中国农业科技导报 ›› 2022, Vol. 24 ›› Issue (1): 202-210.DOI: 10.13304/j.nykjdb.2021.0087
黄英1(), 彭晴1, 王荃2, 徐小轻1, 张宇微1, 马蓝1, 石波1, 乔宇1(
)
收稿日期:
2021-01-26
接受日期:
2021-04-14
出版日期:
2022-01-15
发布日期:
2022-01-25
通讯作者:
乔宇
作者简介:
黄英 E-mail:huangying9617@163.com;
基金资助:
Yin HUANG1(), Qing PENG1, Quan WANG2, Xiaoqing XU1, Yuwei ZHANG1, Lan MA1, Bo SHI1, Yu QIAO1(
)
Received:
2021-01-26
Accepted:
2021-04-14
Online:
2022-01-15
Published:
2022-01-25
Contact:
Yu QIAO
摘要:
为建立一种快速检测芽孢杆菌细胞毒性的方法,通过比较不同的细胞以及活性测定方法,确立以非洲绿猴肾细胞(Vero细胞)为受试细胞,MTT比色法作为芽孢杆菌代谢物细胞毒性的检测方法,并对检测条件进行了优化。利用优化后的方法对81株不同来源芽孢杆菌的细胞毒性进行检测,发现有16株芽孢杆菌具有细胞毒性。通过毒素编码基因PCR、溶血性试验和抗体免疫反应试验进一步验证了16株芽胞杆菌的毒性。与体外测定方法相比,建立的细胞毒性检测方法具有更高的灵敏性,且适用于不同株系芽孢杆菌在细胞水平的安全性评价,具有较高的推广应用价值。
中图分类号:
黄英, 彭晴, 王荃, 徐小轻, 张宇微, 马蓝, 石波, 乔宇. 一种用于芽孢杆菌代谢物细胞毒性的快速检测方法[J]. 中国农业科技导报, 2022, 24(1): 202-210.
Yin HUANG, Qing PENG, Quan WANG, Xiaoqing XU, Yuwei ZHANG, Lan MA, Bo SHI, Yu QIAO. [J]. Journal of Agricultural Science and Technology, 2022, 24(1): 202-210.
基因名称 Gene name | 引物序列 Primer sequence (5’-3’) | 片段长度 Fragment length/bp | 退火温度 Annealing temperature/℃ |
---|---|---|---|
ces | F: GGTGACACATTATCATATAAGGTG | 1 271 | 54 |
R: GTAAGCGAACCTGTCTGTAACAACA | |||
entFM | F: ATGAAAAAAGTAATTTGCAGG | 1 269 | 55 |
R: TTAGTATGCTTTTGTGTAACC | |||
CytK | F: CGACGTCACAAGTTGTAACA | 565 | 54 |
R: CGTGTGTAAATACCCAGTT | |||
hblA | F: AAGCAATGGAATACAATGGG | 1 154 | 56 |
R: AGAATCTAAATCATGCCACTGC | |||
hblC | F: GATACTAATGTGGCAACTGC | 740 | 58 |
R: TTGAGACTGCTCGTTAGTTG | |||
hblD | F: ACCGGTAACACTATTCATGC | 829 | 58 |
R: GAGTCCATATGCTTAGATGC | |||
nheA | F: GTTAGGATCACAATCACCGC | 755 | 56 |
R: ACGAATGTAATTTGAGTCGC | |||
nheB | F: TTTAGTAGTGGATCTGTACGC | 743 | 54 |
R: TTAATGTTCGTTAATCCTGC | |||
nheC | F: CGGTAGTGATTGCTGGG | 564 | 55 |
R: CAGCATTCGTACTTGCCAA |
表1 毒素编码基因的PCR引物
Table1 Primer of virulence genes for PCR
基因名称 Gene name | 引物序列 Primer sequence (5’-3’) | 片段长度 Fragment length/bp | 退火温度 Annealing temperature/℃ |
---|---|---|---|
ces | F: GGTGACACATTATCATATAAGGTG | 1 271 | 54 |
R: GTAAGCGAACCTGTCTGTAACAACA | |||
entFM | F: ATGAAAAAAGTAATTTGCAGG | 1 269 | 55 |
R: TTAGTATGCTTTTGTGTAACC | |||
CytK | F: CGACGTCACAAGTTGTAACA | 565 | 54 |
R: CGTGTGTAAATACCCAGTT | |||
hblA | F: AAGCAATGGAATACAATGGG | 1 154 | 56 |
R: AGAATCTAAATCATGCCACTGC | |||
hblC | F: GATACTAATGTGGCAACTGC | 740 | 58 |
R: TTGAGACTGCTCGTTAGTTG | |||
hblD | F: ACCGGTAACACTATTCATGC | 829 | 58 |
R: GAGTCCATATGCTTAGATGC | |||
nheA | F: GTTAGGATCACAATCACCGC | 755 | 56 |
R: ACGAATGTAATTTGAGTCGC | |||
nheB | F: TTTAGTAGTGGATCTGTACGC | 743 | 54 |
R: TTAATGTTCGTTAATCCTGC | |||
nheC | F: CGGTAGTGATTGCTGGG | 564 | 55 |
