.98±0.58 b |
10—20 | 13.61±5.55 a | 7.56±3.84 b | 0.07±0.08 a | 42.49±13.07 a | 35.60±5.31 a | 0.67±0.52 a | |
0—20 | 12.92±5.02 a | 5.80±3.16 b | 0.06±0.04 a | 42.42±10.07 a | 37.97±2.01 ab | 0.83±0.37 a | |
活化阶段 Activation stage | 0—10 | 5.10±0.71 b | 1.26±0.60 b | 0.29±0.44 a | 49.94±11.71 a | 41.80±12.00 ab | 1.61±1.20 b |
10—20 | 3.99±0.13 b | 0.49±0.13 c | 0.05±0.05 a | 42.66±9.92 a | 49.60±7.28 a | 3.20±2.70 a | |
0—20 | 4.54±0.41 b | 0.88±0.36 b | 0.17±0.21 a | 46.30±8.14 a | 45.70±7.02 ab | 2.41±1.66 b |
表1 不同发育阶段风蚀坑的土壤粒度组成 (%)
Table 1 Soil particle size composition of wind erosion pits at different development stages
发育阶段 Developmental stage | 土层 Soil layer/cm | 黏粒 Clay | 粉粒 Powder particle | 砂粒Grit | |||
---|---|---|---|---|---|---|---|
极细砂 Very fine sand | 细砂 Fine sand | 中砂 Medium sand | 粗砂 Coarse sand | ||||
未风蚀草地 Unwind-eroded grassland | 0—10 | 13.71±2.02 a | 20.60±9.41 a | 0.16±0.26 a | 33.78±19.30 a | 30.21±7.40 b | 1.54±1.97 b |
10—20 | 10.98±2.78 a | 11.11±2.68 a | 0.51±0.88 a | 39.61±18.36 a | 35.56±15.05 a | 2.23±3.05 a | |
0—20 | 12.34±2.17 a | 15.85±5.24 a | 0.34±0.57 a | 36.70±18.75 a | 32.88±11.16 b | 1.89±2.50 b | |
裸地沙斑 Bare sand spots | 0—10 | 7.10±1.36 b | 2.93±1.41 b | 0.19±0.29 a | 44.30±12.10 a | 43.43±11.90 ab | 2.05±1.56 b |
10—20 | 5.71±0.24 b | 1.53±0.72 c | 0.19±0.16 a | 49.26±12.76 a | 41.59±10.41 a | 1.71±2.00 a | |
0—20 | 6.40±0.71 b | 2.23±0.89 b | 0.19±0.20 a | 46.79±11.77 a | 42.51±10.15 ab | 1.88±1.65 b | |
活跃发展 Active development | 0—10 | 3.82±0.64 b | 1.04±0.55 b | 0.01±0.00 a | 25.03±9.29 a | 58.87±4.59 a | 11.24±6.30 a |
10—20 | 3.15±1.01 b | 0.70±0.98 c | 0.09±0.09 a | 36.72±21.56 a | 51.13±11.82 a | 8.21±11.39 a | |
0—20 | 3.48±0.80 b | 0.87±0.75 b | 0.05±0.04 a | 30.88±14.86 a | 55.00±8.19 a | 9.72±8.01 a | |
固定阶段 Stationary stage | 0—10 | 7.29±2.85 b | 1.53±0.74 b | 0.09±0.09 a | 42.85±12.60 a | 45.62±12.36 ab | 2.62±3.02 b |
10—20 | 5.03±1.58 b | 0.60±0.48 c | 0.28±0.48 a | 44.22±18.87 a | 46.54±15.47 a | 3.32±3.21 a | |
0—20 | 6.11±1.79 b | 1.07±0.29 b | 0.27±0.32 a | 43.53±13.73 a | 46.06±12.54 ab | 2.96±2.31 b | |
