中国农业科技导报 ›› 2024, Vol. 26 ›› Issue (2): 181-190.DOI: 10.13304/j.nykjdb.2022.0682
• 生物制造 资源生态 • 上一篇
收稿日期:
2022-08-18
接受日期:
2022-10-31
出版日期:
2024-02-15
发布日期:
2024-02-04
通讯作者:
万新建
作者简介:
张景云E-mail:zhangjingyun0108@126.com;
基金资助:
Jingyun ZHANG(), Feng GUAN, Bo SHI, Xinjian WAN(
)
Received:
2022-08-18
Accepted:
2022-10-31
Online:
2024-02-15
Published:
2024-02-04
Contact:
Xinjian WAN
摘要:
为解决苦瓜生产上遇到的连作障碍问题,利用具有化感促进作用的小麦根系分泌物对苦瓜幼苗进行处理,以未经处理的为对照,分析苦瓜幼苗生长及其根际土壤酶活性和微生物多样性的变化。结果表明,3个苦瓜材料经小麦根系分泌物处理后的株高、茎粗、根长、生物量均较对照有所增加,处理组与对照组之间差异达到显著或极显著水平,株高和茎粗均随着生长天数的推迟呈增加趋势。在第5、10、15天时,处理组株高较对照组分别增加7.32%、14.67%、19.98%,茎粗较对照组分别增加7.98%、8.24%、10.89%;处理组根长、地上鲜重、地上干重、地下鲜重、地下干重较对照分别增加16.29%、18.08%、31.70%、33.74%、27.21%;处理组苦瓜幼苗根际土壤脲酶、多酚氧化酶、转移酶及过氧化氢酶活性分别提高84.88%、35.68%、443.73%、54.39%,并且差异达到显著或极显著水平。经小麦根系分泌物处理后,提高了苦瓜根际土壤中的细菌和放线菌数量和丰富度,降低了真菌数量及丰富度,主要降低了有致病潜力的镰刀菌属的相对丰度。综上所述,小麦根系分泌物可以提高土壤中酶活性,改善土壤生物学环境,促进苦瓜植株的生长,从而改变苦瓜连作产生的不良生态影响。
中图分类号:
张景云, 关峰, 石博, 万新建. 小麦根系分泌物对苦瓜幼苗生长及土壤生物学环境的影响[J]. 中国农业科技导报, 2024, 26(2): 181-190.
Jingyun ZHANG, Feng GUAN, Bo SHI, Xinjian WAN. Effects of Wheat Root Exudates on Bitter Gourd Seeding Growth and Soil Environment[J]. Journal of Agricultural Science and Technology, 2024, 26(2): 181-190.
类型 Type | 引物名称 Primer name | 引物序列 Primer sequence(5’-3’) | 备注 Comment |
---|---|---|---|
细菌16S rRNA Bacteria 16S rRNA | 341F | CCTACGGGNGGCWGCAG | V3/V4 |
806R | GGACTACHVGGGTWTCTAAT | ||
细菌 16S rRNA Bacteria 16S rRNA | 515F | GTGCCAGCMGCCGCGG | V4/V5 |
907R | CCGTCAATTCMTTTRAGTTT | ||
细菌16S rRNA Bacteria 16S rRNA | 515F | GTGCCAGCMGCCGCGG | V4 |
806R | GGACTACHVGGGTWTCTAAT | ||
真菌ITS Fungal ITS | ITS1F | CTTGGTCATTTAGAGGAAGTAA | ITS1 |
ITS1R | GCTGCGTTCTTCATCGATGC | ||
真菌ITS Fungal ITS | ITS2F | GCATCGATGAAGAACGCAGC | ITS2 |
ITS2R | TCCTCCGCTTATTGATATGC | ||
真核18S rRNA Eukaryon 18S rRNA | 528F | GCGGTAATTCCAGCTCCAA | V4 |
706R | CCTTCYGCAGGTTCACCTAC | ||
古菌 Archaea | Arch519F | CAGCCGCCGCGGTAA | |
Arch915R | GTGCTCCCCCGCCAATTCCT | ||
固氮菌 Azotobacter | nifH-PolF | TGCGAYCCSAARGCBGACTC | |
nifH-PolR | ATSGCCATCATYTCRCCGGA | ||
共生真菌 Symbiotic fungus | Endofun-F | AAGCTCGTAGTTGAATTTCG | |
Endofun-R | CCCAACTATCCCTATTAATCAT |
表1 真菌、细菌、放线菌扩增所用引物序列
Tabel 1 Primer sequences for amllification of fungal, bacteria and actinomycetes
类型 Type | 引物名称 Primer name | 引物序列 Primer sequence(5’-3’) | 备注 Comment |
---|---|---|---|
细菌16S rRNA Bacteria 16S rRNA | 341F | CCTACGGGNGGCWGCAG | V3/V4 |
806R | GGACTACHVGGGTWTCTAAT | ||
细菌 16S rRNA Bacteria 16S rRNA | 515F | GTGCCAGCMGCCGCGG | V4/V5 |
907R | CCGTCAATTCMTTTRAGTTT | ||
细菌16S rRNA Bacteria 16S rRNA | 515F | GTGCCAGCMGCCGCGG | V4 |
806R | GGACTACHVGGGTWTCTAAT | ||