R: CAGCATTCGTACTTGCCAA |
菌株名称Strain | 粗毒素体积 Volume of crude toxin /μL | |||
---|---|---|---|---|
25 | 50 | 75 | 100 | |
蜡样芽孢杆菌CICC 21261 B. cereus CICC 21261 | 93.41±0.16 b | 93.69±0.07 a | 93.41±0.13 ab | 93.54±0.09 ab |
蜡样芽胞杆菌1-20 B. cereus 1-20 | 91.47±0.27 c | 94.26±0.04 a | 92.84±0.44 b | 93.45±0.22 b |
解淀粉芽孢杆菌1-16 B. amyloliquefaciens 1-16 | 50.00±0.39 b | 52.64±1.62 a | 50.94±0.25 ab | 50.96±0.36 ab |
表2 不同粗提物体积的细胞抑制率 (%)
Table 2 Inhibition rates of cells by different volumes of Bacillus crude extract
菌株名称Strain | 粗毒素体积 Volume of crude toxin /μL | |||
---|---|---|---|---|
25 | 50 | 75 | 100 | |
蜡样芽孢杆菌CICC 21261 B. cereus CICC 21261 | 93.41±0.16 b | 93.69±0.07 a | 93.41±0.13 ab | 93.54±0.09 ab |
蜡样芽胞杆菌1-20 B. cereus 1-20 | 91.47±0.27 c | 94.26±0.04 a | 92.84±0.44 b | 93.45±0.22 b |
解淀粉芽孢杆菌1-16 B. amyloliquefaciens 1-16 | 50.00±0.39 b | 52.64±1.62 a | 50.94±0.25 ab | 50.96±0.36 ab |
编号 Number | 菌株 Strain | 细胞抑制率 Inhibition rates of cells/% | 溶血性 Hemolysis | 抗体检测 Antibody test | 毒素编码基因 Toxin coding gene | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
正常处理 Normal | 热处理 Heat | Ces | entFM | CytK | hblA | hblC | hblD | nheA | nheB | nheC | ||||
1 | 蜡样芽孢杆菌1-13 B. cereus 1-13 | 93.57±0.11 a | 26.32±1.77 b | + | + | - | + | + | + | + | + | + | + | + |
2 | 蜡样芽胞杆菌1-19 B. cereus 1-19 | 93.60±0.05 a | 25.48±0.81 b | + | + | - | + | - | + | + | + | + | + | + |
3 | 蜡样芽胞杆菌1-20 B. cereus 1-20 | 94.26±0.04 a | 3.95±0.63 b | + | + | - | + | + | + | + | + | - | + | + |
4 | 枯草芽孢杆菌2-13 B.subtilis 2-13 | 54.00±0.42 a | 48.63±0.63 b | - | - | - | - | - | - | - | + | - | - | - |
5 | 枯草芽孢杆菌2-14 B.subtilis 2-14 | 54.30±0.82 a | 53.83±0.52 a | - | - | - | - | - | - | - | + | - | - | - |
6 | 枯草芽孢杆菌2-17 B.subtilis 2-17 | 65.38±1.40 a | 50.00±0.31 b | - | - | - | - | - | - | - | + | - | - | - |
7 | 解淀粉芽孢杆2-15 B. amyloliquefaciens 2-15 | 43.67±0.73 a | 45.93±0.59 b | - | - | - | - | - | - | - | + | - | - | - |
8 | 解淀粉芽孢杆菌3-29 B. amyloliquefaciens 3-29 | 33.29±0.90 a | 28.19±1.82 b | - | - | - | - | - | - | - | + | - | - | - |
9 | 解淀粉芽孢杆菌1-16 B. amyloliquefaciens 1-16 | 52.15±0.58 a | 50.78±0.29 a | - | - | - | - | - | - | - | + | - | - | - |
10 | 解淀粉芽孢杆菌1-17 B. amyloliquefaciens 1-17 | 52.07±0.50 a | 51.82±0.68 b | - | - | - | - | - | - | - | - | - | - | - |
11 | 解淀粉芽孢杆菌1-18 B. amyloliquefaciens 1-18 | 55.32±0.58 a | 54.82±0.80 a | - | - | - | - | - | - | - | + | - | - | - |
12 | 解淀粉芽孢杆菌3-33 B. amyloliquefaciens 3-33 | 62.91±0.90 a | 50.09±2.50 b | - | - | - | - | - | - | - | + | - | - | - |
13 | 贝莱斯芽孢杆菌2-16 B.velezensis 2-16 | 51.60±0.07 a | 50.64±1.30 a | - | - | - | - | - | - | - | - | - | - | - |