消亡阶段 Extinction stage | 0—10 | 12.24±5.03 a | 4.03±3.00 b | 0.04±0.03 a | 42.36±8.05 a | 40.35±5.81 ab | 0.98±0.58 b |
10—20 | 13.61±5.55 a | 7.56±3.84 b | 0.07±0.08 a | 42.49±13.07 a | 35.60±5.31 a | 0.67±0.52 a | |
0—20 | 12.92±5.02 a | 5.80±3.16 b | 0.06±0.04 a | 42.42±10.07 a | 37.97±2.01 ab | 0.83±0.37 a | |
活化阶段 Activation stage | 0—10 | 5.10±0.71 b | 1.26±0.60 b | 0.29±0.44 a | 49.94±11.71 a | 41.80±12.00 ab | 1.61±1.20 b |
10—20 | 3.99±0.13 b | 0.49±0.13 c | 0.05±0.05 a | 42.66±9.92 a | 49.60±7.28 a | 3.20±2.70 a | |
0—20 | 4.54±0.41 b | 0.88±0.36 b | 0.17±0.21 a | 46.30±8.14 a | 45.70±7.02 ab | 2.41±1.66 b |
发育阶段 Developmental stage | 土层 Soil layer/cm | 平均粒径 Mean particle size/μm | 分选系数 Sorting factor | 偏度 Skewness | 峰态 Peak state |
---|---|---|---|---|---|
未风蚀草地 Unwind-eroded grassland | 0—10 | 3.67±0.06 a | 2.57±0.17 a | 0.74±0.04 a | 1.17±0.91 c |
10—20 | 3.41±0.30 a | 2.41±0.19 a | 0.77±0.02 a | 2.23±1.34 ab | |
0—20 | 3.55±0.17 a | 2.51±0.17 a | 0.76±0.01 a | 1.34±1.15 b | |
裸地沙斑 Baresand spots | 0—10 | 1.98±0.21 bc | 1.36±0.05 bc | 0.45±0.02 b | 3.65±0.14 a |
10—20 | 1.98±0.16 b | 1.29±0.01 b | 0.43±0.01 b | 3.67±0.10 a | |
0—20 | 1.98±0.16 bc | 1.33±0.03 bc | 0.44±0.01 bc | 3.67±0.06 a | |
活跃发展 Active development | 0—10 | 1.58±0.17 c | 0.79±0.39 c | 0.22±0.17 c | 1.93±1.47 bc |
10—20 | 1.73±0.36 b | 0.74±0.39 b | 0.19±0.19 c | 1.77±1.31 ab | |
0—20 | 1.65±0.25 c | 0.78±0.39 c | 0.19±0.19 d | 1.82±1.35 ab | |
固定阶段 Stationary stage | 0—10 | 1.93±0.24 bc | 1.35±0.07 bc | 0.45±0.03 b | 3.81±0.21 a |
10—20 | 1.88±0.25 b | 0.84±0.46 b | 0.24±0.18 bc | 2.10±1.67 ab | |
0—20 | 1.90±0.21 bc | 1.33±0.05 bc | 0.43±0.01 bc | 3.76±0.24 a | |
消亡阶段 Extinction stage | 0—10 | 2.61±0.97 b | 1.87±0.78 b | 0.59±0.18 ab | 3.35±0.96 ab |
10—20 | 3.09±0.85 a | 2.19±0.69 a | 0.70±0.15 a | 2.59±1.73 ab | |
0—20 | 2.68±0.94 b | 1.91±0.78 ab | 0.61±0.17 ab | 2.70±1.79 ab | |
活化阶段 Activation stage | 0—10 | 1.98±0.19 bc | 1.24±0.06 bc | 0.41±0.01 b | 3.49±0.21 a |
10—20 | 1.84±0.13 b | 0.56±0.02 b | 0.13±0.01 c | 1.12±0.03 b | |
0—20 | 1.91±0.12 bc | 1.02±0.39 c | 0.32±0.15 cd | 2.68±1.32 ab |