真菌ITS Fungal ITS | ITS1F | CTTGGTCATTTAGAGGAAGTAA | ITS1 |
ITS1R | GCTGCGTTCTTCATCGATGC | ||
真菌ITS Fungal ITS | ITS2F | GCATCGATGAAGAACGCAGC | ITS2 |
ITS2R | TCCTCCGCTTATTGATATGC | ||
真核18S rRNA Eukaryon 18S rRNA | 528F | GCGGTAATTCCAGCTCCAA | V4 |
706R | CCTTCYGCAGGTTCACCTAC | ||
古菌 Archaea | Arch519F | CAGCCGCCGCGGTAA | |
Arch915R | GTGCTCCCCCGCCAATTCCT | ||
固氮菌 Azotobacter | nifH-PolF | TGCGAYCCSAARGCBGACTC | |
nifH-PolR | ATSGCCATCATYTCRCCGGA | ||
共生真菌 Symbiotic fungus | Endofun-F | AAGCTCGTAGTTGAATTTCG | |
Endofun-R | CCCAACTATCCCTATTAATCAT |
处理 Treatment | 株高 Plant height/cm | 茎粗 Stem diameter/mm | ||||
---|---|---|---|---|---|---|
5 d | 10 d | 15 d | 5 d | 10 d | 15 d | |
CK1 | 4.76 | 6.97 | 9.22 | 3.25 | 3.59 | 3.69 |
CK2 | 4.74 | 6.94 | 9.13 | 3.28 | 3.38 | 3.78 |
CK3 | 4.77 | 6.91 | 9.57 | 3.35 | 3.58 | 3.74 |
T1 | 5.21 | 7.96 | 11.00 | 3.51 | 3.69 | 4.11 |
T2 | 5.09 | 8.09 | 11.50 | 3.57 | 3.82 | 4.26 |
T3 | 5.01 | 7.83 | 11.00 | 3.58 | 3.91 | 4.06 |
表2 小麦根系分泌物影响下的苦瓜幼苗株高及茎粗
Table 2 Pant height and stem diameter of bitter gourd seeding affected by wheat root exudates
处理 Treatment | 株高 Plant height/cm | 茎粗 Stem diameter/mm | ||||
---|---|---|---|---|---|---|
5 d | 10 d | 15 d | 5 d | 10 d | 15 d | |
CK1 | 4.76 | 6.97 | 9.22 | 3.25 | 3.59 | 3.69 |
CK2 | 4.74 | 6.94 | 9.13 | 3.28 | 3.38 | 3.78 |
CK3 | 4.77 | 6.91 | 9.57 | 3.35 | 3.58 | 3.74 |
T1 | 5.21 | 7.96 | 11.00 | 3.51 | 3.69 | 4.11 |
T2 | 5.09 | 8.09 | 11.50 | 3.57 | 3.82 | 4.26 |
T3 | 5.01 | 7.83 | 11.00 | 3.58 | 3.91 | 4.06 |
差异源 Source of differences | 自由度 Degree of freedom | F值 F value | |||||
---|---|---|---|---|---|---|---|
株高 Plant height | 茎粗 Stem diameter | ||||||
5 d | 10 d | 15 d | 5 d | 10 d | 15 d | ||
处理组间Among treatment groups | 5 | 1.80 | 9.70** | 36.35** | 1.91 | 5.06** | 8.03** |
对照组间 Among control groups | 1 | 8.08* | 47.44** | 172.72** | 8.87* | 17.78** | 36.44** |
对照组内Within control groups | 2 | 0.01 | 0.02 | 1.75 | 0.23 | 2.03 | 0.29 |
处理组内Within treatment groups | 2 | 0.45 | 0.50 | 2.78 | 0.10 | 1.73 | 1.56 |
误差Error | 12 | ||||||
总计Total | 17 |
表3 苦瓜幼苗株高及茎粗的差异性分析
Table 3 Analysis of difference of pant height and stem diameter of bitter gourd seeding
差异源 Source of differences | 自由度 Degree of freedom | F值 F value | |||||
---|---|---|---|---|---|---|---|
株高 Plant height | 茎粗 Stem diameter | ||||||
5 d | 10 d | 15 d | 5 d | 10 d | 15 d | ||
处理组间Among treatment groups | 5 | 1.80 | 9.70** | 36.35** | 1.91 | 5.06** | 8.03** |
对照组间 Among control groups | 1 | 8.08* | 47.44** | 172.72** | 8.87* | 17.78** | 36.44** |
对照组内Within control groups | 2 | 0.01 | 0.02 | 1.75 | 0.23 | 2.03 | 0.29 |
处理组内Within treatment groups | 2 | 0.45 | 0.50 | 2.78 | 0.10 | 1.73 | 1.56 |
