中国农业科技导报 ›› 2024, Vol. 26 ›› Issue (6): 214-225.DOI: 10.13304/j.nykjdb.2023.0098
• 方法与技术创新 • 上一篇
收稿日期:
2023-02-16
接受日期:
2023-05-05
出版日期:
2024-06-15
发布日期:
2024-06-12
通讯作者:
吕晨泽
作者简介:
张笑笑 E-mail: 812464699@qq.com;
基金资助:
Xiaoxiao ZHANG(), Xiaoqian LI, Cheng ZHU, Chenze LYU(
)
Received:
2023-02-16
Accepted:
2023-05-05
Online:
2024-06-15
Published:
2024-06-12
Contact:
Chenze LYU
摘要:
刀豆凝集素主要存在于刀豆中,是一种能与多糖、糖蛋白等物质发生特异性结合的植物凝集素。刀豆凝集素具有抗营养和抗虫害作用,是植物自我保护的重要环节,也是造成食用豆类食物中毒和过敏反应的主要原因。因此刀豆凝集素的检测对豆类蔬菜的育种、食用安全性评估等工作具有重要意义。详细介绍了新型刀豆凝集素快速检测技术的研究进展,包括基于纳米材料的生物传感器、免疫传感技术、糖传感技术和核酸适配体传感技术等。基于纳米材料的生物传感器具有较高的精度但是缺乏生物特异性;免疫传感技术改进了传统免疫法的检测速度但仍存在信号重复性差的问题;糖传感技术大幅提升了血凝法的特异性和检测精度,但无法区分糖特异性相同的凝集素。基于核酸适配体的检测技术具有优秀的检测精度、特异性和可重复性,还可通过化学修饰获得非天然核酸适配体进一步加强特异性,是未来刀豆凝集素快速检测的发展趋势。
中图分类号:
张笑笑, 李晓倩, 朱诚, 吕晨泽. 刀豆凝集素快速检测技术的研究现状及发展趋势[J]. 中国农业科技导报, 2024, 26(6): 214-225.
Xiaoxiao ZHANG, Xiaoqian LI, Cheng ZHU, Chenze LYU. Research Status and Development Trend of Rapid Detection of Agglutinin in Concanavalin A[J]. Journal of Agricultural Science and Technology, 2024, 26(6): 214-225.
图3 不同物质与凝集素特异性结合A:核酸适配体-凝集素特异性结合; B:糖-凝集素特异性结合; C:非天然核酸适配体-凝集素特异性结合
Fig. 3 Different substances bind specifically to lectinsA:Specific binding of aptamer-lectin; B:Specific binding of sugar-lectin; C:Specific binding non natural aptamer-lectin
传感器类型 Sensor type | 具体方法 Concrete method | 检测限 Limit of detection | 线性范围 Linearity range | 文献 Reference |
---|---|---|---|---|
电化学发光 ECL | 石墨烯量子点 GQDs | 0.16 pg·mL-1 | 0.5 pg·mL-1~1.0 ng·mL-1 | [ |
电化学发光 ECL | 牛血清白蛋白-富勒烯/铂-钛-苝四羧酸二酐复合材料 BSA-C60/Pt-TiO2-PTC composite | 1.81×10-5 ng·mL-1 | 1.0×10-4~1.0×103 ng·mL-1 | [ |
表面等离子体共振 LSPR | 金纳米团簇 AuNCs | 2 nmol·L-1 | 10 nmol·L-1~10 μmol·L-1 | [ |
荧光 Fluorescence | 硼酸修饰碳点和荧光微球 BCDs and FMs | 0.089 μg·mL-1 | 0.125~12.500 μg·mL-1 | [ |
光电化学 Photoelectrochemistry | 硫化银和溴氧化铋复合材料 Ag2S and BiOBr oxide composite | 0.35 pg·mL-1 | 1.0×10-3~1.0×103 ng·mL-1 | [ |
电化学发光 ECL | 多壁碳纳米管配合物 Multi-walled carbon nanotube complexes | 0.3 pg·mL-1 | 0.5 pg·mL-1~100.0 ng·mL-1 | [ |
荧光 Fluorescence | 金纳米团簇 AuNCs | 0.62 nmol·L-1 | 0.01~1.00 μmol·L-1 | [ |
电化学发光 ECL | 氮化硼量子点 BNQDs | 0.15 pg·mL-1 | 1.0 pg·mL-1~1.0 μg·mL-1 | [ |
离子敏感的场效应晶体管 ISFET | 银纳米颗粒 AgNPs | 0.16 ng·mL-1 | — | [ |
电化学发光 ECL | 金纳米颗粒 AuNPs | 0.146 µg·mL-1 | 0.19~10.00 µg·mL-1 | [ |
场效应晶体管 FET | 金纳米颗粒 AuNPs | 105 nmol·L-1 | — | [ |
表1 Con A不同检测方法的比较
Table 1 Comparison of different detection methods for Con A
传感器类型 Sensor type | 具体方法 Concrete method | 检测限 Limit of detection | 线性范围 Linearity range | 文献 Reference |
---|---|---|---|---|
电化学发光 ECL | 石墨烯量子点 GQDs | 0.16 pg·mL-1 | 0.5 pg·mL-1~1.0 ng·mL-1 | [ |
电化学发光 ECL | 牛血清白蛋白-富勒烯/铂-钛-苝四羧酸二酐复合材料 BSA-C60/Pt-TiO2-PTC composite | 1.81×10-5 ng·mL-1 | 1.0×10-4~1.0×103 ng·mL-1 | [ |