表2 不同土层土壤粒度参数
Table 2 Soil particle size parameters of different soil layers
发育阶段 Developmental stage | 土层 Soil layer/cm | 平均粒径 Mean particle size/μm | 分选系数 Sorting factor | 偏度 Skewness | 峰态 Peak state |
---|---|---|---|---|---|
未风蚀草地 Unwind-eroded grassland | 0—10 | 3.67±0.06 a | 2.57±0.17 a | 0.74±0.04 a | 1.17±0.91 c |
10—20 | 3.41±0.30 a | 2.41±0.19 a | 0.77±0.02 a | 2.23±1.34 ab | |
0—20 | 3.55±0.17 a | 2.51±0.17 a | 0.76±0.01 a | 1.34±1.15 b | |
裸地沙斑 Baresand spots | 0—10 | 1.98±0.21 bc | 1.36±0.05 bc | 0.45±0.02 b | 3.65±0.14 a |
10—20 | 1.98±0.16 b | 1.29±0.01 b | 0.43±0.01 b | 3.67±0.10 a | |
0—20 | 1.98±0.16 bc | 1.33±0.03 bc | 0.44±0.01 bc | 3.67±0.06 a | |
活跃发展 Active development | 0—10 | 1.58±0.17 c | 0.79±0.39 c | 0.22±0.17 c | 1.93±1.47 bc |
10—20 | 1.73±0.36 b | 0.74±0.39 b | 0.19±0.19 c | 1.77±1.31 ab | |
0—20 | 1.65±0.25 c | 0.78±0.39 c | 0.19±0.19 d | 1.82±1.35 ab | |
固定阶段 Stationary stage | 0—10 | 1.93±0.24 bc | 1.35±0.07 bc | 0.45±0.03 b | 3.81±0.21 a |
10—20 | 1.88±0.25 b | 0.84±0.46 b | 0.24±0.18 bc | 2.10±1.67 ab | |
0—20 | 1.90±0.21 bc | 1.33±0.05 bc | 0.43±0.01 bc | 3.76±0.24 a | |
消亡阶段 Extinction stage | 0—10 | 2.61±0.97 b | 1.87±0.78 b | 0.59±0.18 ab | 3.35±0.96 ab |
10—20 | 3.09±0.85 a | 2.19±0.69 a | 0.70±0.15 a | 2.59±1.73 ab | |
0—20 | 2.68±0.94 b | 1.91±0.78 ab | 0.61±0.17 ab | 2.70±1.79 ab | |
活化阶段 Activation stage | 0—10 | 1.98±0.19 bc | 1.24±0.06 bc | 0.41±0.01 b | 3.49±0.21 a |
10—20 | 1.84±0.13 b | 0.56±0.02 b | 0.13±0.01 c | 1.12±0.03 b | |
0—20 | 1.91±0.12 bc | 1.02±0.39 c | 0.32±0.15 cd | 2.68±1.32 ab |
图3 不同发育阶段风蚀坑土壤养分含量注:不同小写字母表示同一土层不同发育阶段土壤间在P<0.05水平差异显著。
Fig. 3 Soil nutrient content in different development stagesNote: different lowercase letters indicate significant differences between different developmental stages of same soil layer at P<0.05 level.
图4 不同发育阶段风蚀坑土壤养分、粒度的相关性分析注:*、**分别表示在P<0.05、P<0.01水平相关显著。
Fig. 4 Correlation analysis of soil nutrients and particle size in different development stagesNote: * , ** indicate significant correlations at P<0.05, P<0.01 levels, respectively.