误差Error | 12 | ||||||
总计Total | 17 |
处理 Treatment | 根长 Root length/cm | 地上鲜重 Aboveground fresh matter/g | 地上干重 Aboveground dry matter/g | 地下鲜重 Root fresh matter/g | 地下干重 Root dry matter/g |
---|---|---|---|---|---|
CK1 | 10.33 | 4.19 | 0.51 | 0.33 | 0.03 |
CK2 | 10.94 | 4.22 | 0.45 | 0.35 | 0.04 |
CK3 | 10.78 | 4.65 | 0.50 | 0.34 | 0.04 |
T1 | 12.28 | 4.95 | 0.65 | 0.43 | 0.04 |
T2 | 12.67 | 5.16 | 0.62 | 0.44 | 0.04 |
T3 | 12.33 | 5.32 | 0.67 | 0.48 | 0.05 |
表4 小麦根系分泌物影响下的苦瓜根长及生物量
Table 4 Root and biomass of bitter gourds affected by wheat root exudates
处理 Treatment | 根长 Root length/cm | 地上鲜重 Aboveground fresh matter/g | 地上干重 Aboveground dry matter/g | 地下鲜重 Root fresh matter/g | 地下干重 Root dry matter/g |
---|---|---|---|---|---|
CK1 | 10.33 | 4.19 | 0.51 | 0.33 | 0.03 |
CK2 | 10.94 | 4.22 | 0.45 | 0.35 | 0.04 |
CK3 | 10.78 | 4.65 | 0.50 | 0.34 | 0.04 |
T1 | 12.28 | 4.95 | 0.65 | 0.43 | 0.04 |
T2 | 12.67 | 5.16 | 0.62 | 0.44 | 0.04 |
T3 | 12.33 | 5.32 | 0.67 | 0.48 | 0.05 |
差异源 Source of differences | 自由度 Degree of freedom | F值 F value | ||||
---|---|---|---|---|---|---|
根长 Root length | 地上鲜重 Aboveground fresh matter | 地上干重 Aboveground dry matter | 地下鲜重 Root fresh matter | 地下干重 Root dry matter | ||
处理组间 Among treatment groups | 5 | 29.83** | 13.06** | 12.50** | 18.66** | 6.81** |
对照组间 Among control groups | 1 | 140.25** | 53.60** | 57.71** | 86.87** | 29.66** |
对照组内 Within control groups | 2 | 3.08 | 3.83 | 1.39 | 0.41 | 1.40 |
处理组内 Within treatment groups | 2 | 1.37 | 1.96 | 1.01 | 2.80 | 0.79 |
误差 Error | 12 | |||||
总计 Total | 17 |
表5 苦瓜幼苗根长及生物量的差异性分析
Table 5 Analysis of difference of root and biomass of different bitter gourds
差异源 Source of differences | 自由度 Degree of freedom | F值 F value | ||||
---|---|---|---|---|---|---|
根长 Root length | 地上鲜重 Aboveground fresh matter | 地上干重 Aboveground dry matter | 地下鲜重 Root fresh matter | 地下干重 Root dry matter | ||
处理组间 Among treatment groups | 5 | 29.83** | 13.06** | 12.50** | 18.66** | 6.81** |
对照组间 Among control groups | 1 | 140.25** | 53.60** | 57.71** | 86.87** | 29.66** |
对照组内 Within control groups | 2 | 3.08 | 3.83 | 1.39 | 0.41 | 1.40 |
处理组内 Within treatment groups | 2 | 1.37 | 1.96 | 1.01 | 2.80 | 0.79 |
误差 Error | 12 | |||||
总计 Total | 17 |
处理 Treatment | 脲酶活性 Urease activity/ (µg·g-1·d-1) | 多酚氧化酶活性 Polyphenol oxidase activity/ (mg·g-1·d-1) | 转化酶活性 Invertase activity/ (µg·g-1·d-1) | 过氧化氢酶活性 Catakase activity/ (µmol·g-1·d-1) |
---|---|---|---|---|
CK1 | 425.63 | 29.60 | 5.30 | 17.50 |
CK2 | 495.63 | 28.77 | 7.77 | 18.53 |
CK3 | 482.30 | 29.27 | 3.93 | 19.00 |
T1 | 882.30 | 39.27 | 32.60 | 29.27 |
T2 | 864.63 | 39.60 | 30.43 | 27.60 |
