中国农业科技导报 ›› 2025, Vol. 27 ›› Issue (2): 125-135.DOI: 10.13304/j.nykjdb.2023.0647
• 动植物健康 • 上一篇
罗金城(), 朱晓林, 魏小红(
), 王贤, 王宝强, 杜雪芬
收稿日期:
2023-08-29
接受日期:
2023-11-25
出版日期:
2025-02-15
发布日期:
2025-02-14
通讯作者:
魏小红
作者简介:
罗金城 E-mail:778415115@qq.com;
基金资助:
Jincheng LUO(), Xiaolin ZHU, Xiaohong WEI(
), Xian WANG, Baoqiang WANG, Xuefen DU
Received:
2023-08-29
Accepted:
2023-11-25
Online:
2025-02-15
Published:
2025-02-14
Contact:
Xiaohong WEI
摘要:
为探究番茄黄化曲叶病毒(tomato yellow leaf curl virus, TYLCV)胁迫下外源一氧化碳(nitric oxide, NO)对番茄抗氧化物酶基因表达的影响,以易感病番茄品种金鹏1号为试验材料,在对照(CK)、TYLCV(TY)和NO+TYLCV(NO+TY)3种处理下,通过转录组测序、荧光qRT-PCR和生物信息学分析进行研究。结果表明,在番茄基因组中共筛选出55个抗氧化酶相关编码基因,其中存在于不同亚细胞区室中含有外显子数目最多的抗氧化酶基因均显著响应TYLCV胁迫。NO介导的抗氧化酶编码基因数量在不同亚细胞区室的分布表现为叶绿体>细胞膜>细胞质>过氧化物酶体>液泡,其中Chl Cu-Zn SOD、Chl MR2、Chl GR、Per MR、Pla CAT1和Pla CAT7的表达量显著上调;Chl Fe SOD1、Chl Fe SOD2、Cyt GPX、Cyt APX1、Cyt APX2 L-5、Pla CAT3、Pla CAT8和Vac CAT的表达量显著下调。实时荧光qRT-PCR验证发现,Chl GR、Min Mn SOD和Per CAT2响应TYLCV表达,Chl Cu-Zn SOD、Pla CAT7、Pla CAT8和Cyt APX2 L-5响应TYLCV和NO表达。以上结果为研究NO在提高番茄抗病性机制中的作用提供理论依据。
中图分类号:
罗金城, 朱晓林, 魏小红, 王贤, 王宝强, 杜雪芬. 番茄黄化曲叶病毒胁迫下外源NO对番茄抗氧化物酶基因表达的影响[J]. 中国农业科技导报, 2025, 27(2): 125-135.
Jincheng LUO, Xiaolin ZHU, Xiaohong WEI, Xian WANG, Baoqiang WANG, Xuefen DU. Effect of Exogenous NO on Expression of Tomato Antioxidant Enzyme Gene Under Tomato Yellowing Leaf Curl Virus Stress[J]. Journal of Agricultural Science and Technology, 2025, 27(2): 125-135.
基因Gene | 引物序列Primer sequence(5’-3’) |
---|---|
Chl Cu-Zn SOD | F: TATGCTGTCACTACCCCTAA,R: TATTGGAGTCAAACCAACCA |
Chl GR | F: CGGCATTACGATTTCGATTT,R: ACAATGGCAATTTTGTCAGG |
Pla CAT7 | F: GTTCCGTTATACTCGTGACA,R: ATTGCCATAACAGGGTGAAT |
Pla CAT8 | F: ACGTTCATCAGATACCAGTG,R: CCCAGTTATAGCAACCACAT |
Cyt APX2 L-5 | F: CTGATTTCCTTCGTTTAGCG,R: GAAATTCCGGATCATCAAGC |
Min Mn SOD | F: CCAAATTGCACAGTGCCCTC,R: CCCAGCCAAGAGAACCCTTT |
Per CAT2 | F: TACGGTTGGTGCAAGAGGTC,R: CAGCACAGGTAAGGTGAGCA |
UBI | F: TCGTAAGGAGTGCCCTAATGCTGA,R: CAATCGCCTCCAGCCTTGTTGTAA |
表1 qRT-PCR引物序列
Table 1 qRT-PCR primer sequence
基因Gene | 引物序列Primer sequence(5’-3’) |
---|---|
Chl Cu-Zn SOD | F: TATGCTGTCACTACCCCTAA,R: TATTGGAGTCAAACCAACCA |
Chl GR | F: CGGCATTACGATTTCGATTT,R: ACAATGGCAATTTTGTCAGG |
Pla CAT7 | F: GTTCCGTTATACTCGTGACA,R: ATTGCCATAACAGGGTGAAT |
Pla CAT8 | F: ACGTTCATCAGATACCAGTG,R: CCCAGTTATAGCAACCACAT |
Cyt APX2 L-5 | F: CTGATTTCCTTCGTTTAGCG,R: GAAATTCCGGATCATCAAGC |
Min Mn SOD | F: CCAAATTGCACAGTGCCCTC,R: CCCAGCCAAGAGAACCCTTT |
Per CAT2 | F: TACGGTTGGTGCAAGAGGTC,R: CAGCACAGGTAAGGTGAGCA |
UBI | F: TCGTAAGGAGTGCCCTAATGCTGA,R: CAATCGCCTCCAGCCTTGTTGTAA |
抗氧化酶 Antioxidant enzyme | 基因数量 Number of genes | 亚细胞区室 Subcellular compartment |
---|---|---|
超氧化物歧化酶SOD | 9 | 细胞质、叶绿体、线粒体、核膜 Cytoplasm, chloroplast, mitochondrion, nucleus membrane |
过氧化氢酶CAT | 18 | 细胞质、内质网、过氧化物酶体、细胞膜、液泡 Cytoplasm, endoplasmic reticulum, peroxisome, plasma membrane, vacuole |
谷胱甘肽过氧化物酶GPX | 6 | 叶绿体、细胞核、细胞质 Chloroplast, nucleus, cytoplasm |