表面等离子体共振 LSPR | 金纳米团簇 AuNCs | 2 nmol·L-1 | 10 nmol·L-1~10 μmol·L-1 | [ |
荧光 Fluorescence | 硼酸修饰碳点和荧光微球 BCDs and FMs | 0.089 μg·mL-1 | 0.125~12.500 μg·mL-1 | [ |
光电化学 Photoelectrochemistry | 硫化银和溴氧化铋复合材料 Ag2S and BiOBr oxide composite | 0.35 pg·mL-1 | 1.0×10-3~1.0×103 ng·mL-1 | [ |
电化学发光 ECL | 多壁碳纳米管配合物 Multi-walled carbon nanotube complexes | 0.3 pg·mL-1 | 0.5 pg·mL-1~100.0 ng·mL-1 | [ |
荧光 Fluorescence | 金纳米团簇 AuNCs | 0.62 nmol·L-1 | 0.01~1.00 μmol·L-1 | [ |
电化学发光 ECL | 氮化硼量子点 BNQDs | 0.15 pg·mL-1 | 1.0 pg·mL-1~1.0 μg·mL-1 | [ |
离子敏感的场效应晶体管 ISFET | 银纳米颗粒 AgNPs | 0.16 ng·mL-1 | — | [ |
电化学发光 ECL | 金纳米颗粒 AuNPs | 0.146 µg·mL-1 | 0.19~10.00 µg·mL-1 | [ |
场效应晶体管 FET | 金纳米颗粒 AuNPs | 105 nmol·L-1 | — | [ |
检测技术 Measurement technique | 灵敏度 Sensitivity | 设备需求 Demand for equipment | 检测成本 Inspection cost | 通量 Flux | 操作 Operation | 速度 Speed | 特异性 Specificity |
---|---|---|---|---|---|---|---|
质谱、色谱等高ECL精度检测设备 MS, chromatography and other high precision detection equipment | 高 High | 高 High | 高 High | 低 Low | 高 High | 慢 Slow | 高 High |
血凝法 Hemagglutination method | 中等 Medium | 低 Low | 中等 Medium | 高 High | 低 Low | 快 Fast | 低 Low |
免疫法 Immunoassay method | 中等 Medium | 中等 Medium | 中等 Medium | 高 High | 中等 Medium | 中等 Medium | 中等 Medium |
基于纳米材料的生物传感技术 Nanomaterial based biosensing technology | 高 High | 高 High | 高 High | 若与微阵列结合具有高通量检测的潜质 It has the potential of high throughput detection when combined with microarray | 中等 Medium | 快 Fast | 低 Low |
免疫传感技术 Immunosensing technology | 高 High | 中等 Medium | 高 High | 若与微阵列结合具有高通量检测的潜质 It has the potential of high throughput detection when combined with microarray | 中等 Medium | 快 Fast | 中等 Medium |
糖传感技术 Sugar sensing technology | 高 High | 中等 Medium | 中等 Medium | 若与微阵列结合具有高通量检测的潜质 It has the potential of high throughput detection when combined with microarray | 中等 Medium | 快 Fast | 高,但是不能区分糖特异性相同的凝集素 High, but not distinguishable from lectins with the same sugar specificity |
核酸适配体传感技术 Aptamer sensing technology | 高 High | 中等 Medium | 中等 Medium | 若与微阵列结合具有高通量检测的潜质 It has the potential of high throughput detection when combined with microarray | 中等 Medium | 快 Fast | 中等,非天然核酸适配体高 Medium,non-natural aptamers are high |
表2 Con A不同检测技术的比较
Table 2 Comparison of different detection techniques for Con A
检测技术 Measurement technique | 灵敏度 Sensitivity | 设备需求 Demand for equipment | 检测成本 Inspection cost | 通量 Flux | 操作 Operation | 速度 Speed | 特异性 Specificity |
---|---|---|---|---|---|---|---|
质谱、色谱等高ECL精度检测设备 MS, chromatography and other high precision detection equipment | 高 High | 高 High | 高 High | 低 Low | 高 High | 慢 Slow | 高 High |
血凝法 Hemagglutination method | 中等 Medium | 低 Low | 中等 Medium | 高 High | 低 Low | 快 Fast | 低 Low |
免疫法 Immunoassay method | 中等 Medium | 中等 Medium | 中等 Medium | 高 High | 中等 Medium | 中等 Medium | 中等 Medium |