T3 | 847.97 | 40.03 | 29.40 | 28.10 |
表6 小麦根系分泌物影响下的苦瓜根际土壤酶活性
Table 6 Activity of soil enzymes of bitter gourds rhizosphere affected by wheat root exudates
处理 Treatment | 脲酶活性 Urease activity/ (µg·g-1·d-1) | 多酚氧化酶活性 Polyphenol oxidase activity/ (mg·g-1·d-1) | 转化酶活性 Invertase activity/ (µg·g-1·d-1) | 过氧化氢酶活性 Catakase activity/ (µmol·g-1·d-1) |
---|---|---|---|---|
CK1 | 425.63 | 29.60 | 5.30 | 17.50 |
CK2 | 495.63 | 28.77 | 7.77 | 18.53 |
CK3 | 482.30 | 29.27 | 3.93 | 19.00 |
T1 | 882.30 | 39.27 | 32.60 | 29.27 |
T2 | 864.63 | 39.60 | 30.43 | 27.60 |
T3 | 847.97 | 40.03 | 29.40 | 28.10 |
差异源 Source of differences | 自由度 Degree of freedom | F值 F value | |||
---|---|---|---|---|---|
脲酶活性 Urease activities | 多酚氧化酶活性Polyphenol oxidase activities | 转化酶活性Invertase activities | 过氧化氢酶活性Catakase activities | ||
处理组间 Among treatment groups | 5 | 76.10** | 236.19** | 147.45** | 262.19** |
对照组间 Among control groups | 1 | 375.20** | 1 176.26** | 5.87* | 1 288.19** |
对照组内 Within control groups | 2 | 2.19 | 1.27 | 2.07 | 5.08* |
处理组内 Within treatment groups | 2 | 0.47 | 1.07 | 25.46** | 6.31* |
误差Error | 12 | ||||
总计Total | 17 |
表7 苦瓜根际土壤酶活性的差异性分析
Table 7 Analysis of difference of the activity of soil enzymes
差异源 Source of differences | 自由度 Degree of freedom | F值 F value | |||
---|---|---|---|---|---|
脲酶活性 Urease activities | 多酚氧化酶活性Polyphenol oxidase activities | 转化酶活性Invertase activities | 过氧化氢酶活性Catakase activities | ||
处理组间 Among treatment groups | 5 | 76.10** | 236.19** | 147.45** | 262.19** |
对照组间 Among control groups | 1 | 375.20** | 1 176.26** | 5.87* | 1 288.19** |
对照组内 Within control groups | 2 | 2.19 | 1.27 | 2.07 | 5.08* |
处理组内 Within treatment groups | 2 | 0.47 | 1.07 | 25.46** | 6.31* |
误差Error | 12 | ||||
总计Total | 17 |
微生物类群 Microbial group | 处理 Treatment | Chao1指数 Chao1 index | Shannon指数 Shannon index | Simpson指数 Simpson index | 覆盖度 Coverage/% |
---|---|---|---|---|---|
真菌Fungal | 处理组 Treatment group | 237.71 | 4.04 | 0.86 | 99.75 |
对照组 Control group | 345.56 | 5.47 | 0.94 | 99.94 | |
细菌Bacteria | 处理组 Treatment group | 4 712.36 | 9.53 | 1.00 | 99.65 |
对照组 Control group | 4 375.00 | 9.07 | 1.00 | 99.61 | |
放线菌Actinomycete | 处理组 Treatment group | 5 068.92 | 9.51 | 1.00 | 99.53 |
对照组 Control group | 4 763.85 | 9.04 | 1.00 | 99.51 |
表8 小麦根系分泌物影响下的土壤微生物多样性
Table 8 Soil microbial diversity affected by wheat root exudates
微生物类群 Microbial group | 处理 Treatment | Chao1指数 Chao1 index | Shannon指数 Shannon index | Simpson指数 Simpson index | 覆盖度 Coverage/% |
---|---|---|---|---|---|
真菌Fungal | 处理组 Treatment group | 237.71 | 4.04 | 0.86 | 99.75 |
对照组 Control group | 345.56 | 5.47 | 0.94 | 99.94 | |