抗坏血酸过氧化物酶APX | 9 | 细胞质、线粒体、叶绿体 Cytoplasm, mitochondrion, chloroplast |
单脱氢抗坏血酸还原酶MR | 4 | 叶绿体、细胞质、过氧化物酶体 Chloroplast, cytoplasm, peroxisome |
谷胱甘肽还原酶GR | 2 | 叶绿体、细胞膜Chloroplast, plasma membrane |
脱氢抗坏血酸还原酶DR | 7 | 细胞质、细胞核、叶绿体、线粒体 Cytoplasm, nucleus, chloroplast, mitochondrion |
表2 番茄抗氧化物酶基本信息
Table 2 Basic information of tomato antioxidant enzymes
抗氧化酶 Antioxidant enzyme | 基因数量 Number of genes | 亚细胞区室 Subcellular compartment |
---|---|---|
超氧化物歧化酶SOD | 9 | 细胞质、叶绿体、线粒体、核膜 Cytoplasm, chloroplast, mitochondrion, nucleus membrane |
过氧化氢酶CAT | 18 | 细胞质、内质网、过氧化物酶体、细胞膜、液泡 Cytoplasm, endoplasmic reticulum, peroxisome, plasma membrane, vacuole |
谷胱甘肽过氧化物酶GPX | 6 | 叶绿体、细胞核、细胞质 Chloroplast, nucleus, cytoplasm |
抗坏血酸过氧化物酶APX | 9 | 细胞质、线粒体、叶绿体 Cytoplasm, mitochondrion, chloroplast |
单脱氢抗坏血酸还原酶MR | 4 | 叶绿体、细胞质、过氧化物酶体 Chloroplast, cytoplasm, peroxisome |
谷胱甘肽还原酶GR | 2 | 叶绿体、细胞膜Chloroplast, plasma membrane |
脱氢抗坏血酸还原酶DR | 7 | 细胞质、细胞核、叶绿体、线粒体 Cytoplasm, nucleus, chloroplast, mitochondrion |
登记号 Gene accession No. | 名称 Name | 氨基酸数量 Number of amino acids | 分子质量 Molecular weight/Da | 等电点 Isoelectric point | 亲水性 GRAVY |
---|---|---|---|---|---|
Solyc01g067740.3 | Cyt Cu-Zn SOD2 | 152 | 15 284.95 | 5.47 | -0.199 |
Solyc02g021140.3 | Chl Fe SOD3 | 252 | 29 126.27 | 6.65 | -0.348 |
Solyc03g062890.3 | Cyt Cu-Zn SOD1 | 156 | 15 870.86 | 6.53 | -0.022 |
Solyc03g095180.3 | Chl Fe SOD1 | 303 | 34 575.69 | 5.38 | -0.627 |
Solyc06g048410.3 | Chl Fe SOD2 | 278 | 31 144.47 | 6.60 | -0.270 |
Solyc06g048420.2 | Nucp Fe SOD | 109 | 12 193.83 | 5.38 | -0.322 |
Solyc06g049080.3 | Mit Mn SOD | 228 | 25 314.79 | 7.13 | -0.318 |
Solyc08g079830.3 | Chl SOD copper chaperone 1 | 311 | 32 987.61 | 6.45 | -0.027 |
Solyc11g066390.2 | Chl Cu-Zn SOD | 217 | 22 281.92 | 6.01 | -0.018 |
Solyc01g099420.2 | Cyt CAT isozyme 2 | 106 | 12 121.88 | 5.26 | 0.004 |
Solyc01g100630.2 | ER CAT | 427 | 47 770.03 | 6.20 | -0.008 |
Solyc01g100640.3 | Pla CAT isozyme 1 | 220 | 25 603.58 | 8.37 | -0.140 |
Solyc12g096380.1 | Pla CAT1a | 599 | 65 926.19 | 8.64 | 0.497 |
Solyc12g094620.2 | Per CAT1 | 497 | 57 078.50 | 6.56 | -0.538 |
Solyc12g011370.2 | Pla CAT8 | 586 | 64 090.11 | 8.76 | 0.539 |
Solyc11g006710.2 | Pla CAT7 | 584 | 63 360.16 | 7.02 | 0.651 |
Solyc10g081460.2 | Vac CAT | 650 | 67 933.20 | 6.58 | 0.628 |
Solyc10g018600.2 | Pla CAT9 | 569 | 60 434.61 | 6.34 | 0.820 |
Solyc08g077823.1 | Pla CAT6a | 305 | 33 185.14 | 8.88 | 0.573 |
Solyc08g077820.3 | Pla CAT6b | 229 | 26 277.39 | 9.03 | 0.808 |
表3 番茄抗氧化物酶编码蛋白的基本理化性质
Table 3 Basic physicochemical properties of tomato antioxidase-encoded proteins
登记号 Gene accession No. | 名称 Name | 氨基酸数量 Number of amino acids | 分子质量 Molecular weight/Da | 等电点 Isoelectric point | 亲水性 GRAVY |
---|---|---|---|---|---|
Solyc01g067740.3 | Cyt Cu-Zn SOD2 | 152 | 15 284.95 | 5.47 | -0.199 |
Solyc02g021140.3 | Chl Fe SOD3 | 252 | 29 126.27 | 6.65 | -0.348 |
Solyc03g062890.3 | Cyt Cu-Zn SOD1 | 156 | 15 870.86 | 6.53 | -0.022 |