基于纳米材料的生物传感技术 Nanomaterial based biosensing technology | 高 High | 高 High | 高 High | 若与微阵列结合具有高通量检测的潜质 It has the potential of high throughput detection when combined with microarray | 中等 Medium | 快 Fast | 低 Low |
免疫传感技术 Immunosensing technology | 高 High | 中等 Medium | 高 High | 若与微阵列结合具有高通量检测的潜质 It has the potential of high throughput detection when combined with microarray | 中等 Medium | 快 Fast | 中等 Medium |
糖传感技术 Sugar sensing technology | 高 High | 中等 Medium | 中等 Medium | 若与微阵列结合具有高通量检测的潜质 It has the potential of high throughput detection when combined with microarray | 中等 Medium | 快 Fast | 高,但是不能区分糖特异性相同的凝集素 High, but not distinguishable from lectins with the same sugar specificity |
核酸适配体传感技术 Aptamer sensing technology | 高 High | 中等 Medium | 中等 Medium | 若与微阵列结合具有高通量检测的潜质 It has the potential of high throughput detection when combined with microarray | 中等 Medium | 快 Fast | 中等,非天然核酸适配体高 Medium,non-natural aptamers are high |
1 | TSANEVA M, VAN DAMME E J M. 130 years of plant lectin research [J]. Glycoconj. J., 2020, 37(5): 533-551. |
2 | NAITHANI S, KOMATH S S, NONOMURA A, et al.. Plant lectins and their many roles: carbohydrate-binding and beyond [J/OL]. J. Plant Physiol., 2021, 266:153531 [2023-01-16]. . |
3 | AHIRWAR R, NAHAR P. Screening and identification of a DNA aptamer to concanavalin A and its application in food analysis [J]. J. Agric. Food Chem., 2015, 63(16): 4104-4111. |
4 | SUMNER J B, HOWELL S F. The isolation of a fourth crystallizable jack bean globulin through the digestion of canavalin with trypsin [J]. J. Biol. Chem., 1936, 113(3): 607-610. |
5 | CAVADA B S, OSTERNE V J S, LOSSIO C F, et al.. One century of ConA and 40 years of ConBr research: a structural review [J]. Int. J. Biol. Macromol., 2019, 134: 901-911. |
6 | PAN L, YUAN Z, FAROUK M H, et al.. Isolation and analysation of soybean agglutinin-specific binding proteins for erythrocyte membrane in different animal species [J]. Ital. J. Anim. Sci., 2021, 20(1): 84-93. |
7 | KUMAR S, VERMA A K, DAS M, et al.. Molecular mechanisms of IgE mediated food allergy [J]. Int. Immunopharmacol., 2012, 13(4): 432-439. |
8 | KUMAR S, VERMA A K, DAS M, et al.. Clinical complications of kidney bean (Phaseolus vulgaris L.) consumption [J]. Nutrition, 2013, 29(6): 821-827. |
9 | MIYAKE K, TANAKA T, MCNEIL P L. Lectin-based food poisoning: a new mechanism of protein toxicity [J/OL]. PLoS One, 2007, 2(8): e687 [2023-01-16]. . |
10 | NONIS S G, HAYWOOD J, SCHMIDBERGER J W, et al.. Structural and biochemical analyses of concanavalin A circular permutation by jack bean asparaginyl endopeptidase [J]. Plant Cell, 2021, 33(8): 2794-2811. |
11 | JANG H, LEE C, HWANG Y, et al.. Concanavalin A: coordination diversity to xenobiotic metal ions and biological consequences [J]. Dalton Trans., 2021, 50(48): 17817-17831. |