细菌Bacteria | 处理组 Treatment group | 4 712.36 | 9.53 | 1.00 | 99.65 |
对照组 Control group | 4 375.00 | 9.07 | 1.00 | 99.61 | |
放线菌Actinomycete | 处理组 Treatment group | 5 068.92 | 9.51 | 1.00 | 99.53 |
对照组 Control group | 4 763.85 | 9.04 | 1.00 | 99.51 |
1 | ACOSTA-MARTINEZ V, BUROW G, ZOBECK T M, et al.. Soil microbial communities and function in alternative systems to continuous cotton [J]. Soil Sci. Soc. Am. J., 2010, 74: 1181-1192. |
2 | LI C G, LI X M, KONG W D, et al.. Effect of monoculture soybean on soil microbial community in the Northeast China [J]. Plant Soil, 2010, 330: 423-433. |
3 | 李培栋, 王兴祥, 李奕林, 等. 连作花生土壤中酚酸类物质的检测及其对花生的化感作用[J]. 生态学报, 2010, 30(8): 2128-2134. |
LI P D, WANG X X, LI Y L, et al.. The contents of phenolic acids in continuous cropping peanut and their allelopathy [J]. Acta Ecol. Sin., 2010, 30(8): 2128-2134. | |
4 | LI X G, ZHANG T L, WANG X X, et al.. The composition of root exudates from two different resistant peanut cultivars and their effects on the growth of soil-borne pathogen [J]. Int. J. Biol. Sci., 2013, 9: 164-173. |
5 | 高雪峰, 韩国栋. 根分泌物2,4-二叔丁基苯酚对短花针茅荒漠草原土壤细菌群落的影响[J]. 生态环境学报, 2019, 28(9): 1731-1738. |
GAO X F, HAN G D. Effects of root exudate 2, 4-bis (1,1-dimethylethyl)-phenol on soil bacterial community in Stipa breviflora desert steppe [J]. Ecol. Environ. Sci., 2019, 28(9): 1731-1738. | |
6 | 王宇蕴, 任家兵, 张莹, 等. 小麦蚕豆间作改善蚕豆根际微生物区系与减轻蚕豆枯萎病的作用[J]. 土壤通报, 2020, 51(5): 1127-1133. |
WANG Y Y, REN J B, ZHANG Y, et al.. Effect of wheat and faba bean intercropping on improving rhizosphere microflora and reducing fusarium wilt of faba bean [J]. Chin. J. Soil. Sci., 2020, 51(5): 1127-1133. | |
7 | 马亚飞, 杨平, 吴凤芝. 不同品系小麦根系分泌物对黄瓜化感作用的初步研究[J]. 中国蔬菜, 2011(10) :23-27. |
MA Y F, YANG P, WU F Z. Primary studies about root exudates from different wheat cultivars on cucumber allelopathy [J]. China Veget., 2011(10) : 23-27. | |
8 | BIRKETT M A, CHAMBERLAIN K, HOOPER A M, et al.. Dose allelopathy offer real promise for practical weed management and for explaining rhizosphere interactions involving higher plants [J]. Plant Soil, 2001, 232: 31-39. |
9 | 王晓菲, 罗珠珠, 张仁陟, 等. 黄土高原苜蓿粮食作物轮作下土壤细菌群落特征和生态功能预测[J]. 应用生态学报, 2022, 33(4): 1109-1117. |
WANG X F, LUO Z Z, ZHANG R Z, et al.. Soil bacterial community characteristics and ecological function of alfalfa and crop rotation systems in the loess plateau, Northwest China [J]. Chin. J. Appl. Ecol., 2022, 33(4): 1109-1117. | |
10 | 王东凯, 杨威, 吴凤芝. 不同栽培模式对设施黄瓜生长发育及土壤微生物数量的影响[J]. 东北农业大学学报, 2012, 43(7): 95-99. |
WANG D K, YANG W, WU F Z. Effect of different cultivation modes on cucumber growth and the numbers of culturable rhizosphere soil microorganisms [J]. J. Northeast Agric. Univ., 2012, 43(7): 95-99. | |