Solyc03g095180.3 | Chl Fe SOD1 | 303 | 34 575.69 | 5.38 | -0.627 |
Solyc06g048410.3 | Chl Fe SOD2 | 278 | 31 144.47 | 6.60 | -0.270 |
Solyc06g048420.2 | Nucp Fe SOD | 109 | 12 193.83 | 5.38 | -0.322 |
Solyc06g049080.3 | Mit Mn SOD | 228 | 25 314.79 | 7.13 | -0.318 |
Solyc08g079830.3 | Chl SOD copper chaperone 1 | 311 | 32 987.61 | 6.45 | -0.027 |
Solyc11g066390.2 | Chl Cu-Zn SOD | 217 | 22 281.92 | 6.01 | -0.018 |
Solyc01g099420.2 | Cyt CAT isozyme 2 | 106 | 12 121.88 | 5.26 | 0.004 |
Solyc01g100630.2 | ER CAT | 427 | 47 770.03 | 6.20 | -0.008 |
Solyc01g100640.3 | Pla CAT isozyme 1 | 220 | 25 603.58 | 8.37 | -0.140 |
Solyc12g096380.1 | Pla CAT1a | 599 | 65 926.19 | 8.64 | 0.497 |
Solyc12g094620.2 | Per CAT1 | 497 | 57 078.50 | 6.56 | -0.538 |
Solyc12g011370.2 | Pla CAT8 | 586 | 64 090.11 | 8.76 | 0.539 |
Solyc11g006710.2 | Pla CAT7 | 584 | 63 360.16 | 7.02 | 0.651 |
Solyc10g081460.2 | Vac CAT | 650 | 67 933.20 | 6.58 | 0.628 |
Solyc10g018600.2 | Pla CAT9 | 569 | 60 434.61 | 6.34 | 0.820 |
Solyc08g077823.1 | Pla CAT6a | 305 | 33 185.14 | 8.88 | 0.573 |
Solyc08g077820.3 | Pla CAT6b | 229 | 26 277.39 | 9.03 | 0.808 |
登记号 Gene accession No. | 名称 Name | 氨基酸数量 Number of amino acids | 分子质量 Molecular weight/Da | 等电点 Isoelectric point | 亲水性 GRAVY |
---|---|---|---|---|---|
Solyc08g077810.2 | Pla CAT2 | 228 | 26 105.16 | 9.03 | 0.791 |
Solyc04g082460.3 | Pla CAT3 | 956 | 109 204.40 | 8.35 | -0.450 |
Solyc02g082760.3 | Per CAT2 | 492 | 56 896.20 | 6.73 | -0.540 |
Solyc02g081850.3 | Pla CAT5 | 592 | 64 871.75 | 8.44 | 0.493 |
Solyc02g070280.3 | Pla CAT1 | 604 | 65 810.94 | 8.60 | 0.501 |
Solyc02g070270.2 | Pla CAT1b | 596 | 64 632.50 | 8.15 | 0.554 |
Solyc02g037510.3 | Pla CAT4 | 599 | 63 406.56 | 6.45 | 0.788 |
Solyc06g073460.3 | Chl GPX | 192 | 21 862.33 | 8.30 | -0.081 |
Solyc08g006720.3 | Chl GPX2 | 238 | 26 203.87 | 9.18 | -0.239 |
Solyc08g068800.3 | Nuc GPX | 250 | 27 955.88 | 9.40 | -0.336 |
Solyc08g080940.3 | Chl GPX3 | 239 | 26 749.72 | 9.16 | -0.249 |
Solyc09g064850.3 | Chl GPX1 | 170 | 19 094.83 | 9.33 | -0.449 |
Solyc12g056240.2 | Cyt GPX | 170 | 19 362.01 | 4.97 | -0.436 |
Solyc09g007270.3 | Cyt APX1 | 250 | 27 635.37 | 5.63 | -0.421 |
Solyc01g111510.3 | Cyt APX L-3 | 287 | 31 615.03 | 7.10 | -0.349 |
Solyc02g083620.3 | Cyt APX1 L-5 | 289 | 32 010.40 | 6.10 | -0.388 |
Solyc02g083630.3 | Cyt APX2 L-5 | 292 | 32 406.84 | 7.15 | -0.349 |
Solyc06g005150.3 | Mit APX | 250 | 27 322.09 | 5.86 | -0.300 |
Solyc06g005160.3 | Cyt APX2 | 250 | 27 408.20 | 5.61 | -0.319 |
Solyc06g060260.3 | Chl APX1 | 345 | 37 836.83 | 8.48 | -0.414 |
Solyc08g059760.3 | Chl APX L-6 | 326 | 35 424.51 | 5.65 | -0.094 |
Solyc11g018550.3 | Chl APX2 | 425 | 46 457.42 | 8.15 | -0.443 |
Solyc06g075050.2 | Chl MR1 | 270 | 30 996.41 | 7.79 | -0.429 |
Solyc06g075070.3 | Cyt MR | 324 | 36 420.12 | 5.80 | -0.454 |
Solyc08g081530.3 | Chl MR2 | 491 | 53 665.29 | 8.09 | -0.126 |
Solyc09g009390.3 | Per MR | 433 | 47 021.62 | 5.77 | -0.110 |