12 | GERLITS O O, COATES L, WOODS R J, et al.. Mannobiose binding induces changes in hydrogen bonding and protonation states of acidic residues in concanavalin A as revealed by neutron crystallography [J]. Biochemistry, 2017, 56(36): 4747-4750. |
13 | HULDANI H, RASHID A I, TURAEV K N, et al.. Concanavalin A as a promising lectin-based anti-cancer agent: the molecular mechanisms and therapeutic potential [J/OL]. Cell Commun. Signal., 2022, 20(1): 167 [2023-01-16]. . |
14 | JIANG H R, WEN X X, ZHANG X, et al.. Concanavalin A inhibits human liver cancer cell migration by regulating F-actin redistribution and assembly via MAPK signaling pathway [J/OL]. Oncol. Lett., 2022, 24(5): 405 [2023-01-16]. . |
15 | YE T, WANG T, YANG X, et al.. Comparison of concanavalin A-induced murine autoimmune hepatitis models [J]. Cell. Physiol. Biochem., 2018, 46(3): 1241-1251. |
16 | HE S, SIMPSON B K, SUN H, et al.. Phaseolus vulgaris lectins: a systematic review of characteristics and health implications [J]. Crit. Rev. Food Sci. Nutr., 2018, 58(1): 70-83. |
17 | 代素娥, 魏科, 邓鹏, 等. 一起食用未成熟刀豆引起食物中毒的调查分析[J]. 医学动物防制, 2022, 38(4): 402-404, 408. |
DAI S E, WEI K, DENG P, et al.. An investigation and analysis on food poisoning caused by consuming immature concanavalin [J]. J. Med. Pest Control, 2022, 38(4): 402-404, 408. | |
18 | 任三国, 陈高, 郭瑞, 等. 121份菜豆品种资源的植物凝集素含量分析[J]. 江汉大学学报(自然科学版), 2016, 44(6): 504-508. |
REN S G, CHEN G, GUO R, et al.. Lectin content analysis of 121 common bean cultivars [J]. J. Jianghan Univ. (Nat. Sci. ), 2016, 44(6): 504-508. | |
19 | 任三国, 陈高, 郭瑞, 等. 菜豆种质资源的植物凝集素含量测定与评价[J]. 长江蔬菜, 2017 (16): 36-38. |
REN S G, CHEN G, GUO R, et al.. Determination and evaluation of lectin contents in kidney bean (Phaseolus vulgaris L.) germplasm resources [J]. J. Changjiang Veget., 2017 (16): 36-38. | |
20 | 胡燕秋, 冯国军, 杨晓旭, 等. 菜豆种质资源的植物凝集素含量测定及变化分析[J]. 中国农学通报, 2020, 36(5): 18-25. |
HU Y Q, FENG G J, YANG X X, et al.. Phytohemagglutinin in common bean germplasm resources: determination and content variation analysis [J]. Chin. Agric. Sci. Bull., 2020, 36(5): 18-25. | |
21 | AHIRWAR R, NAHAR P. Development of an aptamer-affinity chromatography for efficient single step purification of concanavalin A from Canavalia ensiformis [J]. J. Chromatogr. B, 2015, 997: 105-109. |
22 | WEN Y, LIU A G, MENG C Z, et al.. Quantification of lectin in soybeans and soy products by liquid chromatography-tandem mass spectrometry [J/OL]. J. Chromatogr. B, 2021, 1185: 122987 [2023-01-16]. . |
23 | HE S, SHI J, LI X, et al.. Identification of a lectin protein from black turtle bean (Phaseolus vulgaris) using LC-MS/MS and PCR method [J]. LWT-Food Sci. Technol., 2015, 60(2): 1074-1079. |