11 | 黄高宝, 柴强. 植物化感作用表现形式及其开发应用研究[J]. 中国生态农业学报, 2003, 11(3): 172-174. |
HUANG G B, CHAI Q. Acting formations and applying development of allelopathy [J]. Chin. J. Eco-Agric., 2003, 11(3): 172-174. | |
12 | 由海霞, 梁银丽, 吕文, 等. 不同作物根系分泌物对黄瓜的化感作用[J]. 西北农林科技大学学报(自然科学版), 2006,34(6): 101-105. |
YOU H X, LIANG Y L, LYU W, et al.. Reseach on the allelopathy of root secretion of different crops on cucumber(Cucumis statirus L.) [J]. J. Northwest A&F Univ. (Nat. Sci.), 2006,34(6): 101-105. | |
13 | 杨平, 吴凤芝. 不同化感效应的小麦根系分泌物对黄瓜幼苗生长及根系生理生化特性的影响[J].中国蔬菜, 2012(4): 37-42. |
YANG P, WU F Z. Effects of root aqueous extracts of wheat cultivars with different allelopathy potential on cucumber seedlings growth and physiological and biochemical characters of cucumber root [J]. China Veget., 2012(4): 37-42. | |
14 | 吴凤芝, 李敏, 曹鹏, 等. 小麦根系分泌物对黄瓜生长及土壤真菌群落结构的影响[J]. 应用生态学报, 2014, 25(10): 2861-2867. |
WU F Z, LI M, CAO P, et al.. Effects of wheat root exudates on cucumber growth and soil fungal community structure [J]. J. Appl. Ecol., 2014, 25(10): 2861-2867. | |
15 | 邱秋金, 林瑞余. 不同化感小麦根系分泌物对看麦娘內源激素含量的影响[J]. 福建师范大学学报(自然科学版), 2016, 32(3): 103-108. |
QIU Q J, LIN R Y. Impacts of root exudates from different allelopathy wheat (triticum aestivum L.) on hormone contents in leaf and root tissues of alopecurus aequalis [J]. J. Fujian Norm. Univ. (Nat. Sci.), 2016, 32(3) : 103-108. | |
16 | 邱秋金, 洪涌, 肖清铁, 等. 化感小麦根系分泌物对看麦娘生长及保护酶活性的影响[J]. 福建师范大学学报(自然科学版), 2019, 48(5): 545-549. |
QIU Q J, HONG Y, XIAO Q T, et al.. Impacts of root exudates from allelopathy wheat (Triticum aestivum L.) on the growth and protective enzyme activity of Alopecurus aequalis (L.) [J]. J. Fujian Norm. Univ. (Nat. Sci.), 2019, 48(5): 545-549. | |
17 | 董航, 吴金宝, 秦开, 等. 不同品种小麦根系分泌物对黄瓜生长、枯萎病发生及病原菌的影响[J]. 中国蔬菜, 2022(9): 30-38. |
DONG H, WU J B, QIN K, et al.. Effects of root exudates of different wheat varieties on cucumber growth fusarium wilt occurrence and pathogenic bacteria [J]. China Veget., 2022(9): 30-38. | |
18 | 杨海婧, 田丰, 马永清, 等. 小麦、蚕豆和油菜根系分泌物对麻花艽种子萌发的影响[J]. 湖北农业科学, 2016, 55(14): 3631-3634. |
YANG H J, TIAN F, MA Y Q, et al.. Effect of wheat, broad bean and oilseed rape root extracts on germination of Gentianae straminea seeds [J]. Hubei Agric. Sci., 2016, 55(14): 3631-3634. | |
19 | 孙丛丛, 刘守伟, 吴凤芝. 不同品系小麦根系分泌物对西瓜幼苗生长的化感效应[J]. 沈阳农业大学学报, 2013, 44(5): 628-633. |
SUN C C, LIU S W, WU F Z. Allelopathy effects of root exudates from different wheat cultivars on watermelon seeding growth [J]. J. Shenyang Agric. Univ., 2013, 44(5): 628-633. | |
20 | 吴凤芝, 王学征, 潘凯. 小麦和大豆茬口对黄瓜土壤微生物生态特征的影响[J]. 应用生态学报, 2008, 19(4): 794-798. |