Solyc09g065900.3 | Chl GR | 557 | 60 088.30 | 7.62 | -0.161 |
Solyc09g091840.3 | Pla GR | 508 | 55 036.30 | 5.96 | -0.071 |
Solyc05g054760.3 | Cyt DR | 210 | 23 554.29 | 6.32 | -0.158 |
Solyc04g064470.2 | Nuc DR1 | 167 | 19 060.07 | 9.17 | -0.318 |
Solyc05g013950.1 | Chl DR1 | 141 | 15 856.59 | 8.55 | 0.311 |
Solyc06g075513.1 | Mit DR | 183 | 20 598.15 | 8.65 | 0.132 |
Solyc09g056180.3 | Chl DR2 | 103 | 11 732.43 | 6.35 | -0.283 |
Solyc11g011250.2 | Chl DR3 | 288 | 32 305.36 | 8.71 | -0.206 |
Solyc11g039930.2 | Chl DR4 | 95 | 10 801.51 | 6.16 | -0.085 |
表3 番茄抗氧化物酶编码蛋白的基本理化性质 (续表Continued)
Table 3 Basic physicochemical properties of tomato antioxidase-encoded proteins
登记号 Gene accession No. | 名称 Name | 氨基酸数量 Number of amino acids | 分子质量 Molecular weight/Da | 等电点 Isoelectric point | 亲水性 GRAVY |
---|---|---|---|---|---|
Solyc08g077810.2 | Pla CAT2 | 228 | 26 105.16 | 9.03 | 0.791 |
Solyc04g082460.3 | Pla CAT3 | 956 | 109 204.40 | 8.35 | -0.450 |
Solyc02g082760.3 | Per CAT2 | 492 | 56 896.20 | 6.73 | -0.540 |
Solyc02g081850.3 | Pla CAT5 | 592 | 64 871.75 | 8.44 | 0.493 |
Solyc02g070280.3 | Pla CAT1 | 604 | 65 810.94 | 8.60 | 0.501 |
Solyc02g070270.2 | Pla CAT1b | 596 | 64 632.50 | 8.15 | 0.554 |
Solyc02g037510.3 | Pla CAT4 | 599 | 63 406.56 | 6.45 | 0.788 |
Solyc06g073460.3 | Chl GPX | 192 | 21 862.33 | 8.30 | -0.081 |
Solyc08g006720.3 | Chl GPX2 | 238 | 26 203.87 | 9.18 | -0.239 |
Solyc08g068800.3 | Nuc GPX | 250 | 27 955.88 | 9.40 | -0.336 |
Solyc08g080940.3 | Chl GPX3 | 239 | 26 749.72 | 9.16 | -0.249 |
Solyc09g064850.3 | Chl GPX1 | 170 | 19 094.83 | 9.33 | -0.449 |
Solyc12g056240.2 | Cyt GPX | 170 | 19 362.01 | 4.97 | -0.436 |
Solyc09g007270.3 | Cyt APX1 | 250 | 27 635.37 | 5.63 | -0.421 |
Solyc01g111510.3 | Cyt APX L-3 | 287 | 31 615.03 | 7.10 | -0.349 |
Solyc02g083620.3 | Cyt APX1 L-5 | 289 | 32 010.40 | 6.10 | -0.388 |
Solyc02g083630.3 | Cyt APX2 L-5 | 292 | 32 406.84 | 7.15 | -0.349 |
Solyc06g005150.3 | Mit APX | 250 | 27 322.09 | 5.86 | -0.300 |
Solyc06g005160.3 | Cyt APX2 | 250 | 27 408.20 | 5.61 | -0.319 |
Solyc06g060260.3 | Chl APX1 | 345 | 37 836.83 | 8.48 | -0.414 |
Solyc08g059760.3 | Chl APX L-6 | 326 | 35 424.51 | 5.65 | -0.094 |
Solyc11g018550.3 | Chl APX2 | 425 | 46 457.42 | 8.15 | -0.443 |
Solyc06g075050.2 | Chl MR1 | 270 | 30 996.41 | 7.79 | -0.429 |
Solyc06g075070.3 | Cyt MR | 324 | 36 420.12 | 5.80 | -0.454 |
Solyc08g081530.3 | Chl MR2 | 491 | 53 665.29 | 8.09 | -0.126 |
Solyc09g009390.3 | Per MR | 433 | 47 021.62 | 5.77 | -0.110 |
Solyc09g065900.3 | Chl GR | 557 | 60 088.30 | 7.62 | -0.161 |
Solyc09g091840.3 | Pla GR | 508 | 55 036.30 | 5.96 | -0.071 |
Solyc05g054760.3 | Cyt DR | 210 | 23 554.29 | 6.32 | -0.158 |
Solyc04g064470.2 | Nuc DR1 | 167 | 19 060.07 | 9.17 | -0.318 |
Solyc05g013950.1 | Chl DR1 | 141 | 15 856.59 | 8.55 | 0.311 |
Solyc06g075513.1 | Mit DR | 183 | 20 598.15 | 8.65 | 0.132 |