24 | PURKAIT S, KOLEY S. Identification and characterization of lectins from leguminosae plants [J]. Int. J. Health Sci. Res., 2019, 9(2): 115-121. |
25 | HAMED E S E, IBRAHIM E A M M, MOUNIR S M. Antimicrobial activities of lectins extracted from some cultivars of phaseolus vulgaris seeds [J]. J. Microb. Biochem. Technol., 2017, 9(3): 109-116. |
26 | 冷艳, 孙宪迅, 王璐, 等. 植物凝集素检测方法的研究进展[J]. 江汉大学学报(自然科学版), 2018, 46(4): 305-309. |
LENG Y, SUN X X, WANG L, et al.. Research progress of detection methods of plant lectin [J]. J. Jianghan Univ. (Nat. Sci. ), 2018, 46(4): 305-309. | |
27 | ZHAO J, HE S, TANG M, et al.. Low-pH induced structural changes, allergenicity and in vitro digestibility of lectin from black turtle bean (Phaseolus vulgaris L.) [J]. Food Chem., 2019, 283: 183-190. |
28 | 湛润生, 戎婷婷, 白静. 血凝法测定绿豆与红小豆中植物凝集素质量分数[J]. 食品科技, 2017, 42(4): 277-279. |
ZHAN R S, RONG T T, BAI J. Quantification of lectins in mung bean and red adzuki bean by hemagglutination [J]. Food Sci. Technol., 2017, 42(4): 277-279. | |
29 | VINCENZI S, ZOCCATELLI G, PERBELLINI F, et al.. Quantitative determination of dietary lectin activities by enzyme-linked immunosorbent assay using specific glycoproteins immobilized on microtiter plates [J]. J. Agric. Food. Chem., 2002, 50(22): 6266-6270. |
30 | 许键, 朱兵, 杨金菊, 等. 大豆针刺后SBA定量方法的研究[J]. 八一农学院学报, 1993,16 (3): 25-27. |
XU J, ZHU B, YANG J J, et al.. Study on the SBA quantitating post acupuncture [J]. J. August 1st Agric. Coll., 1993, 16(3): 25-27. | |
31 | 杨丽杰, 李素芬, 张永成, 等. 黑龙江几个大豆品种中抗营养因子含量的分析[J]. 大豆科学, 1999, 18(1): 78-81. |
YANG L J, LI S F, ZHANG Y C, et al.. The content of main antinutritional factors in thirteen soybean varieties planted widely in Heilongjiang area [J]. Soybean Sci., 1999, 18(1): 78-81. | |
32 | 张柏林, 秦贵信, 刘宁, 等. 大豆凝集素结构及其活性测定方法的研究进展[J]. 大豆科学, 2009, 28(1): 160-163. |
ZHANG B L, QIN G X, LIU N, et al.. Advances of research on structure and activity detecting method of soybean agglutinin [J]. Soybean Sci., 2009, 28(1): 160-163. | |
33 | ZUO F, ZHANG C, ZHANG H, et al.. A solid-state electrochemiluminescence biosensor for ConA detection based on CeO2@Ag nanoparticles modified graphene quantum dots as signal probe [J]. Electrochim. Acta, 2019, 294: 76-83. |
34 | ABAD-GIL L, GISMERA M J, SEVILLA M T, et al.. Methylisothiazolinone response on disposable electrochemical platforms modified with carbon, nickel or gold-based nanomaterials [J/OL]. Electrochim. Acta, 2020, 187(4): 199[2023-01-16]. . |
35 | GAO X, WANG L, SUN C, et al.. Research on preparation methods of carbon nanomaterials based on self-assembly of carbon quantum dots [J/OL]. Molecules, 2022, 27(5): 1690 [2023-01-16]. . |
36 | NARAYANAN K B, SAKTHIVEL N, HAN S S. From chemistry to biology: applications and advantages of green, biosynthesized/biofabricated metal-and carbon-based nanoparticles [J]. Fibers Polym., 2021, 22(4): 877-897. |