WU F Z, WANG X Z, PAN K. Effects of wheat and soybean stubbles on soilm icrobial ecological characteristics in cucumber field [J]. J. Appl. Ecol., 2008, 19(4): 794-798. | |
21 | 吴凤芝, 王学征. 黄瓜与小麦和大豆轮作对土壤微生物群落多样性的影响[J]. 园艺学报, 2007, 34(6): 1543-1546. |
WU F Z, WANG X Z. Effect of soybean-cucumber and wheat-cucumber rotation on soil microbial community species diversity [J]. Acta Hortic. Sin., 2007, 34(6): 1543-1546. | |
22 | 王玉彦, 吴凤芝, 周新刚. 不同间作模式对设施黄瓜生长及土壤环境的影响[J]. 中国蔬菜, 2009(16): 8-13. |
WANG Y Y, WU F Z, ZHOU X G. Effects of different intercropping patterns on the growth of cucunber in greenhouse and soil environment [J]. China Veget., 2009(16): 8-13. | |
23 | WU F Z, HAN X, WANG X Z. Allelopathic effect of root exudates of cucumber cultivars on fusarium oxysporum [J]. Allelopathy J., 2006, 18(1): 163-172. |
24 | 杨平, 吴凤芝. 不同化感效应小麦根系分泌物对黄瓜幼苗叶片保护酶活性及渗透调节物质的影响[J]. 中国蔬菜, 2011(12): 32-36. |
YANG P, WU F Z. Effect of aqueous root extracts of different allelopathic wheat on protective enzymes and osmotic adjustments of cucumber seedlings [J]. China Veget., 2011(12): 32-36. | |
25 | RILEY D, BARKAR S A. Bicarbonate accumulation and pH changes at the soybean root-soil interface [J]. Soil Sci. Soc. Am. J.,1969, 33: 905-908. |
26 | 刘守伟, 杨阳, 潘凯, 等. 分蘖洋葱根系分泌物对黄瓜幼苗土壤养分及土壤酶活性的影响[J]. 中国蔬菜, 2012(14): 51-58. |
LIU S W, YANG Y, PAN K, et al.. Effects of root exudates of tillering onion on cucumber soil nutrients and enzyme activities [J]. China Veget., 2012(14):51-58. | |
27 | 孔维宝, 霍焕燃, 陈冬, 等. 基于高通量测序技术分析武都油橄榄根际土壤微生物多样性[J]. 西北师范大学学报 (自然科学版), 2020, 56(6): 75-82. |
KONG W B, HUO H R, CHEN D, et al.. Analysis of microbial diversity in rhizosphere soil of wudu olive using high-throughput sequencing [J]. J. Northwest Norm. Univ. (Nat. Sci.), 2020, 56(6): 75-82. | |
28 | 王磊, 王静, 张爱君, 等. 小麦-甘薯轮作长期增施有机肥对碱性土壤固氮菌群落结构及多样性的影响[J]. 生态学报, 2020, 40(16): 5771-5782. |
WANG L, WANG J, ZHANG A J, et al.. Effects of long-term organic fertilization on soil diazotrophic community structure and diversity under wheat-sweet potato rotation system [J]. Acta Ecol. Sin., 2020, 40(16): 5771-5782. | |
29 | KEMP P F, ALLE J Y. Bacterial diversity in aquatic and other environments: what 16S rDNA libraries can tell us [J]. FEMS Microbiol. Ecol., 2004, 47(2): 161-177. |
30 | LU L, XING D F, REN N Q. Pyrosequencing reveals highly diverse microbial communities in microbial electrolysis cells involved in enhanced H2 production from waste activated sludge [J]. Water Res., 2012, 46: 2425-2434. |
31 | 宋健, 张海剑, 刘莉, 等. 高通量测序分析高温覆膜对韭菜根际微生物多样性的影响[J]. 中国生物防治学报, 2020, 36(6): 938-945. |
