中国农业科技导报 ›› 2025, Vol. 27 ›› Issue (6): 229-239.DOI: 10.13304/j.nykjdb.2024.0675
• 生物制造 资源生态 • 上一篇
王会来1(), 李帅2, 王寅1, 吴东涛3, 马嘉伟4, 叶正钱2, 池永清3(
), 王美5(
)
收稿日期:
2024-08-19
接受日期:
2025-02-10
出版日期:
2025-06-15
发布日期:
2025-06-23
通讯作者:
池永清,王美
作者简介:
王会来 E-mail:sjw8515@163.com
基金资助:
Huilai WANG1(), Shuai LI2, Yin WANG1, Dongtao WU3, Jiawei MA4, Zhengqian YE2, Yongqing CHI3(
), Mei WANG5(
)
Received:
2024-08-19
Accepted:
2025-02-10
Online:
2025-06-15
Published:
2025-06-23
Contact:
Yongqing CHI,Mei WANG
摘要:
为研究长期施肥对葡萄土壤微生物群落多样性与抗生素耐药基因(antibiotics resistance genes,ARGs)的影响,以连续施肥5年的葡萄土壤为研究对象,并以邻近无种植且未施肥的地块表层土壤作为对照(CK),结合宏基因组测序技术和土壤理化性质分析,系统研究长期施肥对葡萄土壤微生物群落多样性及ARGs分布的影响。结果表明,与CK相比,长期施肥显著降低了土壤pH,且土壤养分含量也发生了显著变化。其中土壤有机质、全氮和全钾含量分别增加236.0%、243.3%和7.4%;碱解氮和铵态氮含量分别提升9.61和9.28倍;土壤微生物生物量碳和微生物生物量氮分别增加19.2%和8.53倍。此外,与CK相比,长期施肥使葡萄土壤中新增218种特定耐药基因,减少86种天然耐药基因。在土壤pH、有机质、全氮、全钾等理化因素的驱动下,硝化螺旋菌属(Nitrospira)和厌氧粘细菌属(Anaeromyxobacter)的相对丰度分别降低11.4%和3.1%;而假纤细芽孢杆菌属(Pseudogracilibacillus)、葡萄球菌属(Staphylococcus)、假双头斧形菌属(Pseudolabrys)和枝芽胞杆菌属(Virgibacillus)的相对丰度分别增加10.5%、6.1%、0.6%和5.4%。这些优势菌群的变化与耐药基因存在密切联系,且参与调节葡萄土壤菌群的整体功能与代谢。综上所述,长期施肥显著改善了葡萄土壤的理化性质,同时对土壤微生物群落多样性和ARGs数量产生了深远影响。
中图分类号:
王会来, 李帅, 王寅, 吴东涛, 马嘉伟, 叶正钱, 池永清, 王美. 长期施肥对葡萄土壤细菌群落多样性及ARGs分布的影响[J]. 中国农业科技导报, 2025, 27(6): 229-239.
Huilai WANG, Shuai LI, Yin WANG, Dongtao WU, Jiawei MA, Zhengqian YE, Yongqing CHI, Mei WANG. Effect of Long-term Fertilization on Diversity of Bacterial Community and Distribution of ARGs in Grape Soil[J]. Journal of Agricultural Science and Technology, 2025, 27(6): 229-239.