1 | 黄麟,李佳慧,张海燕,等.草原生态价值的内涵、核算及评估[J].草业学报,2024,33(6):47-63. |
HUANG L, LI J H, ZHANG H Y, et al.. Accounting and assessment of grassland ecological values [J]. Acta Pratac. Sin., 2024, 33(6):47-63. | |
2 | TEAGUE R, BARNES M. Grazing management that regenerates ecosystem function and grazingland livelihoods [J]. Afr. J. Range Forage., 2017, 34(2):77-86. |
3 | 周磊,魏雪,王长庭,等.高寒草地小型土壤节肢动物群落特征及其对草地退化的指示作用[J].草业学报,2022,31(3):34-46. |
ZHOU L, WEI X, WANG C T,et al..Differences in soil microarthropod community structure in alpine grasslands with differing degrees of degradation [J].Acta Pratac. Sin.,2022,31(3):34-46. | |
4 | 唐芳林,宋中山,孙暖,等.关于国有草场建设的思考[J].草地学报,2021,29(5):861-865. |
TANG F L, SONG Z S, SUN N, et al.. Views on the construction of state-owned rangeland [J].Acta Agrestia Sin.,2021,29(5):861-865. | |
5 | 王琪,郑佳华,赵萌莉,等.增温对荒漠草原不同退化程度草地恢复初期影响的研究[J].草地学报,2022,30(5):1077-1085. |
WANG Q, ZHENG J H, ZHAO M L, et al.. Effects of warming on early restoration of degraded grassland in desert steppe [J].Acta Agrestia Sin., 2022,30(5):1077-1085. | |
6 | 张德平,孙宏伟,王效科,等.呼伦贝尔沙质草原风蚀坑研究(Ⅱ):发育过程[J].中国沙漠,2007,27(1):20-24,170-171. |
ZHANG D P, SUN H W, WANG X K,et al..HulunBuir sandy grassland blowouts(Ⅱ):process of development and landscape evolution [J]. J. Desert Res., 2007,27(1):20-24,170-171. | |
7 | 胡日娜,哈斯额尔敦,浩毕斯哈拉图,等.浑善达克沙地东南缘固定沙丘风蚀坑动态变化[J].中国沙漠,2019,39(1):34-43. |
HU R N, Eerdun Hasi, Halatu Haobisi,et al..Dynamic changes of blowouts on fixed sand dunes in the southeastern fringe of otindag sandy land [J]. J. Desert Res., 2019,39(1):34-43. | |
8 | KIMIA C A, LAN J W, PATRICK A H, et al.. Spatial-temporal evolution of aeolian blowout dunes at Cape Cod [J]. Geomorphology, 2015, 236:148-162. |
9 | 姬亚芹,单春艳,王宝庆.土壤风蚀原理和研究方法及控制技术[M].北京:科学出版社,2015:1-288. |
10 | ZENG Q C, LIU Y, FANG Y, et al.. Impact of vegetation restoration on plants and soil C∶N∶P stoichiometry on the Yunwu Mountain Reserve of China [J]. Ecol. Eng., 2017, 109(12):92-100. |
11 | 周炎广,王卓然,青达木尼,等.浑善达克沙地固定沙丘风蚀坑形态变化及其动力学机制[J].科学通报,2023,68(11):1298-1311. |
ZHOU Y G, WANG Z R,Qingdamuni,et al..Morphological changes and dynamic mechanism of blowouts on fixed dunes in the Otingdag sandy land,China [J]. Chin. Sci. Bull.,2023,68(11):1298-1311. | |
12 | 孙禹,杜会石,刘美萍,等.风蚀坑形态-动力学研究进展[J].地理科学,2015,35(7):898-904. |
SUN Y, DU H S, LIU M P,et al..A review on morphodynamic processes of blowouts [J]. Sci. Geogr. Sin., 2015,35(7):898-904. | |