Solyc09g056180.3 | Chl DR2 | 103 | 11 732.43 | 6.35 | -0.283 |
Solyc11g011250.2 | Chl DR3 | 288 | 32 305.36 | 8.71 | -0.206 |
Solyc11g039930.2 | Chl DR4 | 95 | 10 801.51 | 6.16 | -0.085 |
抗氧化酶Antioxidant enzyme | 外显子数量Number of exons(基因名称Gene name) |
---|---|
超氧化物歧化酶SOD | 4(Nucp Fe SOD)~9(Chl Fe SOD1) |
过氧化氢酶CAT | 1(Pla CAT5)~15(Pla CAT4) |
谷胱甘肽过氧化物酶GPX | 6 |
抗坏血酸过氧化物酶APX | 8(Cyt APX2 L-5)~12(Chl APX2) |
单脱氢抗坏血酸还原酶MR | 7(Chl MR1)~17(Chl MR2) |
谷胱甘肽还原酶GR | 10(Chl GR)~16(Pla GR) |
脱氢抗坏血酸还原酶DR | 3(Chl DR2)~6(Chl DR3) |
表4 各抗氧化酶编码基因的外显子数量
Table 4 Number of exons of coding genes each antioxidant enzyme
抗氧化酶Antioxidant enzyme | 外显子数量Number of exons(基因名称Gene name) |
---|---|
超氧化物歧化酶SOD | 4(Nucp Fe SOD)~9(Chl Fe SOD1) |
过氧化氢酶CAT | 1(Pla CAT5)~15(Pla CAT4) |
谷胱甘肽过氧化物酶GPX | 6 |
抗坏血酸过氧化物酶APX | 8(Cyt APX2 L-5)~12(Chl APX2) |
单脱氢抗坏血酸还原酶MR | 7(Chl MR1)~17(Chl MR2) |
谷胱甘肽还原酶GR | 10(Chl GR)~16(Pla GR) |
脱氢抗坏血酸还原酶DR | 3(Chl DR2)~6(Chl DR3) |
亚细胞区室 Subcellular compartment | 基因数量Number of genes | |||
---|---|---|---|---|
总计 Total | 不响应TYLCV Not respond to TYLCV | 响应TYLCV Respond to TYLCV | 响应TYLCV和NO Respond to TYLCV and NO | |
细胞质Cytoplasm | 11 | 3 | 7 | 3 |
细胞膜Plasma membrane | 14 | 7 | 6 | 4 |
叶绿体Chloroplast | 19 | 8 | 10 | 5 |
线粒体Mitochondrial | 3 | 1 | 2 | 0 |
过氧化物酶体Peroxysome | 3 | 1 | 2 | 1 |
细胞核Nucleus 核膜Nuclear membrane | 2 1 | 1 1 | 1 0 | 0 0 |
液泡Vacuole | 1 | 0 | 1 | 1 |
内质网Endoplasmic reticulum | 1 | 1 | 0 | 0 |
表5 番茄不同亚细胞区室响应TYLCV和NO调控的抗氧化酶编码基因数量
Table 5 Number of antioxidase-coding genes responsed to TYLCV and NO regulation in different subcellular compartment of tomato
亚细胞区室 Subcellular compartment | 基因数量Number of genes | |||
---|---|---|---|---|
总计 Total | 不响应TYLCV Not respond to TYLCV | 响应TYLCV Respond to TYLCV | 响应TYLCV和NO Respond to TYLCV and NO | |
细胞质Cytoplasm | 11 | 3 | 7 | 3 |
细胞膜Plasma membrane | 14 | 7 | 6 | 4 |
叶绿体Chloroplast | 19 | 8 | 10 | 5 |
线粒体Mitochondrial | 3 | 1 | 2 | 0 |
过氧化物酶体Peroxysome | 3 | 1 | 2 | 1 |
细胞核Nucleus 核膜Nuclear membrane | 2 1 | 1 1 | 1 0 | 0 0 |
液泡Vacuole | 1 | 0 | 1 | 1 |
内质网Endoplasmic reticulum | 1 | 1 | 0 | 0 |
图2 不同处理下抗氧化酶编码基因的表达量A-1~A-10:定位于叶绿体中的响应基因;B-1~B-7:定位于细胞膜中的响应基因;C-1~C-7:定位于细胞质中的响应基因;D-1~D-2:定位于线粒体中的响应基因;E-1~E-3:定位于过氧化物酶体中的响应基因;F:定位于液泡中的响应基因。不同小写字母表示不同处理间在P<0.05水平差异显著
Fig. 2 Expression levels of antioxidase coding genes under different treatmentA-1~A-10: Response genes located in chloroplasts; B-1~B-7: Response genes located in cell membrane; C-1~C-7: Response genes located in cytoplasm; D-1~D-2: Response genes located in mitochondria;E-1~E-3: Response genes located in peroxisome; F: Response genes located in vacuole. Different lowercase letters indicate significant differences between different treatments at P<0.05 level
图3 基于qRT-PCR部分差异基因的相对表达量注:不同小写字母表示不同处理间在P<0.05水平差异显著。
Fig. 3 Relative expression level of differential gene based on qRT-PCRNote:Different lowercase letters indicate significant differences between different treatments at P<0.05 level.