SONG J, ZHANG H J, LIU L, et al.. Effect of high temperature film mulching on soil microbial functional diversity by high throughput sequencing [J]. Chin. J. Biol. Control, 2020, 36(6): 938-945. | |
32 | 高雪峰, 韩国栋, 张国刚. 短花针茅荒漠草原土壤微生物群落组成及结构[J]. 生态学报, 2017, 37(15): 5129-5136. |
GAO X F, HAN G D, ZHANG G G. Soil microbial community structure and composition of stipa breviflora on the desert steppe [J]. Acta Ecol. Sin., 2017, 37(15): 5129-5136. | |
33 | 杨胜香, 李凤梅, 彭禧柱, 等. 不同碳氮磷源改良剂对铅锌尾矿废弃地土壤微生物群落结构的影响[J].农业环境科学学报, 2019, 38(6): 1256-1264. |
YANG S X, LI F M, PENG X Z, et al.. Effects of amendments with different C/N/P ratios on the microbial community structure in Pb-Zn mine tailings [J]. J. Agro-Environ. Sci., 2019, 38(6): 1256-1264. | |
34 | 张晓晓. 小麦伴生对西瓜枯萎病和根际土壤微生物的影响[D]. 哈尔滨: 东北农业大学, 2017. |
ZHANG X X. Effect of watermelon companion with wheat on fusarium wilt and soil microorganism [D]. Harbin: Northeast Agricultural University, 2017. | |
35 | 吕可, 潘开文, 王进闯, 等. 花椒叶浸提液对土壤微生物数量和土壤酶活性的影响[J]. 应用生态学报, 2006, 17(9): 1649-1654. |
LYU K, PAN K W, WANG J C, et al.. Effects of Zanthoxylum bungeanum leaf extract on soil microbe quantity and enzyme activities [J]. J. Appl. Ecol., 2006, 17(9): 1649-1654. | |
36 | 李雪峤, 吴凤芝. 盐胁迫下苯丙烯酸对黄瓜幼苗生长及根际土壤酶活性的影响[J]. 中国蔬菜, 2010(18): 15-22. |
LI X Q, WU F Z. Effects of cinnamic acid on cucumber seedling growth and rhizosphere soil enzyme activities under salt stress [J]. China Veget., 2010(18): 15-22. | |
37 | 杨阳. 分蘖洋葱根系分泌物的化感作用及其应用[D]. 哈尔滨: 东北农业大学, 2010. |
YANG Y. Allelopathy of Chinese onion root evudates on cucumber and its application [D]. Harbin: Northeast Agricultural University, 2020. | |
38 | 易艳灵, 吴丽英, 杨倩, 等. 柏木根系分泌物对盆栽香椿土壤养分和酶活性的影响[J]. 生态学杂志, 2019, 38(7): 2080-2086. |
YI Y L, WU L Y, YANG Q, et al.. Effects of root exudates of Cupressus funebris on soil nutrients and enzyme activities of potted Toona sinensis [J]. Chin. J. Ecol., 2019, 38(7): 2080-2086. | |
39 | 田晴, 高丹美, 李慧, 等. 小麦根系分泌物对西瓜连作土壤真菌群落结构的影响[J]. 中国农业科学, 2020, 53(5): 1018-1028. |
TIAN Q, GAO D M, LI H, et al.. Effects of wheat root exudates on the structure of fungi community in continuous cropping watermelon soil [J]. Sci. Agric. Sin., 2020, 53(5): 1018-1028. |
[1] | 邹芳,杨秀柳,黄思麒,王志恒,魏玉清*. 外源亚精胺对干旱胁迫下甜高粱幼苗生长及生理生化指标的影响[J]. 中国农业科技导报, 2020, 22(4): 44-52. |
[2] | 李亚莉,侯栋*,岳宏忠,张东琴. 尖孢镰孢菌对抗病和感病黄瓜幼苗生长及叶片游离氨基酸的影响[J]. 中国农业科技导报, 2019, 21(11): 94-102. |
[3] | 孟长军. 铝胁迫对白苦瓜幼苗生长状况和生理特性的影响[J]. 中国农业科技导报, 2018, 20(8): 23-28. |
[4] | 颜仕龙1§,蔡波2,3§,唐华玲4,袁洋5,敖苏2,3*. 苦瓜不同部位化感作用研究[J]. 中国农业科技导报, 2018, 20(8): 100-107. |
[5] | 陈印军,杨俊彦,方琳娜. 我国耕地土壤环境质量状况分析[J]. , 2014, 16(2): 14-18. |
[6] | 张士功|高吉寅|宋景芝 . 水杨酸对提高小麦抗盐效应的研究[J]. , 1999, 1(1): 32-35. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||