13 | 刘忠闪. 风蚀坑形态动力学响应的数值模拟[D].兰州:兰州大学,2023. |
LIU Z S. Numerical simulation of dynamic response of wind erosion pit morphology [D]. Lanzhou: Lanzhou University, 2023. | |
14 | 车雪华,罗万银,邵梅,等.青海共和盆地不同发育阶段风蚀坑表面气流场与形态反馈研究[J].地球科学进展,2021,36(1):95-109. |
CHE X H, LUO W Y, SHAO M, et al.. Form-flow feedback within blowouts at different developing stages in the Gonghe Basin,Qinghai province [J]. Adv. Earth Sci., 2021,36(1):95-109. | |
15 | 张绍云,董玉祥,哈斯额尔敦,等.福建海坛岛海岸沙地风蚀坑形态动力学与形态演化特征[J].地理研究,2024,43(1):255-271. |
ZHANG S Y, DONG Y X, Eerdun Hasi, et al.. Morphological dynamics and morphological evolution characteristics of wind erosion pits in coastal sandy land of Haitan Island, Fujian Province [J]. Geography Study, 2024,43(1):255-271. | |
16 | 李雨薇,王博,包玉海,等.草原风蚀坑发育对土壤生态化学计量的影响[J].中国沙漠,2023,43(5):166-175. |
LI Y W, WANG B, BAO Y H, et al.. Effects of the development of grassland blowouts on soil ecological stoichiometry [J]. J. Desert Res., 2023,43(5):166-175. | |
17 | 乌吉斯古楞. 内蒙古多伦县乡村空间格局演变及影响因素[D].呼和浩特:内蒙古农业大学,2023. |
Wujisiguleng. Evolution and influencing factors of rural spatial pattern in Duolun county, Inner Mongolia [D]. Hohhot : Inner Mongolia Agricultural University, 2023. | |
18 | 高海燕,闫德仁,胡小龙,等.纱网沙障对风蚀坑积沙区土壤种子库的影响[J].西北林学院学报,2023,38(5):93-101. |
GAO H Y, YAN D R, HU X L,et al..Influence of gauze sand barrier on the change of soil seed bank in sand accumulation area of wind erosion pit [J]. J. Northwest For. Univ., 2023,38(5):93-101. | |
19 | 张德平,王效科,哈斯,等.呼伦贝尔沙质草原风蚀坑研究(1):形态、分类、研究意义[J].中国沙漠,2006,26(6):894-902,插2-插8. |
ZHANGD P, WANGX K, HA S, et al.. HulunBuir sandy grassland blowouts:geomorphology,classification,and significances [J]. J. Desert Res., 2006,26(6):894-902, 1052,1058. | |
20 | 鲍士旦.土壤农化分析[M].第3版.北京:中国农业出版社,2000:1-495. |
21 | FOLK R L, WARD W C. Brazos river bar: a study in the significance of grain size parameters [J]. J. Sedimentary Res., 1957, 27(1): 3-26. |
22 | 王中原,罗万银,董治宝,等.共和盆地高寒草原风蚀坑表层沉积物粒度特征及动力学意义[J].中国沙漠,2017,37(1):7-16. |
WANG Z Y, LUO W Y, DONG Z B,et al..Grain size characteristics of the blowout surface sediments and its aerodynamic significance in the alpine meadow region of the Gonghe Basin [J]. J. Desert Res., 2017,37(1):7-16. | |
23 | 王帅,哈斯.沙质草原槽形风蚀坑表面沉积物粒度特征[J].水土保持通报,2008,28(6):122-125. |
WANG S,HA S.Particle size variation in trough blowout on sandy grassland [J].Bull.Soil Water Conserv.,2008,28(6):122-125. | |
24 | 张惜伟,汪季,高永,等.呼伦贝尔沙质草原风蚀坑表层土壤粒度特征[J].干旱区研究,2017,34(2):293-299. |