1 | VAN ECK J, KIRK D D, WALMSLEY A M. Tomato (Lycopersicum esculentum) [J]. Methods Mol. Biol., 2006, 343(1):459-473. |
2 | 国艳梅,杜永臣,王孝宣,等.番茄黄化卷叶病毒病(TYLCV)的研究进展[J].中国农业科技导报,2009,11(5):30-35. |
GUO Y M, DU Y C, WANG X X, et al.. Research progress in tomato yellow leaf curl viruses [J]. J. Agric. Sci. Technol., 2009, 11(5):30-35. | |
3 | LI T, WANG Y H, HUANG Y, et al.. A novel plant protein-disulfide isomerase participates in resistance response against the TYLCV in tomato [J/OL]. Planta, 2020, 252(2):1 [2023-07-20]. . |
4 | PRASAD A, SHARMA N, HARI-GOWTHEM G, et al.. Tomato yellow leaf curl virus: impact, challenges, and management [J]. Trends Plant Sci., 2020, 25(9):897-911. |
5 | SUN W J, LYU W J, LI L N, et al.. Eugenol confers resistance to tomato yellow leaf curl virus (TYLCV) by regulating the expression of SlPer1 in tomato plants [J]. New Biotechnol., 2016, 33(3):345-389. |
6 | PITERKOVÁ J, LUHOVÁ L, MIESLEROVÁ B, et al.. Nitric oxide and reactive oxygen species regulate the accumulation of heat shock proteins in tomato leaves in response to heat shock and pathogen infection [J]. Plant Sci., 2013, 207(1):57-65. |
7 | ZHENG Y, HONG H, CHEN L, et al.. LeMAPK1, LeMAPK2, and LeMAPK3 are associated with nitric oxide-induced defense response against Botrytis cinerea in the Lycopersicon esculentum fruit [J]. J. Agric. Food Chem., 2014, 62(6):1390-1396. |
8 | NOORBAKHSH Z, TAHERI P. Nitric oxide: a signaling molecule which activates cell wall-associated defense of tomato against Rhizoctonia solani [J]. Eur. J. Plant Pathol., 2016, 144(3):551-568. |
9 | SIVAKUMARAN A, AKINYEMI A, MANDON J, et al.. ABA suppresses botrytis cinerea elicited NO production in tomato to influence H2O2 generation and increase host susceptibility [J/OL]. Front. Plant Sci., 2016,7:709 [2023-07-20]. . |
10 | MAŁOLEPSZA U, RÓZALSKA S. Nitric oxide and hydrogen peroxide in tomato resistance. nitric oxide modulates hydrogen peroxide level in o-hydroxyethylorutin-induced resistance to Botrytis cinerea in tomato [J]. Plant Physiol. Biochem., 2005, 43(6):623-635. |
11 | DELLEDONNE M, ZEIER J, MAROCCO A, et al.. Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response [J]. Proc. Natl. Acad. Sci. USA, 2001, 98(23):13454-13459. |
12 | ROMERO-PUERTAS M C, LAXA M, MATTÈ A, et al.. S-nitrosylation of peroxiredoxin II E promotes peroxynitrite-mediated tyrosine nitration [J]. Plant Cell, 2007, 19(12):4120-4130. |
13 | DELLEDONNE M. NO news is good news for plants [J]. Curr. Opin. Plant Biol., 2005, 8(4):390-396. |
14 | 胡炎.东南景天对镉胁迫的响应和镉再转运的生理与分子机制[D].杭州:浙江大学,2019. |
HU Y. Physiological and molecular responses and cadmium retranslocation in sedum alfredii under cadmium stress [D]. Hangzhou: Zhejiang Uniiversity, 2019. | |
15 | KENNETH J L, THOMAS D S. Analysis of relative gene expression data using real-time quantitative PCR and thg 2-∆∆CT method [J]. Method, 2001, 25(4): 402-408. |
16 | CHOE S, CHOI B, KANG J H, et al.. Tolerance to tomato yellow leaf curl virus in transgenic tomato overexpressing a cellulose synthase-like gene [J]. Plant Biotechnol. J., 2021, 19(4):657-659. |