14 | 贝莱斯芽孢杆菌3-31 B.velezensis 3-31 | 63.29±0.44 a | 57.23±0.95 b | - | - | - | - | - | - | - | + | - | - | - |
15 | 贝莱斯芽孢杆菌3-32 B.velezensis 3-32 | 55.30±1.48 a | 38.41±1.91 b | - | - | - | - | - | - | - | - | - | - | - |
16 | 贝莱斯芽孢杆菌3-34 B.velezensis 3-34 | 55.26±0.67 a | 41.33±0.88 b | - | - | - | - | - | - | - | - | - | - | - |
表3 芽孢杆菌细胞毒性检测及毒素分析
Table 3 Cytotoxicity tests and toxin analysis of Bacillus
编号 Number | 菌株 Strain | 细胞抑制率 Inhibition rates of cells/% | 溶血性 Hemolysis | 抗体检测 Antibody test | 毒素编码基因 Toxin coding gene | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
正常处理 Normal | 热处理 Heat | Ces | entFM | CytK | hblA | hblC | hblD | nheA | nheB | nheC | ||||
1 | 蜡样芽孢杆菌1-13 B. cereus 1-13 | 93.57±0.11 a | 26.32±1.77 b | + | + | - | + | + | + | + | + | + | + | + |
2 | 蜡样芽胞杆菌1-19 B. cereus 1-19 | 93.60±0.05 a | 25.48±0.81 b | + | + | - | + | - | + | + | + | + | + | + |
3 | 蜡样芽胞杆菌1-20 B. cereus 1-20 | 94.26±0.04 a | 3.95±0.63 b | + | + | - | + | + | + | + | + | - | + | + |
4 | 枯草芽孢杆菌2-13 B.subtilis 2-13 | 54.00±0.42 a | 48.63±0.63 b | - | - | - | - | - | - | - | + | - | - | - |
5 | 枯草芽孢杆菌2-14 B.subtilis 2-14 | 54.30±0.82 a | 53.83±0.52 a | - | - | - | - | - | - | - | + | - | - | - |
6 | 枯草芽孢杆菌2-17 B.subtilis 2-17 | 65.38±1.40 a | 50.00±0.31 b | - | - | - | - | - | - | - | + | - | - | - |
7 | 解淀粉芽孢杆2-15 B. amyloliquefaciens 2-15 | 43.67±0.73 a | 45.93±0.59 b | - | - | - | - | - | - | - | + | - | - | - |
8 | 解淀粉芽孢杆菌3-29 B. amyloliquefaciens 3-29 | 33.29±0.90 a | 28.19±1.82 b | - | - | - | - | - | - | - | + | - | - | - |
9 | 解淀粉芽孢杆菌1-16 B. amyloliquefaciens 1-16 | 52.15±0.58 a | 50.78±0.29 a | - | - | - | - | - | - | - | + | - | - | - |
10 | 解淀粉芽孢杆菌1-17 B. amyloliquefaciens 1-17 | 52.07±0.50 a | 51.82±0.68 b | - | - | - | - | - | - | - | - | - | - | - |
11 | 解淀粉芽孢杆菌1-18 B. amyloliquefaciens 1-18 | 55.32±0.58 a | 54.82±0.80 a | - | - | - | - | - | - | - | + | - | - | - |
12 | 解淀粉芽孢杆菌3-33 B. amyloliquefaciens 3-33 | 62.91±0.90 a | 50.09±2.50 b | - | - | - | - | - | - | - | + | - | - | - |
13 | 贝莱斯芽孢杆菌2-16 B.velezensis 2-16 | 51.60±0.07 a | 50.64±1.30 a | - | - | - | - | - | - | - | - | - | - | - |
14 | 贝莱斯芽孢杆菌3-31 B.velezensis 3-31 | 63.29±0.44 a | 57.23±0.95 b | - | - | - | - | - | - | - | + | - | - | - |
15 | 贝莱斯芽孢杆菌3-32 B.velezensis 3-32 | 55.30±1.48 a | 38.41±1.91 b | - | - | - | - | - | - | - | - | - | - | - |
16 | 贝莱斯芽孢杆菌3-34 B.velezensis 3-34 | 55.26±0.67 a | 41.33±0.88 b | - | - | - | - | - | - | - | - | - | - | - |
1 | ERRINGTON J. Regulation of endospore formation in Bacillus subtilis [J]. Nat. Rev. Microbiol., 2003, 1(2):117-126. |