处理Treatment | pH | 有机质SOM/(g·kg-1) | 碱解氮AN/ (mg·kg-1) | 氨态氮 | 全氮TN/ (g·kg-1) | 全钾TK/(mg·kg-1) | 土壤微生物量碳MBC/ (mg·kg-1) | 土壤微生物量氮MBN/ (mg·kg-1) |
---|---|---|---|---|---|---|---|---|
PT | 5.65±0.07 a | 44.83±2.45 a | 605.32±15.64 a | 71.17±3.77 a | 2.85±0.06 a | 31.34±0.64 a | 117.89±0.48 a | 111.98±3.18 a |
CK | 7.52±0.03 b | 13.35±2.53 b | 62.99±4.60 b | 7.67±1.30 b | 0.83±0.06 b | 29.18±0.81 b | 98.87±4.85 b | 11.75±1.64 b |
表 1 葡萄土壤的基本理化性质
Table 1 Basic physicochemical properties of grape soils
处理Treatment | pH | 有机质SOM/(g·kg-1) | 碱解氮AN/ (mg·kg-1) | 氨态氮 | 全氮TN/ (g·kg-1) | 全钾TK/(mg·kg-1) | 土壤微生物量碳MBC/ (mg·kg-1) | 土壤微生物量氮MBN/ (mg·kg-1) |
---|---|---|---|---|---|---|---|---|
PT | 5.65±0.07 a | 44.83±2.45 a | 605.32±15.64 a | 71.17±3.77 a | 2.85±0.06 a | 31.34±0.64 a | 117.89±0.48 a | 111.98±3.18 a |
CK | 7.52±0.03 b | 13.35±2.53 b | 62.99±4.60 b | 7.67±1.30 b | 0.83±0.06 b | 29.18±0.81 b | 98.87±4.85 b | 11.75±1.64 b |
图1 不同处理下土壤中的可检测菌科数量和耐药基因数量A:菌科数量;B:耐药基因数量
Fig. 1 Number of mycogens and drug-resistant genes detected under different treatmentsA: Number of mycofamilies; B: Number of resistance genes
图2 不同处理下土壤中优势细菌(前20)的相对丰度A:门水平;B:纲水平;C:属水平
Fig. 2 Relative abundance of dominant bacteria (top 20) under different treatmentsA: Phylum level; B: Class level; C: Genus level
图3 不同处理下的土壤微生物耐药类别和耐药基因丰度A:优势耐药类别;B:优势耐药基因
Fig. 3 Abundance and categories of dominant drug resistance genes under different treatmentsA: Dominant drug resistance category; B: Dominant drug resistance genes
图4 不同处理下土壤优势菌群与耐药类别、细菌群落功能和代谢的关系A:优势菌群与耐药类别的关系;B:优势菌群与细菌群落功能的关系;C:优势菌群与细菌群落代谢的关系
Fig. 4 Relationship between dominant microbial community and antimicrobial resistance category, bacterial community function and bacterial community metabolism under different treatmentsA: Relationship between dominant microflora and drug resistance classes; B: Relationship between dominant flora and bacterial community function; C: Relationship between dominant microflora and bacterial community metabolism
1 | 刘俊,晁无疾,亓桂梅,等.蓬勃发展的中国葡萄产业[J].中外葡萄与葡萄酒,2020(1):1-8. |
LIU J, CHAO W J, QI G M, et al.. Booming development of Chinese grape industry [J]. Sino Overseas Grapevine Wine, 2020(1): 1-8. | |
2 | THAKUR M P, GEISEN S. Trophic regulations of the soil microbiome [J]. Trends Microbiol., 2019, 27(9): 771-780. |
3 | JANSSON J K, HOFMOCKEL K S. Soil microbiomes and climate change [J]. Nat. Rev. Microbiol., 2020, 18(1): 35-46. |
4 | CUSTÓDIO V, GONIN M, STABL G, et al.. Sculpting the soil microbiota [J]. Plant J., 2022, 109(3): 508-522. |
5 | WANG Q, CHAI Q, DOU X, et al.. Soil microorganisms in agricultural fields and agronomic regulation pathways [J]. Agronomy, 2024, 14: 669-678. |
6 | 刘占军,祝慧,张振兴,等.我国苹果园施肥现状、土壤剖面氮磷分布特征及减肥增效技术[J].植物营养与肥料学报,2021,27(7):1294-1304. |
LIU Z J, ZHU H, ZHANG Z X, et al.. Current status of fertilization, distribution of N and P in soil profiles and techniques for reducing fertilizer application and improving efficiency in China’s apple orchards [J]. J. Plant Nutr. Fert., 2021, 27(7): 1294-1304. | |
7 | GE S F, ZHU Z L, JIANG Y M, et al.. Long-term impact of fertilization on soil pH and fertility in an apple production system [J]. J. Soil Sci. Plant Nutr., 2018, 18(1):282-293. |
8 | CHI S, XU W, HAN Y. ARGs distribution and high-risk ARGs identification based on continuous application of manure in purple soil [J/OL]. Sci. Total Environ., 2022, 853: 158667 [2024-07-10]. . |