17 | ALI S, HUANG Z, LI H, et al.. Antioxidant enzyme influences germination, stress tolerance, and virulence of Isaria fumosorosea [J]. J. Basic Microbiol., 2013, 53(6):489-497. |
18 | HAO Q, ZHANG L, YANG Y, et al.. Genome-wide analysis of the WOX gene family and function exploration of GmWOX18 in soybean [J/OL]. Plants (Basel), 2019, 8(7): 8070215 [2023-07-20]. . |
19 | YU W, KONG G, CHAO J, et al.. Genome-wide identification of the rubber tree superoxide dismutase (SOD) gene family and analysis of its expression under abiotic stress [J/OL]. PeerJ, 2022, 10: 14251 [2023-07-20]. . |
20 | ZHANG Y, ZHENG L, YUN L, et al.. Catalase (CAT) gene family in wheat (Triticum aestivum L .): evolution, expression pattern and function analysis [J/OL]. Int. J. Mol. Sci., 2022, 23(1):542 [2023-07-20]. . |
21 | 刘放.不同番茄材料黄化曲叶病毒病抗性研究[D].兰州:甘肃农业大学,2020. |
LIU F. Study on resistance to yellow leaf curl virus disease in different tomato materials [D]. Lanzhou: Gansu Agricultural University, 2020. | |
22 | 韦弟,韦莉萍,周维,等.香蕉枯萎病菌对不同抗性香蕉品种根系抗氧化能力的影响[J].南方农业学报,2021,52(7):1851-1859. |
WEI D, WEI L P, ZHOU W, et al.. Effects of Fusarium oxysporum f. sp. cubense on antioxidant capacity in roots of different resistant banana varieties [J]. J. Southern Agric., 2021, 52(7):1851-1859. | |
23 | 丁玉梅,张杰,谢俊俊,等.枯萎病菌胁迫下3种黑籽南瓜HQRGA2表达及抗氧化酶活性差异分析[J].植物生理学报,2019,55(3):349-358. |
DING Y M, ZHANG J, XIE J J, et al.. Expression analysis of HQRGA2 and differences of anti-oxidant enzymes in three varieties of Cucurbita ficifolia under stress of Fusarium oxysporum f. sp. Cucumerinum [J]. Plant Physiol. J., 2019, 55(3):349-358. | |
24 | SHANG S, TANG Y, DAI J, et al.. Genomic analysis of the principal members of antioxidant enzymes in simulated stresses response and postharvest physiological deterioration in Cassava [J]. Trop. Plant Biol., 2021,14(1):419-428. |
25 | JIANG M, MIAO L X, HE C. Overexpression of an oil radish superoxide dismutase gene in broccoli confers resistance to downy mildew [J]. Plant Mol. Biol. Rep., 2012,30(1):966-972. |
26 | MHAMDI A, NOCTOR G, BAKER A. Plant catalases: peroxisomal redox guardians [J]. Arch. Biochem. Biophys., 2012,525(2):181-194. |
27 | 张志刚.大白菜抗芜菁花叶病毒(TuMV)遗传规律及过氧化氢等保护酶与抗病性关系的研究[D].泰安:山东农业大学,2011. |
ZHANG Z G. Studies on Inheritance of TuMV resistance of Chinese cabbage and the relationship between protective enzymes and TuMV resistance [D]. Tai’an: Shandong Agricultural University, 2011. | |
28 | 赵晓菊,张丽霞,满秀玲.NO对盐胁迫下长春花种子萌发和幼苗生理代谢的影响[J].植物研究,2018,38(5):669-674, 681. |
ZHAO X J, ZHANG L X, MAN X L. Effects of exogenous NO on seed germination and physiological metabolism in Catharanthus roseus seedling under NaCl stress [J]. Bull. Bot. Res., 2018, 38(5):669-674, 681. | |
29 | SHI H T, LI R J, CAI W, et al.. In vivo role of nitric oxide in plant response to abiotic and biotic stress [J]. Plant Signaling Behav., 2012, 7(3):437-439. |