2 | ABRIOUEL H, FRANZ C M, OMAR N B, et al.. Diversity and applications of Bacillus bacteriocins [J]. Fems. Microbiol. Rev., 2011, 35(1):201-232. |
3 | 刘阳.益生芽孢杆菌机理探究及应用研究进展[J].四川农业科技,2020(3):64-67. |
LIU Y. Research progress on mechanism and application of probiotic Bacillus [J]. Sichuan Agric. Sci. Technol., 2020(3):64-67. | |
4 | NGUYEN A T, TALLENT S M. Screening food for Bacillus cereus toxins using whole genome sequencing [J]. Food Microbiol., 2019, 78:164-170. |
5 | OUOBA L I, THORSEN L, VARNAM A H. Enterotoxins and emetic toxins production by Bacillus cereus and other species of Bacillus isolated from Soumbala and Bikalga, African alkaline fermented food condiments [J]. Int. J. Food Microbiol., 2008, 124(3):224-230. |
6 | ZHAO J, LV Q, LIU P, et al.. AlphaLISA for detection of staphylococcal enterotoxin B free from interference by protein A [J]. Toxicon, 2019, 165:62-68. |
7 | MORAVEK M, DIETRICH R, BUERK C, et al.. Determination of the toxic potential of Bacillus cereus isolates by quantitative enterotoxin analyses [J]. FEMS. Microbiol. Lett., 2006, 257(2):293-298. |
8 | MATHUR A, FENG S, HAYWARD J A, et al.. A multicomponent toxin from Bacillus cereus incites inflammation and shapes host outcome via the NLRP3 inflammasome [J]. Nat. Microbiol., 2019, 4(2):362-374. |
9 | CAI Y, HUANG T, XU Y, et al.. Genetic and genomic diversity of NheABC locus from Bacillus strains [J]. Arch. Microbiol., 2017, 199(5):775-785. |
10 | CAROLINE C, EINAR G P. The enterotoxin T (BcET) from Bacillus cereus can probably not contribute to food poisoning [J]. Fems. Microbiol. Lett., 2002, 217(1):115-119. |
11 | PARVATHI A, KRISHNA K, JOSE J, et al.. Biochemical and molecular characterization of Bacillus pumilus isolated from coastal environment in Cochin, India [J]. Bra. J. Microbiol., 2009, 40(2):269-275. |
12 | ROWAN N J, CALDOW G, GEMMELL C G, et al.. Production of diarrheal enterotoxins and other potential virulence factors by veterinary isolates of bacillus species associated with nongastrointestinal infections [J]. Appl. Environ. Microbiol., 2003, 69(4):2372-2376. |
13 | HARWOOD C R, JEAN-MARIE M, SUSANNE P, et al.. Secondary metabolite production and the safety of industrially important members of the Bacillus subtilis group [J]. Fems. Microbiol. Rev., 2018, 42(6):721-738. |
14 | APETROAIE-CONSTANTIN C, MIKKOLA R, ANDERSSON M A, et al.. Bacillus subtilis and B. mojavensis strains connected to food poisoning produce the heat stable toxin amylosin [J]. J. Appl. Microbiol., 2010, 106(6):1976-1985. |