9 | LANDECKER H. Antimicrobials before antibiotics: war, peace, and disinfectants [J/OL]. Palgrave Commun., 2019, 5(1): 45 [2024-07-10]. . |
10 | CHEN Q L, AN X L, LI H, et al.. Do manure-borne or indigenous soil microorganisms influence the spread of antibiotic resistance genes in manured soil? [J]. Soil Biol. Biochem., 2017, 114: 229-237. |
11 | GAO Y, LUO W, ZHANG H, et al.. Enrichment of antibiotic resistance genes in roots is related to specific bacterial hosts and soil properties in two soil-plant systems [J/OL]. Sci. Total Environ., 2023, 886: 163933 [2024-07-10]. . |
12 | SUTRADHAR I, CHING C, DESAI D, et al.. Computational model to quantify the growth of antibiotic-resistant bacteria in wastewater [J/OL]. mSystems, 2021, 6(3): e0036021 [2024-07-10]. . |
13 | KITTREDGE H A, DOUGHERTY K M, EVANS S E. Dead but not forgotten: how extracellular DNA moisture, and space modulate the horizontal transfer of extracellular antibiotic resistance genes in soil [J/OL]. Appl. Environ. Microbiol., 2022, 88(7): e0228021 [2024-07-10]. . |
14 | WU S, WU Y, CAO B, et al.. An invisible workforce in soil: the neglected role of soil biofilms in conjugative transfer of antibiotic resistance genes [J]. Crit. Rev. Environ. Sci. Technol., 2022, 52(15): 2720-2748. |
15 | ZHANG Y, GUO Y, QIU T, et al.. Bacteriophages: Underestimated vehicles of antibiotic resistance genes in the soil [J/OL]. Front. Microbiol., 2022, 13: 936267 [2024-07-10]. . |
16 | SPIELMEYER A, HÖPER H, HAMSCHER G. Long-term monitoring of sulfonamide leaching from manure amended soil into groundwater [J]. Chemosphere, 2017, 177: 232-238. |
17 | HE L Y, HE L K, LIU Y S, et al.. Microbial diversity and antibiotic resistome in swine farm environments [J]. Sci. Total Environ., 2019, 685: 197-207. |
18 | ZHOU S Y D, ZHU D, GILES M, et al.. Does reduced usage of antibiotics in livestock production mitigate the spread of antibiotic resistance in soil, earthworm guts, and the phyllosphere? [J/OL]. Environ. Int., 2020, 136: 105359 [2024-07-10]. . |
19 | 韩建,尹兴,郭景丽,等.有机肥施用对红地球葡萄产量、品质及土壤环境的影响[J].植物营养与肥料学报,2020,26(1):131-142. |
HAN J, YIN X, GUO J L, et al.. Effects of manure application on yield and quality of Red Globe grape and soil environment [J]. J. Plant Nutr. Fert., 2020, 26(1): 131-142. | |
20 | 王小龙,刘凤之,史祥宾,等.不同有机肥对葡萄根系生长和土壤养分状况的影响[J].华北农学报,2019,34(5):177-184. |
WANG X L, LIU F Z, SHI X B, et al.. Effects of organic fertilizers on root growth and soil nutrition of grape [J]. Acta Agric. Boreali-Sin., 2019, 34(5): 177-184. | |
21 | 李文超,孙盼,王振平.不同土壤条件对酿酒葡萄生理及果实品质的影响[J].果树学报,2012,29(5):837-842. |
LI W C, SUN P, WANG Z P. Effects of different soil condition on physiology and fruit quality of wine grapes [J]. J. Fruit Sci., 2012, 29(5):837-842. | |
22 | 鲍士旦.土壤农化分析[M].3版.北京:中国农业出版社,2000:1-495. |
23 | 周晓阳,徐明岗,周世伟,等.长期施肥下我国南方典型农田土壤的酸化特征[J].植物营养与肥料学报,2015,21(6):1615-1621. |
ZHOU X Y, XU M G, ZHOU S W, et al.. Soil acidification characteristics in Southern China s croplands under long-term fertilization [J]. J. Plant Nutr. Fert., 2015, 21(6): 1615-1621. | |
24 | 杜天宇,贺海耘,计雅男,等.长期配方施肥对核桃根际土壤环境及产量的影响研究[J].西北林学院学报,2024,39(4):79-87. |
DU T Y, HE H Y, JI Y N, et al.. Effects of long-term fertilization on rhizosphere soil properties and walnut yield [J]. J. Northwest For. Univ., 2024, 39(4): 79-87. | |
25 | 赵佐平,同延安,刘芬,等.长期不同施肥处理对苹果产量、品质及土壤肥力的影响[J].应用生态学报, 2013, 24(11): 3091-3098. |