37 | 陆瑶. 基于有机复合材料的电化学发光生物传感器的研制及应用[D].上海:上海师范大学, 2021. |
LU Y. Development and application of electrochemical luminescence biosensors based on organic composites for medical animal control [D]. Shanghai: Shanghai Normal University, 2021. | |
38 | SHEN J, ZHANG L, LIU L, et al.. Revealing lectin-sugar interactions with a single Au@Ag nanocube [J]. ACS Appl. Mater. Interfaces, 2019, 11(43): 40944-40950. |
39 | 王宇菲. 基于荧光微球的生物传感方法用于生物标志物的检测[D]. 郑州:郑州大学, 2021. |
WANG Y F. Biosensing methods based on fluorescent microspheres are used for the detection of biomarkers [D]. Zhengzhou: Zhengzhou University, 2021. | |
40 | 陈代武, 彭若君, 李核. 基于Ag2S/BiOBr的传感器检测人体血清中刀豆球蛋白A的研究[J].邵阳学院学报(自然科学版), 2022, 19(4): 51-58. |
CHEN D W, PENG R J, LI H. Detection of concanavalin A in human serum by Ag2S/BiOBr sensor [J]. J. Shaoyang Univ. (Nat. Sci. ), 2022, 19(4): 51-58. | |
41 | GOODARZI M T, TURNER G A. A lectin method for investigating the glycosylation of nanogram amounts of purified glycoprotein [J]. Glycoconj. J., 1997, 14(4): 493-496. |
42 | SUN X, YE Y, HE S, et al.. A novel oriented antibody immobilization based voltammetric immunosensor for allergenic activity detection of lectin in kidney bean by using AuNPs-PEI-MWCNTs modified electrode [J/OL]. Biosens. Bioelectron., 2019, 143: 111607 [2023-01-16]. . |
43 | AFKHAMI A, HASHEMI P, BAGHERI H, et al.. Impedimetric immunosensor for the label-free and direct detection of botulinum neurotoxin serotype A using Au nanoparticles/graphene-chitosan composite [J]. Biosens. Bioelectron., 2017, 93: 124-131. |
44 | TANG T, YANG F, WANG L, et al.. A sandwich electrochemiluminescent assay for determination of concanavalin A with triple signal amplification based on MoS2 NF@ MWCNTs modified electrode and Zn-MOF encapsulated luminol [J/OL]. Microchim. Acta, 2020, 187(9): 523 [2023-01-16]. . |
45 | SHA Q, GUAN R, SU H, et al.. Carbohydrate-protein template synthesized high mannose loading gold nanoclusters: a powerful fluorescence probe for sensitive concanavalin A detection and specific breast cancer cell imaging [J/OL]. Talanta, 2020, 218: 121130 [2023-01-16]. . |
46 | WANG C X, LI M S, WANG P J, et al.. An electrochemiluminescence biosensor based on boron nitride quantum dots as novel coreactant for quantitative determination of concanavalin A [J]. Microchim. Acta, 2020, 187(7): 409 [2023-01-16]. . |
47 | ZHAO S, SHI C, HU H, et al.. ISFET and Dex-AgNPs based portable sensor for reusable and real-time determinations of concanavalin A and glucose on smartphone [J/OL]. Biosens. Bioelectron., 2020, 151: 111962 [2023-01-16]. . |