15 | HWANG Y H, KIM M S, SONG I B, et al.. Subacute (28 day) toxicity of surfactinc, a lipopeptide produced by Bacillus subtilis, in rats [J]. J. Health Sci., 2009, 55(3):351-355. |
16 | MIKKOLA R, KOLARI M, ANDERSSON M A, et al.. Toxic lactonic lipopeptide from food poisoning isolates of Bacillus licheniformis [J]. FEBS J., 2010, 267(13):4068-4074. |
17 | NIEMINEN T, RINTALUOMA N, ANDERSSON M, et al.. Toxinogenic Bacillus pumilus and Bacillus licheniformis from mastitic milk [J]. Vet. Microbiol., 2007, 124(3-4):329-339. |
18 | MADSLIEN E H, RØNNING H T, LINDBÄCK T, et al.. Lichenysin is produced by most Bacillus licheniformis strains [J]. J. Appl. microbiol., 2013, 115(4):1068-1080. |
19 | DYBWAD M, GRANUM P E, BRUHEIM P, et al.. Characterization of airborne bacteria at an underground subway station [J]. Appl. Environ. Microbiol., 2012, 78(6):1917-1929. |
20 | FROM C, HORMAZABAL V, GRANUM P E. Food poisoning associated with pumilacidin-producing Bacillus pumilus in rice [J]. Int. J. Food Microbiol., 2007, 115(3):319-324. |
21 | PEDERSEN P B, BJØRNVAD M E, RASMUSSEN M D, et al.. Cytotoxic potential of industrial strains of Bacillus sp. [J]. Regul. Toxicol. Pharm., 2002, 36(2):155-161. |
22 | GRAY K M, BANADA P P, O'NEAL E, et al.. Rapid Ped-2E9 cell-based cytotoxicity analysis and genotyping of Bacillus species [J]. J. Clin. Microbiol, 2005, 43(12):5865-5872. |
23 | ELLINGTON M J, EKELUND O, AARESTRUP F M, et al.. The role of whole genome sequencing in antimicrobial susceptibility testing of bacteria: report from the EUCAST Subcommittee [J]. Clin. Microbiol. Infect., 2017, 23(1):2-22. |
24 | OWUSU-KWARTENG J, WUNI A, AKABANDA F, et al.. Prevalence, virulence factor genes and antibiotic resistance of Bacillus cereus sensu lato isolated from dairy farms and traditional dairy products [J/OL]. BMC Microbiol., 2017, 17(1):65 [2020-11-20]. . |
25 | BEATTIE S H, WILLIAMS A G. Detection of toxigenic strains of Bacillus cereus and other Bacillus spp. with an improved cytotoxicity assay [J]. Lett. Appl. Microbiol., 1999, 28(3):221-225. |
26 | LEE N, KIM M D, CHANG H J, et al.. Genetic diversity, resistanceantimicrobial, toxin gene profiles, and toxin production ability of Bacillus cereus isolates from Doenjang, a Korean fermented soybean paste [J/OL]. J. Food Safety, 2017, 37(4):12363 [2020-11-20]. . |
27 | MARTIN, TRAPECAR, THOMAS, et al.. The use of a porcine intestinal cell model system for evaluating the food safety risk of Bacillus cereus probiotics and the implications for assessing enterotoxigenicity [J]. APMIS, 2011, 119:877-884. |