ZHAO Z P, TONG Y A, LIU F, et al.. Effects of different long-term fertilization patterns on Fuji apple yield, quality, and soil fertility on Weibei Dryland, Shaanxi province of Northwest China [J]. Chin. J. Appl. Ecol., 2013, 24(11): 3091-3098. | |
26 | 臧逸飞,郝明德,张丽琼,等.26年长期施肥对土壤微生物量碳、氮及土壤呼吸的影响[J].生态学报,2015,35(5):1445-1451. |
ZANG Y F, HAO M D, ZHANG L Q, et al.. Effects of wheat cultivation and fertilization on soil microbial biomass carbon, soil microbial biomass nitrogen and soil basal respiration in 26 years [J]. Acta Ecol. Sin., 2015, 35(5): 1445-1451. | |
27 | 刘中良,宇万太,周桦,等.长期施肥对土壤团聚体分布和养分含量的影响[J].土壤,2011,43(5):720-728. |
LIU Z L, YU W T, ZHOU H, et al.. Effects of long-term fertilization on aggregate size distribution and nutrient content [J]. Soils, 2011, 43(5): 720-728. | |
28 | 邓超,毕利东,秦江涛,等.长期施肥下土壤性质变化及其对微生物生物量的影响[J].土壤,2013,45(5):888-893. |
DENG C, BI L D, QIN J T, et al.. Effects of long-term fertilization on soil property changes and soil microbial biomass [J]. Soils, 2013, 45(5): 888-893. | |
29 | GEISSELER D, SCOW K M. Long-term effects of mineral fertilizers on soil microorganisms-a review [J]. Soil Biol. Biochem., 2014, 75: 54-63. |
30 | LADHA J K, REDDY C K, PADRE A T, et al.. Role of nitrogen fertilization in sustaining organic matter in cultivated soils [J]. J. Environ. Qual., 2011, 40(6): 1756-1766. |
31 | KALLENBACH C, GRANDY A S. Controls over soil microbial biomass responses to carbon amendments in agricultural systems: a Meta-analysis [J]. Agric. Ecosyst. Environ., 2011, 144(1): 241-252. |
32 | 袁红朝,吴昊,葛体达,等.长期施肥对稻田土壤细菌、古菌多样性和群落结构的影响[J].应用生态学报,2015,26(6):1807-1813. |
YUAN H C, WU H, GE T D, et al.. Effects of long-term fertilization on bacterial and archaeal diversity and community structure within subtropical red paddy soils [J]. Chin. J. Appl. Ecol., 2015, 26(6): 1807-1813. | |
33 | 邬奇峰,陆扣萍,毛霞丽,等.长期不同施肥对农田土壤养分与微生物群落结构的影响[J].中国农学通报,2015,31(5):150-156. |
WU Q F, LU K P, MAO X L, et al.. Responses of soil nutrients and microbial biomass and community composition to long-term fertilization in cultivated land [J]. Chin. Agric. Sci. Bull., 2015, 31(5): 150-156. | |
34 | SHI R, WANG S, XIONG B, et al.. Application of bioorganic fertilizer on Panax notoginseng improves plant growth by altering the rhizosphere microbiome structure and metabolism [J/OL]. Microorganisms, 2022, 10(2): 275 [2024-07-10]. . |
35 | 王慧颖,徐明岗,周宝库,等.黑土细菌及真菌群落对长期施肥响应的差异及其驱动因素[J].中国农业科学,2018,51(5):914-925. |
WANG H Y, XU M G, ZHOU B K, et al.. Response and driving factors of bacterial and fungal community to long-term fertilization in black soil [J]. Sci. Agric. Sin., 2018, 51(5): 914-925. | |
36 | LI M, LI S, MENG Q, et al.. Feedstock optimization with rice husk chicken manure and mature compost during chicken manure composting: quality and gaseous emissions [J/OL]. Bioresour. Technol., 2023, 387: 129694 [2024-07-10]. . |
37 | LIAN T X, WANG G H, YU Z H, et al.. Bacterial communities incorporating plant-derived carbon in the soybean rhizosphere in Mollisols that differ in soil organic carbon content [J]. Appl. Soil Ecol., 2017, 119: 375-383. |
38 | HOU X, JI L, LI T, et al.. Effects of salt stress on the structure and function of oil-contaminated soil bacteria [J/OL]. Water Air Soil Pollut., 2022, 233(8): 349 [2024-07-10]. . |
39 | MASUDA Y, YAMANAKA H, XU Z X, et al.. Diazotrophic ability Anaeromyxobacter isolates from soils [J/OL]. Appl. Environ. Microbiol., 2020, 86(16): e00956-20 [2024-07-10]. . |