48 | SHA H, ZHANG Y, WANG Y, et al.. Electrochemiluminescence resonance energy transfer biosensor between the glucose functionalized MnO2 and g-C3N4 nanocomposites for ultrasensitive detection of concanavalin A [J]. Biosens. Bioelectron., 2019, 124: 59-65. |
49 | SUN C, SHEN Y, ZHANG Y, et al.. Sandwich photoelectrochemical biosensing of concanavalin A based on CdS/AuNPs/NiO Z-scheme heterojunction and lectin-sugar binding [J/OL]. Talanta, 2023, 253: 123882 [2023-01-16]. . |
50 | KWON J, AHN K S, JEONG D, et al.. Highly sensitive determination of concanavalin A lectin based on silver-enhanced electrogenerated chemiluminescence of luminol [J]. Anal. Lett., 2018, 51(13): 2114-2127. |
51 | MA M, CHAO L, ZHAO Y, et al.. High-sensitivity detection of concanavalin A using MoS2-based field effect transistor biosensor [J/OL]. J. Phys. D, 2021, 54(24): 245401[2023-01-16]. . |
52 | ELLINGTON A D, SZOSTAK J W. In vitro selection of RNA molecules that bind specific ligands [J]. Nature, 1990, 346(6287): 818-822. |
53 | TUERK C, GOLD L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase [J]. Science, 1990, 249(4968): 505-510. |
54 | GUAN B, ZHANG X. Aptamers as versatile ligands for biomedical and pharmaceutical applications [J]. Int. J. Nanomed., 2020, 15: 1059-1071. |
55 | CHEN W, CUI L, LI C, et al.. A novel aptamer biosensor using ZnO-3DNGH for sensitive and selective detection of Listeria monocytogenes [J/OL]. Microchem. J., 2022, 179: 107414 [2023-01-16]. . |
56 | ZHIPENG S, LIYONG H, YUTING C, et al.. Multiplexed electrochemical aptasensor for antibiotics detection using metallic-encoded apoferritin probes and double stirring bars-assisted target recycling for signal amplification [J]. Talanta, 2019, 197: 491-499. |
57 | SONG K M, LEE S, BAN C. Aptamers and their biological applications [J]. Sensors, 2012, 12(1): 612-631. |
58 | SARKAR N, SHARMA R S, KAUSHIK M. Exploring the potential of DNA/RNA aptamers in national security [J]. Natl. Acad. Sci. Lett., 2020,43(2): 187-190. |
59 | LIU H, BAI Y, QIN J, et al.. A novel fluorescent concanavalin A detection platform using an anti-concanavalin A aptamer and graphene oxide [J]. Anal. Methods, 2017, 9(5): 744-747. |
60 | GORDON C K L, WU D, PUSULURI A, et al.. Click-particle display for base-modified aptamer discovery [J]. ACS Chem. Biol., 2019, 14(12): 2652-2662. |
[1] | 柴冠群, 王丽, 刘桂华, 罗沐欣键, 蒋亚, 梁红, 范成五. 3类朝天椒重金属健康风险评价与镉吸收累积差异[J]. 中国农业科技导报, 2023, 25(3): 169-177. |
[2] | 王立平1,王东2,龚熠欣3,徐莹4,宋玉晶1. 国内外转基因农产品食用安全性研究进展与生产现状[J]. 中国农业科技导报, 2018, 20(3): 94-103. |
[3] | 张勇1,2,郑楠2,文芳2,张养东2,李发弟1,王加启1,2*. 适配体传感器结合便携式血糖仪定量检测赭曲霉毒素A的方法研究[J]. 中国农业科技导报, 2016, 18(1): 182-188. |
[4] | 李培武,丁小霞. 我国粮油质量安全防控技术研究与发展对策[J]. , 2011, 13(5): 54-58. |
[5] | 赵仲麟1,马鑫2,李燕3,李淑英4,袁超1. 基于内含肽技术的生物传感器[J]. , 1, 1(1): 56-60. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||