28 | AQUILINA G, BORIES G, CHESSON A, et al.. Guidance on the assessment of the toxigenic potential of Bacillus species used in animal nutrition [J/OL]. Efsa J., 2014, 12(5):3665 [2020-11-20]. . |
29 | FAGERLUND A, LINDBACK T, STORSET A K, et al.. Bacillus cereus Nhe is a pore-forming toxin with structural and functional properties similar to the ClyA (HlyE, SheA) family of haemolysins, able to induce osmotic lysis in epithelia [J]. Microbiology, 2008, 154(3):693-704. |
30 | WANG P, HENNING S M, HEBER D. Limitations of MTT and MTS-based assays for measurement of antiproliferative activity of green tea polyphenols [J/OL]. PLoS ONE, 2010, 5(4):e10202 [2020-11-20]. . |
31 | ZHENG J T, RIX U, ZHAO L, et al.. Cytotoxic activities of new jadomycin derivatives [J]. J. Antibiot., 2005, 58(6):405-408. |
32 | 吉哈利,王玉恒,于子淇.不同培养条件对vero细胞的增殖及其检测病毒含量的影响[J].甘肃畜牧兽医,2020,50(5):52-56. |
JI H L, WANG Y H, YU Z Q. Effects of different culture conditions on the proliferation of vero cells and detection of virus content [J]. Gansu Anim. Hus. Vet., 2020, 50(5):52-56. | |
33 | 曹端广, 杨凤云, 夏汉庭, 等.MTT比色法观察加味阳和汤对SD乳鼠成骨细胞增殖的影响[J].江西中医药, 2019, 50(9):60-62. |
CAO D G, YANG F Y, XIA H T, et al.. Effect of Jiawei Yanghe Decoction on the proliferation of osteoblasts in SD rats by MTT colorimetry [J]. Jiangxi J. Trad. Chin. Med., 2019, 50(9):60-62. | |
34 | 张航,魏曼琳,王思珍.CCK-8法与MTT法检测乳腺上皮细胞活性的条件比较研究[J].黑龙江畜牧兽医,2017(4):117-119. |
ZHANG H, WEI M L, WANG S Z. Comparison of conditions between CCK-8 assay and MTT assay for detecting the activity of mammary epithelial cells [J]. Heilongjiang Anim. Sci. Vet. Med., 2017(4):117-119. | |
35 | BLANCH A R, MÉNDEZ J, CASTEL S, et al.. Comparison of procedures for the extraction of supernatants and cytotoxicity tests inVero cells, applied to assess the toxigenic potential of Bacillus spp. and Lactobacillus spp., intended for use as probiotic strains [J]. J. Microbiol. Meth., 2014, 103:64-69. |
36 | ÖZDEMIR F, ARSLAN S. Molecular characterization and toxin profiles of Bacillus spp. isolated from retail fish and ground beef [J]. J. Food Sci., 2019, 84(3):548-556. |
37 | GUINEBRETIÈRE M H, BROUSSOLLE V, NGUYEN-THE C. Enterotoxigenic profiles of food-poisoning and food-borne Bacillus cereus strains [J]. J. Clin. Microbiol., 2002, 40(8):3053-3056. |
38 | EHLING-SCHΜLZ M, FRICKER M, SCHERER S. Identification of emetic toxin producing Bacillus cereus strains by a novel molecular assay [J]. Fems. Microbiol. Lett., 2010, 232(2):189-195. |
39 | TOMPKINS T A, HAGEN K E, WALLACE T D, et al.. Safety evaluation of two bacterial strains used in Asian probiotic products [J]. Can. J. Microbiol., 2008, 54(5):391-400. |