40 | LI L, QU Z, JIA R, et al.. Succession of metabolically active Anaeromyxobacter community in flooded paddy soil owing to organic carbon input [J]. Soil Sci. Soc. Am. J., 2022, 86(5): 1169-1181. |
41 | ROUSK J, HILL P W, JONES D L. Priming of the decomposition of ageing soil organic matter: concentration dependence and microbial control [J]. Funct. Ecol., 2015, 29(2): 285-296. |
42 | 张佳音.有机培肥对土壤有机碳降解温度敏感性的影响及其机理研究[D].北京:中国农业科学院,2023. |
ZHANG J Y. Effect of organic fertilizer on temperature sensitivity of soil organic carbon degradation and its mechanism [D]. Beijing: Chinese Academy of Agricultural Sciences, 2023. | |
43 | ZHENG Y, SAITOU A, WANG C M, et al.. Genome features and secondary metabolites biosynthetic potential of the class ktedonobacteria [J/OL]. Front. Microbiol., 2019, 10: 893 [2024-07-10]. . |
44 | DAIMS H, LEBEDEVA E V, PJEVAC P, et al.. Complete nitrification by Nitrospira bacteria [J]. Nature, 2015, 528(7583): 504-509. |
45 | BUCHANAN R E. Transfer of Rhizobium japonicum Buchanan 1980 to Bradyrhizobium gen. nov., a genus of slow-growing, root nodule bacteria from leguminous plants [J]. Int. J. Syst. Bacteriol., 1980, 30(3):225-230. |
46 | YING D, CHEN X, HOU J, et al.. Soil properties and microbial functional attributes drive the response of soil multifunctionality to long-term fertilization management [J/OL]. Appl. Soil Ecol., 2023, 192: 105095 [2024-07-10]. . |
47 | HU J, ZHAO Y, YAO X, et al.. Dominance of comammox Nitrospira in soil nitrification [J/OL]. Sci. Total Environ., 2021, 780: 146558 [2024-07-10]. . |
48 | SOKOLOVA E A, MISHUKOVA O V, HLISTUN I V, et al.. The effectiveness of co-inoculation by consortia of microorganisms depends on the type of plant and the soil microbiome [J/OL]. Plants (Basel), 2023, 13(1): 116 [2024-07-10]. . |
49 | ZHAO X, WANG J, ZHU L, et al.. Field-based evidence for enrichment of antibiotic resistance genes and mobile genetic elements in manure-amended vegetable soils [J]. Sci. Total Environ., 2019, 654: 906-913. |
50 | XU Y, LI H, SHAO Z, et al.. Fate of antibiotic resistance genes in farmland soil applied with three different fertilizers during the growth cycle of pakchoi and after harvesting [J/OL]. J. Environ. Manage., 2021, 289: 112576 [2024-07-10]. . |
51 | WANG B, SONG L, LI W, et al.. Distribution and migration of antibiotic resistance genes, as well as their correlation with microbial communities in swine farm and its surrounding environments [J/OL]. Environ. Pollut., 2023, 316(Pt2): 120618 [2024-07-10]. . |
52 | WANG F, XU M, STEDTFELD R D, et al.. Long-term effect of different fertilization and cropping systems on the soil antibiotic resistome [J]. Environ. Sci. Technol., 2018, 52(22): 13037-13046. |
53 | WANG Y, CAI J, CHEN X, et al.. The connection between the antibiotic resistome and nitrogen-cycling microorganisms in paddy soil is enhanced by application of chemical and plant-derived organic fertilizers [J/OL]. Environ. Res., 2024, 243: 117880 [2024-07-10]. . |
54 | 理鹏,吴建强,沙晨燕,等.粪肥和有机肥施用对稻田土壤微生物群落多样性影响[J].环境科学,2020,41(9):4262-4272. |
LI P, WU J Q, SHA C Y, et al.. Effects of manure and organic fertilizer application on soil microbial community diversity in paddy fields [J]. Environ. Sci., 2020, 41(9): 4262-4272. | |
55 | XIAO K Q, LI B, MA L, et al.. Metagenomic profiles of antibiotic resistance genes in paddy soils from South China [J/OL]. FEMS Microbiol. Ecol., 2016, 92(3): fiw023 [2024-07-10]. . |