ZHANG X W, WANG J, GAO Y, et al.. Grain size characteristics of topsoil in blowouts on sandy grasslands in Hulun Buir [J]. Arid Zone Res., 2017,34(2):293-299. | |
25 | DUBROVINA I A, MOSHKINA E V, SIDOROVA V A,et al..The impact of land use on soil properties and structure of ecosystem carbon stocks in the middle taiga subzone of Karelia [J].Eurasian Soil Sci.,2021,54(11):1756-1769. |
26 | 张惜伟. 典型沙质草原风蚀坑演化过程与发育机理研究[D].呼和浩特:内蒙古农业大学,2018. |
ZHANG X W. Study on the evolution process and development mechanism of wind erosion pit in typical sandy grassland [D]. Hohhot : Inner Mongolia Agricultural University, 2018. | |
27 | DEAN W R J, MILTON S J, JELTSCH F. Large trees,fertile islands,and birds in arid savanna [J]. J.Arid Environ.,1999,41(1):61-78. |
28 | TAKIMOTO A, NAIR V D, RAMACHANDRAN NAIR P K.Contribution of trees to soil carbon sequestration under agroforestry systems in the West African Sahel [J]. Agrofor. Syst., 2009,76(1):11-25. |
29 | FENG Q, ENDO K N, CHENG G D. Soil carbon in desertified land in relation to site characteristics [J]. Geoderma, 2002,106(1/2):21-43. |
[1] | 翟车宇, 骆静梅, 刘昌杰, 张娟, 孟庆峰. 长期施用有机肥对松嫩平原盐碱土壤盐碱性质和化学计量比的影响[J]. 中国农业科技导报, 2024, 26(2): 153-161. |
[2] | 曾婷, 侯萌, 王耀, 彭博, 汤博宇, 赵晓蕊, 隋跃宇, 焦晓光. 不同土地利用类型对土壤纤维素酶活性及肥力因子的影响[J]. 中国农业科技导报, 2024, 26(1): 193-200. |
[3] | 刘威, 赵园园, 陈小龙, 史宏志. 土壤含水率对豫中植烟土壤微生物群落多样性及氮循环功能基因丰度的影响[J]. 中国农业科技导报, 2024, 26(1): 214-225. |
[4] | 杨小虎, 张曼玉, 杨海昌, 张凤华, 江宜霖, 易小兰. 基于组合模型的玛纳斯河流域农田土壤盐分反演[J]. 中国农业科技导报, 2023, 25(1): 134-141. |
[5] | 何丽娟, 蒙仲举, 党晓宏, 吕涛. 种植甘草对风沙土机械组成与养分的影响[J]. 中国农业科技导报, 2022, 24(2): 169-176. |
[6] | 胡朝华, 刘曰明, 庞孜钦, 袁照年. 农田土壤活性氮损失现状和生物炭调控途径研究进展[J]. 中国农业科技导报, 2021, 23(6): 120-129. |
[7] | 王杉杉1,卢秀萍2,许自成1*,李军营2,逄涛2. 云南黄金走廊烟区土壤腐殖质组成特征及其与土壤理化性状的关系[J]. 中国农业科技导报, 2016, 18(1): 154-163. |
[8] | 孙书斌1,于庆涛2,姚雪梅2,杨虹琦1*,刘光辉2,张保全3. 隆回植烟土壤有机质含量分布特征及其影响因素研究[J]. 中国农业科技导报, 2015, 17(6): 94-101. |
[9] | 年佳乐,李跃进*,景宇鹏,宋瑶. 盐渍土有效态微量元素含量的空间变异特征研究[J]. , 2013, 15(4): 163-167. |
[10] | 程宝玉,马京民,程兰,祁春苗,常剑波. 烤烟主产区土壤养分含量现状分析[J]. , 2009, 11(3): 131-136. |
[11] | 徐秀娟,吴文革. 安徽省农作物秸秆资源及其综合利用[J]. , 2009, 11(2): 39-43. |
[12] | 彭正萍 王艳群 刘淑桥 王红 王蕾 薛世川. 不同施肥处理对冬小麦干物质积累及土壤养分垂直分布的影响[J]. , 2007, 9(6): 95-99. |
[13] | 周毅 王传江 曹一平. 喷施硝基黄腐酸盐对春小麦的抗旱效应及其分析[J]. , 2005, 7(4): 46-50. |
[14] | 程旺大[1,3] 姚海根[1] 吴伟[2] 张国平[3]. 土壤-水稻体系中的重金属污染及其控制[J]. , 2005, 7(4): 51-54. |
[15] | 白雪梅. 黑河地区耕地土壤存在的主要问题及改良利用措施[J]. , 2005, 7(1): 42-45. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||