40 | MANHAR A K, SAIKIA D, BASHIR Y, et al.. Invitro evaluation of celluloytic Bacillus amyloliquefaciens AMS1 isolated from traditional fermented soybean (Churpi) as an animal probiotic [J]. Res. Vet. Sci., 2015, 99:149-156. |
41 | 沈雪,王昊,关爽,等.细胞毒性在食品安全性中的应用研究[J].食品科学,2008(9):621-623. |
SHEN X, WANG H, GUAN S, et al.. Summary of application of cytotoxicity technology in food safety [J]. Food Sci., 2008(9):621-623. | |
42 | 王文娟, 蔡小芳, 唐洁, 等.体外生物测定法在食品接触材料安全性评价中的应用研究进展[J].食品科学, 2019, 40(15):277-284. |
WANG W J, CAI X F, TANG J, et al.. Application of in vitro bioassays in safety evaluation of food contact materials: a review [J]. Food Sci., 2019, 40(15):277-284. | |
43 | FROM C, PUKALL R, SCHUMANN P, et al.. Toxin-producing ability among Bacillus spp. outside the Bacillus cereus group [J]. Appl. Environ. Microbiol., 2005, 71(3):1178-1183. |
44 | 朱奎,丁双阳,沈建忠.益生芽孢杆菌中潜在风险因子分析[C]// 中国畜牧兽医学会兽医食品卫生学分会. 中国畜牧兽医学会兽医食品卫生学分会第十五次学术交流会论文集.济南,2019:89. |
[1] | 胡冰, 时浩楠, 胡本伦, 赵思明, 刘茹, 贾才华. 食品中黄曲霉毒素检测方法研究进展[J]. 中国农业科技导报, 2022, 24(1): 106-118. |
[2] | 董国然, 沙理堂, 周闯, 符可芯, 杨叶. 两株解淀粉芽孢杆菌的鉴定及对抗多菌灵可可球二孢菌的拮抗作用#br#[J]. 中国农业科技导报, 2021, 23(7): 136-144. |
[3] | 张鹏博, 彭晴, 乔宇, 徐小轻, 张宇微, 田丹丹, 黄英, 马蓝, 石波. 三种益生芽孢杆菌制备纳米硒能力研究[J]. 中国农业科技导报, 2021, 23(5): 176-186. |
[4] | 刘梦丽1,李进2,张军高2,周小云2,杜鹏程1,郭庆元1*,雷斌2*. 棉花红腐病菌不同致病力菌株间毒素活性差异[J]. 中国农业科技导报, 2020, 22(7): 99-105. |
[5] | 华丽霞,曾华兰,蒋秋平,何炼,叶鹏盛*,张小军,韦树谷,张小红,张敏,王明娟,何晓敏,陈超. 免疫亲和净化-光化学衍生液相色谱检测不同样品中的黄曲霉毒素[J]. 中国农业科技导报, 2020, 22(7): 181-187. |
[6] | 符可芯1,2,杨叶2*,曾耿狄1. 热带土壤中解淀粉芽孢杆菌HNU1的鉴定及发酵条件优化[J]. 中国农业科技导报, 2020, 22(6): 49-59. |
[7] | 李刚强1,王楠1,李永斌2,李云龙2,王克功3,王睿3,贺建元3,刘德虎1,张丽霞4,王琦5,陈三凤2*. 两种固氮芽孢杆菌菌剂在小麦—玉米轮作区大田试验效果评价[J]. 中国农业科技导报, 2020, 22(4): 147-152. |
[8] | 梁艳琼,李锐,吴伟怀,习金根,谭施北,郑金龙,黄兴,陆英,贺春萍*,易克贤*. Bacillus subtilis Czk1挥发性化合物对橡胶树红根病菌的抑制作用[J]. 中国农业科技导报, 2020, 22(11): 116-123. |
[9] | 王倩1,2,初晓宇2,朱宝成1*,伍宁丰2*. 启动子及信号肽筛选提高普鲁兰酶在地衣芽孢杆菌中的表达[J]. 中国农业科技导报, 2019, 21(6): 61-69. |
[10] | 王楠1,李刚强1,李云龙2,李永斌2,张浩玮2,王民洋2,王莉瑛2,刘德虎1,陈三凤2*. 固氮类芽孢杆菌的分离鉴定及其促生、抑菌活性的测定[J]. 中国农业科技导报, 2019, 21(5): 95-103. |
[11] | 王婧莹1,王琢2,闫培生1*. 黄曲霉毒素的脱毒研究进展[J]. 中国农业科技导报, 2019, 21(4): 42-51. |
[12] | 王琢1*,原克波1,李增绪1,闫培生2*. 抑制黄曲霉毒素前体合成的芽孢杆菌鉴定及其抑制活性研究[J]. 中国农业科技导报, 2019, 21(11): 111-120. |
[13] | 王琪,闫培生*,周莹,高秀君,王凯,贾文文. 抑制黄曲霉毒素合成的深海环状芽孢杆菌活性物质发酵条件优化[J]. 中国农业科技导报, 2018, 20(9): 65-71. |
[14] | 覃初斌,朱海燕,梅小强,徐函,邵庆均*,李卫芬*. 解淀粉芽孢杆菌对黑鲷幼鱼生长和肝脏功能的影响[J]. 中国农业科技导报, 2017, 19(12): 110-118. |
[15] | 李志敏§,潘兴亮§,杨雅麟*,刘智,徐俐,何夙旭,周志刚*. 溶解性多糖单加氧酶CBP21的高效分泌表达及与几丁质酶的协同作用研究[J]. 中国农业科技导报, 2017, 19(1): 58-65. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||