56 | LI T, LI R, CAO Y, et al.. Soil antibiotic abatement associates with the manipulation of soil microbiome via long-term fertilizer application [J/OL]. J. Hazard. Mater., 2022, 439: 129704 [2024-07-10]. . |
57 | SHI H, HU X, LI W, et al.. Soil component: a potential factor affecting the occurrence and spread of antibiotic resistance genes [J/OL]. Antibiotics (Basel), 2023, 12(2): 333 [2024-07-10]. . |
58 | LIU Z, ZHAO Y, ZHANG B, et al.. Deterministic effect of pH on shaping soil resistome revealed by metagenomic analysis [J]. Environ. Sci. Technol., 2023, 57(2): 985-996. |
59 | CROW A, GREENE N P, KAPLAN E, et al.. Structure and mechanotransmission mechanism of the MacB ABC transporter superfamily [J]. Proc. Natl. Acad. Sci. USA, 2017, 114(47): 12572-12577. |
60 | NESME J, SIMONET P. The soil resistome: a critical review on antibiotic resistance origins, ecology and dissemination potential in telluric bacteria [J]. Environ. Microbiol., 2015, 17(4): 913-930. |
61 | LIU W, CHENG Y, GUO J, et al.. Long-term manure inputs induce a deep selection on agroecosystem soil antibiotic resistome [J/OL]. J. Hazard. Mater., 2022, 436: 129163 [2024-07-10]. . |
62 | CHE Y, XIA Y, LIU L, et al.. Mobile antibiotic resistome in wastewater treatment plants revealed by Nanopore metagenomic sequencing [J/OL]. Microbiome, 2019, 7(1): 44 [2024-07-10]. . |
63 | 杨永青,许继飞,董泰音,等.水体和土壤环境中抗生素抗性基因(ARGs)的污染特征和消除[J].北方农业学报,2018,46(3):76-82. |
YANG Y Q, XU J F, DONG T Y, et al.. Pollution property and reduction of antibiotic resistance genes (ARGs) in aquatic and soil environment [J]. J. North. Agric., 2018, 46(3): 76-82. | |
64 | LEE H J, JHANG S T, JIN H J. Potential target site for inhibitors in MLS (B) antibiotic resistance [J/OL]. Antibiotics (Basel), 2021, 10(3): 264 [2024-07-10]. . |
65 | 杨兆颖.线粒体内氨基酸代谢调控其它代谢途径的机制研究[D].杭州:浙江大学,2020. |
YANG Z Y. The molecular mechanism underlying amino acid metabolism regulates other metabolic pathways in mitochondria [D]. Hangzhou: Zhejiang University, 2020. | |
66 | KOMEILI A, WEDAMAN K P, O’SHEA E K, et al.. Mechanism of metabolic control. target of rapamycin signaling links nitrogen quality to the activity of the Rtg1 and Rtg3 transcription factors [J]. J. Cell Biol., 2000, 151(4): 863-878. |
67 | MUNRO H N. Regulation of protein metabolism [J]. Acta Anaesthesiol. Scand, 1974, 18: 268-279. |
68 | TESSERAUD S, EVERAERT N, BOUSSAIDOM E S, et al.. Manipulating tissue metabolism by amino acids [J]. World’s Poult. Sci. J., 2011, 67(2):243-252. |
69 | 武红霞,许文天,罗纯,等.芒果果实转录组数据组装及基因功能注释[J].热带作物学报,2016,37(11):2191-2198. |
WU H X, XU W T, LUO C, et al.. Transcriptome data assembly and gene function annotation of mango fruits [J]. Chin. J. Trop. Crops, 2016, 37(11): 2191-2198. | |
70 | CHENG H, YUAN M, TANG L, et al.. Integrated microbiology and metabolomics analysis reveal responses of soil microorganisms and metabolic functions to phosphorus fertilizer on semiarid farm [J/OL]. Sci. Total Environ., 2022, 817: 152878 [2024-07-10]. . |
[1] | 刘威, 赵园园, 陈小龙, 史宏志. 土壤含水率对豫中植烟土壤微生物群落多样性及氮循环功能基因丰度的影响[J]. 中国农业科技导报, 2024, 26(1): 214-225. |
[2] | 苏迪,鲍恩俣,王进. 适钙植物报春苣苔根际土壤微生物群落结构[J]. 中国农业科技导报, 2020, 22(10): 149-156. |
[3] | 张明艳1,张继光1*,申国明1,张忠锋1,蔡宪杰2,薛林3. 烟田土壤微生物群落结构及功能微生物的研究现状与展望[J]. , 2014, 16(5): 115-122. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||