30 | WANG X, WANG B, ZHU X, et al.. Exogenous nitric oxide alleviates the damage caused by tomato yellow leaf curl virus in tomato through regulation of peptidase inhibitor genes [J/OL]. Int. J. Mol. Sci., 2022, 23(20):12542 [2023-07-20]. . |
31 | CHOE S, CHOI B, KANG J H, et al.. Tolerance to tomato yellow leaf curl virus in transgenic tomato overexpressing a cellulose synthase-like gene [J]. Plant Biotechnol. J., 2021, 19(4):657-659. |
32 | LI Y, CAO X L, ZHU Y, et al.. Osa-miR398b boosts H2O2 production and rice blast disease-resistance via multiple superoxide dismutases [J]. New Phytol., 2019, 222(3):1507-1522. |
33 | 于力,郭世荣,朱为民,等.番茄黄化曲叶病毒对番茄叶片光合特性和叶绿体超微结构的影响[J].西北植物学报,2011,31(7):1355-1359. |
YU L, GUO S R, ZHU W M, et al.. Effects of tomato yellow leaf curl virus on photosynthetic characteristics and chloroplast ultra-structure of the tomato leaves [J]. Acta Bot. Bor-Occid. Sin., 2011, 31(7):1355-1359. | |
34 | 张永平,朱为民.TYLCV侵染对番茄叶片解剖结构和保护酶系统的影响[J].安徽农业科学,2009,37(29):14188-14190. |
ZHANG Y P, ZHU W M. The effects of TYLCV infection on leaf anatomical structure and protective enzyme system of tomato [J]. J. Anhui Agric. Sci., 2009, 37(29):14188-14190. | |
35 | 许培磊,杨义明,秦红艳,等.不同品种山葡萄接种霜霉病菌后叶片的超微结构与抗氧化酶活性变化[J].北方园艺,2018(17):45-54. |
XU P L, YANG Y M, QIN H Y, et al.. Changes of ultrastructure and antioxidant enzyme in leaves of two cultivars of Vitis amurensis in response to downy mildew [J]. Northern Hortic., 2018 (17):45-54. |
[1] | 米春娇, 孙洪仁, 张吉萍, 吕玉才, 张砚迪. 我国番茄土壤有效磷丰缺指标和推荐施磷量初步研究[J]. 中国农业科技导报, 2025, 27(1): 222-232. |
[2] | 李贤国, 戴麒, 王泽鹏, 陈兆龙, 闫会转, 李宁. 番茄CCCH类锌指蛋白家族的鉴定及其表达分析[J]. 中国农业科技导报, 2025, 27(1): 80-95. |
[3] | 张俊蕾, 盖晓彤, 赵正婷, 刘弟, 王金凤, 姜宁, 刘雅婷. 烟草番茄斑萎病毒RT-LAMP检测体系的建立及优化[J]. 中国农业科技导报, 2024, 26(8): 140-150. |
[4] | 张福林, 奚瑞, 刘宇翔, 陈兆龙, 余庆辉, 李宁. 番茄BURP结构域基因家族全基因组鉴定及表达分析[J]. 中国农业科技导报, 2024, 26(8): 51-62. |
[5] | 王子凡, 李燕, 张庆银, 王丹丹, 师建华, 耿晓彬, 田东良, 钟增明, 赵晓明, 齐连芬. 微生物菌剂对设施番茄主要病害及土壤微生物群落的影响[J]. 中国农业科技导报, 2024, 26(6): 102-112. |
[6] | 李名博, 刘玉乐, 穆志民, 郭俊旺, 卫勇, 任东悦, 贾济深, 卫泽中, 栗宇红. 基于YOLOX-L-TN模型的番茄果实识别[J]. 中国农业科技导报, 2024, 26(4): 97-105. |
[7] | 黄大野, 余志斌, 万中义, 杨丹, 李金萍, 曹春霞. 产褐黄色链霉菌HEBRC45958菌株防控番茄棒孢叶斑病研究[J]. 中国农业科技导报, 2024, 26(11): 136-142. |
[8] | 陈春林, 王琳洋, 单梦伟, 裴甜甜, 王吉庆, 肖怀娟, 李娟起, 李猛, 杜清洁. 发酵花生壳和牛粪替代草炭基质的番茄育苗效果分析[J]. 中国农业科技导报, 2023, 25(4): 205-214. |
[9] | 李世民, 董琼, 金友帆, 李树萍, 李猛, 刘廷彪, 赵兴杰, 陈静, 叶平, 吕梦. 树番茄幼苗叶片性状和生理参数对遮阴的响应及评价[J]. 中国农业科技导报, 2023, 25(1): 72-82. |
[10] | 夏秀波, 李涛, 曹守军, 姚建刚, 王虹云, 张丽莉. 液态有机肥部分替代化肥对设施番茄根区细菌群落的影响[J]. 中国农业科技导报, 2022, 24(7): 187-196. |
[11] | 刘迁杰,程云霞,贾凯,时振宇,张婧,魏少伟,吴慧*. 施氮量对复合沙培番茄氮代谢酶活性及品质和产量的影响[J]. 中国农业科技导报, 2021, 23(4): 183-191. |
[12] | 顾惠敏1,陈波浪1*,孙锦2. 菌根化育苗对盐胁迫下加工番茄生长和生理特征的影响[J]. 中国农业科技导报, 2021, 23(3): 166-177. |
[13] | 陈潇洁, 吕德生, 王振华, 李文昊, 宗睿, 温越, 邹杰. 加气灌溉及水氮耦合滴灌对加工番茄产量及品质的影响[J]. 中国农业科技导报, 2021, 23(11): 191-200. |
[14] | 李艳梅1,周亚文2,张琳1,廖上强1*,孙焱鑫1*. 抗逆与渗透物质耦合对番茄产量及水分利用的调控及机制探讨[J]. 中国农业科技导报, 2021, 23(1): 43-50. |
[15] | 崔华星1§,王宁2,3§,侯敏2,3,许俊锋1,郭文超2,3,安康4,陈阳辉4,崔卫东2,3*. 枯草芽孢杆菌DNKAS对加工番茄分枝列当的防治应用[J]. 中国农业科技导报, 2020, 22(12): 105-114. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||